
DO NOT CITE WITHOUT PERMISSION 

 

 

Title: Millions projected at risk of displacement from sea level rise in 

the Continental United States 

Authors:  Mathew E. Hauer*1, Jason M. Evans2 

Affiliations: 
*1 Mathew E. Hauer 

Carl Vinson Institute of Government 

University of Georgia 

Athens, Georgia 

P: (706) 542-9369 

F: (706) 542-9301 

hauer@uga.edu 
2Jason M. Evans 

 Department of Environmental Science and Studies 

 Stetson University 

 DeLand, Florida 

 P: (386) 822-7910 

 Jevans1@stetson.edu 

 

  

mailto:hauer@uga.edu


DO NOT CITE WITHOUT PERMISSION 

 Hauer and Evans 1 

 

Abstract:  

Nearly 40%1 of the US population resides in coastal areas experiencing rapid growth likely to 

exacerbate long-term exposure to flood risks. Previous estimates of the populations at risk of sea 

level rise inundation for the US are limited in the sense that they do not account for future 

population growth in at-risk coastal areas2-4. Applying a novel small area population projection 

methodology that accounts for dynamic interactions between population change and sea level 

rise, we find that approximately 1.3 million, 3.4 million, and 11.7 million people in the 

continental United States could be at risk of inundation-related displacement under scenarios of 

0.3m, 0.9m, and 1.8m sea level rise by 2100. Importantly, these displacement figures are 

approximately three times larger than those based solely upon current populations.  The 

southeastern United States accounts for 70% of the projected displaced US population. The 

magnitude of populations displaced from sea level rise could mirror the Great Migration of 

southern African-Americans during the 20th century and radically alter the future distribution of 

the US population5. It could cost up to $US11.7 trillion to relocate these displaced populations, 

based on costs associated with managed retreats6. Thus, a one-size-fits-all national approach for 

tackling SLR could prove problematic. 

Main Text:  

Sea level rise (SLR) is widely recognized as one of the most likely and socially disruptive 

consequences of future climate change 6. Scenarios of future SLR at the year 2100 range from a 

low of 0.3 meters to a high scenario of 2.0 meters associated with collapse of polar ice sheets 7. 

Understanding the specific locations and ecosystems at risk of SLR impacts is a high priority in 

climate change research 8-10 and adaptation planning 11,12 yet no complete estimates exist of the 

potential magnitude of displacement from SLR. 

Although there is growing worry that climate change is likely to cause widespread human 

migration over the next century 6, relatively few studies have attempted to merge climate change 

scenarios with population growth trends and projections in high-risk areas  see, however, 13,14.  

The few that have suffer from methodological shortcomings related to both spatial and temporal 

mismatch. For example, previous estimates of the populations at-risk of future SLR inundation 

have been based solely on current population data 15. Given the rapid growth of population in 



DO NOT CITE WITHOUT PERMISSION 

 Hauer and Evans 2 

 

coastal areas 16, such temporal mismatch of datasets (i.e., present population and future SLR) 

appears likely to underestimate the impacts that SLR will have on future populations. Other 

research has coupled county-scale populations with small-area flood inundation risk 2. Such 

spatial mismatch is likely to overestimate the future populations at risk of SLR, as no accounting 

is provided for populations located on higher ground within a county.  

The mutability of many sub-county geographic units (e.g., Census Tracts and Census 

Block Groups) at each decennial Census cycle is a classic example of the modifiable areal unit 

problem 17, and generally limits the development of long-range forecasts to areas in which 

geographic boundaries remain stable 18. Using a novel approach, we overcome the 

methodological issues related to spatial and temporal mismatch and the mutability of sub-county 

units 1 by synthesizing spatially explicit environmental data (i.e., elevation and associated flood 

risk) with small-area population projections developed with a modified version of the Hammer 

Method 1,19 in a dynamic flood hazard model. By spatially and temporally aligning small area 

population projections from coastal states in the continental United States to 2100, we are able to 

assess who will be at risk of inundation from future SLR.  

This approach addresses two fundamental questions concerning the vulnerability of 

future coastal populations in the United States: 1) How many people are potentially at risk of 

displacement from SLR? and 2) What areas in the United States will likely experience the 

greatest population displacement from inundation? Accordingly, our results can be used to 

inform local adaptation infrastructure and growth management strategies, alerting officials to the 

areas where interventions and policies are most needed. 
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We assess the populations at risk of SLR by using the National Oceanic and Atmospheric 

Administration’s (NOAA) 0m, 0.3m (1ft), 0.9m (3 feet), and 1.8m (6 feet) SLR datasets 20 for 

twenty-one coastal states and the District of Columbia. These datasets simulate expected changes 

in the mean higher high water (MHHW) mark on areas that are hydrologically connected to 

coastal areas without taking into account additional land loss caused by other natural factors such 

as erosion. Notably, the State of Louisiana is currently excluded from the NOAA SLR dataset 

due to complexities with accurate simulation of the coastal levee system and high local land 

subsidence in relation to future SLR. Although we recognize that Louisiana has high 

vulnerability to SLR, we follow NOAA by excluding Louisiana from our present analysis.  

We utilize a linear/exponential extrapolation approach for projecting Census Block 

Groups from 2010 to 2100. We included only Census Block Groups (n=70,314) located in 

counties (n=292) expected to experience any inundation under the 1.8 m scenario. A detailed 

technical description is available in the Supplementary Information. Detailed projections of 

displacement for all 292 coastal counties are also found in figure S1 and tables S1 and S2. The 

population at risk of SLR is dynamically assessed as the proportion of the census block group 

underwater when SLR is expected to exceed 0.3m intervals under the 0.3m, 0.9m, and 1.8m 

scenarios. As populations become displaced under each SLR scenario in each block group, 

projected populations are dynamically adjusted to account for this displacement. 

We find that in the continental United States approximately 11.7 million people are at 

risk under the 1.8m scenario (Figure 1), with Florida accounting for over half of this total. The 

projected number for the US is nearly triple what the current population estimates for 2010 

suggest (Figure 2 and Table 1). Florida accounts for over half of the total at risk population and 
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while other southeastern states have substantially fewer people at risk, states such as Georgia and 

South Carolina have over 10% of future coastal populations at risk of displacement under the 

1.8m scenario. The southeastern United States alone represents nearly 70% of the entire 

projected populations at risk of displacement, suggesting the impacts of SLR will be highly 

regionalized nature.  

Our results also suggest a hyperlocalized impact of inundation from SLR (Figure 3 and 

table S2). While the median percentage of the population subject to inundation across all 292 

coastal counties is just 3.5%, several counties would likely experience displacement far in excess 

of 3%. Three counties in particular—Tyrrell, North Carolina (94% of the projected population at 

risk of inundation), Monroe, Florida (88%), and Hyde, North Carolina (82%)—should 

experience population inundation that is catastrophic in nature with 1.8m SLR.  Broward, 

Miami-Dade, Pinellas, and San Mateo counties are projected to see more than 100,000 residents 

potentially displaced with a 0.9m SLR, and an additional 23 counties would have more than 

100,000 potentially displaced persons with a 1.8m SLR. Miami-Dade and Broward counties in 

Florida alone account for more than a quarter of the people expected to be displaced under the 

1.8 m scenario.  

Cities such as Tampa–St. Petersburg, Florida; Charleston, South Carolina; Poquoson, 

Virginia; and Cape May, New Jersey may experience dramatic levels of population displacement 

under the 1.8 m SLR scenario. Other areas such as Hartford, Connecticut; Fairfax, Virginia; and 

San Diego California, by contrast, may expect to see very little displacement from sea level rise. 

Due to geographic variability, a one-size-fits-all national approach for tackling SLR could prove 

problematic. 
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Adaptation strategies for SLR rely on accurate information about the geographies, time 

scales, economies, and populations at risk. With annual global infrastructure costs estimated as 

high as US$421 billion (2014 values) 21, underestimating the potential populations at risk of 

inundation is likely to result in concomitant underestimation of future adaptation costs. This is 

because cost analyses for future climate change impacts have typically been based around 

current population estimates 22. For instance, a 2011 study calculated that currently 137 schools, 

55 health care facilities, and US$99 billion worth of property located in California are at risk of 

1.4m of inundation 23. While such an “inventory” is helpful, it does not take into account 

expansions in California’s population and infrastructure that are likely to take place before 

inundation occurs.  

Similarly, proposed managed retreat solutions could also prove troublesome if population 

projections are left out of the equation. To date, managed retreats have tended to involve small 

populations and areas 24,25, but in the future, action could be needed in areas with currently small 

but growing populations. Not only could the costs of relocating a community be greatly 

underestimated if that population is growing, but the challenge of finding suitable areas for 

relocation could be problematic as well. With current estimates as high as $US1 million per 

resident in some small Alaskan villages 4, each decade both increases that population’s exposure 

to sea level rise and increases their vulnerability to the economic costs of inaction. Potential 

growth management strategies in high risk areas experiencing rapid population growth could also 

prove more effective than relocation. Population projections are not a panacea for these 

problems, but they move us toward evaluating the potential SLR impacts on future, rather than 

current, populations. 
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Research indicating how populations might adapt to SLR is still in its infancy, thus 

limiting our ability to model how future populations might organically adapt to rising seas and 

the loss of both current and future coastal human habitat. For instance, Venice, Italy has seen its 

population remain stable over the last decade in spite of widely documented tidal flooding from 

both land subsidence and SLR suggesting population dynamics and SLR have a complicated 

relationship. Our projections of displaced populations could be biased upward by the limited 

interaction between SLR and population growth.  

Uncertainty in our projections result from the sensitivity of long-term population to both 

the selection of base period length and projection horizon length 26. By using the longest possible 

base period, we do find acceptable accuracy for these projections (supplementary materials); 

however, past trends do not guarantee future trends. Local growth ordinances and population 

saturation points could improve future population projections. 

The approach demonstrated in this paper allows for spatially and temporally aligning 

population data with any type of hazard modelling requiring small area spatio-temporal 

population projections that can be readily utilized by decision makers and researchers. For 

example, other byproducts of SLR, such as relative sea level rise, loss of coastal wetlands, 

intrusion of saltwater into both surface and ground water, and higher storm surges from tropical 

cyclones 27-29 could also be modeled as well as economic impacts from these hazards. For 

instance, using the example of the cost for relocating some Alaskan coastal villages 4 of US$1 

million per resident, the cost of relocation could exceed $US11.7 trillion (2014 values). More 

precise cost estimates could incorporate our approach. There is high potential for coupling 
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population projections in dynamic systems simulations that incorporate such stressors into 

multivariate scenario modeling.  
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Methods 

We assess the populations at risk of MSLR by using NOAA’s 0m, 0.3m (1ft), 0.9m (3 

feet), and 1.8m (6 feet) MSLR datasets for the continental United States. These datasets simulate 

expected changes in the mean higher high water (MHHW) mark on areas that are hydrologically 

connected to coastal areas without taking into account additional land loss caused by other 

natural factors such as erosion and represent the middle and high end scenarios expected by 2100 

7. Twenty-two states and the District of Columbia are expected to experience some form of 

MSLR by 2100. We assess the populations at risk for MSLR for all states and DC with the 

exception of Louisiana. Unfortunately, Louisiana currently lacks recent, accurate coastal 

elevation data, is experiencing land subsidence, and has a complex levee system. To date, 

Louisiana is the only state completely missing from NOAA’s MSLR database and was thus 

excluded from this analysis.  

We utilize a linear/exponential extrapolation for all geographies and use a modified 

Hammer Method 30 for projecting CBGs from 2010-2100. We included only census block groups 

(n=70,314) located in counties (n=292) expected to experience any inundation under the 1.8m 

scenario. The population at risk of MSLR is assessed as the proportion of the CBG underwater at 

the 0.3m, 0.9m, and 1.8m scenarios. The proportion of each CBG inundated is then applied to its 

projected population when sea level rise is expected to exceed 0.3m intervals to assess the 

populations at risk of inundation. We explicitly account for population-environment feedback 

interactions allowing for dynamic growth rates as each block group becomes inundated over 

time. A detailed technical description is available in the Supplementary Information. Additional 

information is also found in Supplementary Figure 1 and Supplementary Tables 1 and 2.
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Table 1. Projected Populations at Risk of Sea Level Rise by 2100. ST, state; Pop. 2010, population in 2010; 

Pop. 2100, projected population in 2100. Only census block groups and counties expected to experience any 

inundation under 1.8m of sea level rise in 2100 and had inundation data were included. Areas not included are 

denoted with a dash. 
 

  

 

 
Current Populations Projected Populations 

ST Pop. 2010 
 

 Pop. 2100  
0.3m SLR 

in 2100 

0.9m SLR in 

2100 

1.8m SLR in 

2100 

0.3m SLR in 

2100 

0.9m SLR in 

2100 

1.8m SLR in 

2100 

AL 661,739  1,253,337 8,002 14,648 25,326 16,408 38,238 57,303 

CA 26,934,343  53,301,543 95,004 94,217 216,174 222,757 472,248 1,046,757 

CT 3,113,051  5,865,392 12,981 17,249 39,482 22,558 53,566 128,048 

DC 601,723  867,172 418 545 1,257 645 2,005 4,629 

DE 897,934  1,829,353 9,865 19,782 35,811 20,192 44,597 76,836 

FL 17,099,967  34,979,118 173,291 385,436 1,499,509 394,531 1,221,837 6,057,419 

GA 645,274  1,256,874 26,266 25,061 48,426 55,608 93,036 178,787 

LA -   - - - - - - - 

MA 4,924,916  8,627,489 21,792 38,232 155,335 38,316 103,552 427,549 

MD 5,120,419  7,861,926 18,176 30,300 68,667 34,291 92,584 188,624 

ME 1,098,127  1,849,668 3,815 6,849 13,233 7,437 15,230 29,028 

MS 449,114  814,600 9,879 12,379 20,075 22,006 50,385 76,901 

NC 1,919,209  3,047,125 38,836 59,884 109,756 77,886 163,260 297,917 

NH 418,366  881,189 2,125 3,299 6,211 4,373 8,670 15,432 

NJ 7,913,312  14,646,202 55,424 117,553 300,923 108,555 308,662 827,449 

NY 13,797,269  22,976,871 22,816 48,933 221,056 45,376 198,257 901,366 

OR 1,813,789  2,750,665 2,375 4,374 8,985 4,352 12,754 25,614 

PA 4,008,994  4,472,968 1,137 2,537 7,288 2,116 9,939 27,427 

RI 1,052,567  1,830,090 3,265 5,188 13,150 6,050 14,875 36,546 

SC 1,512,451  2,979,159 35,091 52,443 126,498 72,562 163,492 374,395 

TX 6,307,493  13,241,311 28,017 52,600 114,797 54,490 173,025 405,423 

VA 4,036,764  8,603,821 37,043 45,521 109,507 78,065 181,130 475,871 

WA 4,440,696  10,745,057 7,332 11,178 26,597 13,567 43,436 94,139 

Tot 108,767,517 
 

204,680,930 612,950 1,048,211 3,168,064 1,302,141 3,464,778 11,753,459 
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Figures 

Figure 1. Cumulative Displaced Populations for the Continental United States, 2010-2100. 

Projections reflect assumed growth/decline rates for 70,314 census block groups in 292 coastal 

counties. Error bars were generated as the 90% confidence interval from the projection models. 
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Figure 2. Projected Cumulative Populations at Risk of Sea Level Rise in 2100 under the 

1.8m scenario.  We considered 22 states and the District of Columbia. Louisiana was excluded 

from this analysis due to severe data limitations. Current populations are based on Census 2010. 
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Figure 3. Cumulative Projected Populations at risk of Displacement under the 0.9m 

Scenario by 2100. Counties not included in the study are colored in gray. 
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Supplementary Materials: 

Materials and Methods 

The methodology for projecting small-areas is outlined in this section. First, the 

methodology to historically estimate housing units is introduced. Second, the methodology to 

convert housing units to population is reviewed. Third, the extrapolation approach undertaken to 

produce population projections are reviewed. Fourth, the determination of populations at risk of 

inundation through intersection with sea level rise curves is described. 

Data. Previous assessments of the populations at risk of sea level rise typically utilize an 

elevation based approach for inundation modelling 3,4,17 whereby all areas under a given 

threshold (usually 1m, 2m, 3m, or 6m) are flooded without consideration of hydrological 

connectedness. Without this crucial consideration in tidewater inundation modelling, areas that 

are currently protected from inundation due to dykes or levees will be inundated under this 

approach. Notable locations such as New Orleans, LA would be considered flooded even with a 

0m scenario since New Orleans currently sits below sea level. For this research, we chose to use 

the National Oceanographic and Atmospheric Administration’s (NOAA) sea level rise databases. 

These datasets simulate expected changes in the mean higher high water (MHHW) mark on areas 

that are hydrologically connected to coastal areas and represent the middle and high end 

scenarios expected by 2100 8. This dataset does not take into account additional land loss caused 

by other natural factors such as erosion, subsidence, or future construction and NOAA provides 
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these data “as is” without warranty to their performance. The state of Louisiana is not included in 

the dataset due to local hydrologic complexities associated with coastal levees and accelerated 

land subsidence. Only coastal counties expected to have direct effects from sea level rise under 

the 1.8m scenario from were selected to be projected and assessed (n=292). Figure S1 comprises 

the study area.  

Data for conducting the population projections come from two main sources. The first 

source of data comes from the American Community Survey (ACS) 2008-2012 estimates. The 

ACS provides the “year structure built” data, and the contemporary census boundaries for block 

groups. The second piece of data is the actual historic count of housing units and population for 

each county, and with regard to the 2010 Census provides us with counts of the Group Quarters 

Population. This data is available as digitized records from the Census Bureau’s website1. It 

should be noted in the consideration of these inputs that the ACS data, though similar to 

decennial data, is subject to many types of error. However, all released ACS data have 

confidence limits above 90% 33. Additionally, GQ tends to be the most volatile aspect of the 

Census Bureau’s Estimates Program and American Community Survey 34-36, but is an important 

aspect of the HU method. 

 

                                                 

1 For 1940 to 1990, data can be found at http://www.census.gov/prod/cen1990/cph2/cph-2-1-1.pdf. Census 2000 

data can be downloaded through American FactFinder. 

http://www.census.gov/prod/cen1990/cph2/cph-2-1-1.pdf
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Figure S1. Study Area. Each of these counties experiences some form of SLR under the 1.8m 

scenario. Note the lack of data for Louisiana. 

 

Estimates of Historic Housing Units.  Demographic projections of small-areal units (i.e. 

sub-county units) tend to be less robust than projection methodologies at bigger scales 20,37. The 

changeability of many sub-county boundaries (e.g., Census Tracts and Census Block Groups) at 

each decennial Census cycle provides a classic example of the modifiable areal unit problem 

referred to as the MAUP, thus effectively limiting the development of more long-range forecasts 

to areas in which geographic boundaries remain stable 20. Notably, the smallest geographies with 

boundaries that tend to remain stable are US counties.  
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We use a modified version of the Hammer Method 2,21 based on a proportional fitting 

algorithm 38. Hammer’s Method is essentially a combination of a growth-allocation and 

proportional fitting approach, where the growth between time-periods is allocated to each block-

group and proportionally fit to the marginals. Equation 1 demonstrates this proportional fitting 

approach.  

(1)             
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The number of housing units in county j as counted in the census taken in time t is 

denoted as 𝐶𝑗
𝑡 while the number of housing units in block group i in county j based on the “year 

structure built” question in the ACS is denoted as 𝐻𝑖𝑗
𝑡 . Thus, any estimate of housing units in any 

given block group in county j is given as a proportionally adjusted estimate based on the ratio of 

the total number of housing units as counted in the Census to a county’s estimated housing units 

from the ACS for t-1. For instance, an estimate of the number of housing units for block group i 

in county j for the year 1980 would be equal to the number counted at the county level according 

to the 1980 census, 𝐶𝑗
1980,divided by the number of housing units at the county level in the ACS 

for the period 1939-1979, , multiplied by the number of housing units observed in the 

ACS for the period 1939-1979 for block group i in county j, . This process is iterated 

for each decade until the most recent time period, i.e. the 2010 census. These estimates of 

housing units for each block group in each county provide the key input needed to convert an 

estimate of housing units into an estimate of total population. 
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
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Housing Units to Population. Equation 2 demonstrates the approach employed here to 

utilize the Housing Unit (HU) method to convert an estimate of Housing Units to an estimate of 

population 39,40.   

 

(2) *PPHU GQtP H    

 

Where H is the number of housing units, PPHU is the persons per household, and GQ is 

the group quarters population. Any error associated with the HU method is attributable to the 

quality of the inputs 41 as the HU method is considered a demographic identity. The Hammer 

method, outlined above, can provide a long-range back cast of housing units for normalized 

boundaries in any given census geography (whether its 1990, 2000, or 2010 geographies). While 

Census designated boundaries may change, housing units typically do not move 21.  Based on the 

“year structure built” question in Census data, the method produces proportionally adjusted 

housing unit estimates at the smallest census geography possible – the block group.  

Equation 3 demonstrates the approach employed here to utilize the HU method to project 

a population. While PPHU and GQ are held constant, 
1t

ijH 
 can be projected though any set of 

extrapolation methods 40,42-45. 

  

(3) 
1

1 *PPHU GQt t t

t ij ij ijP H 

    

 

Projection Approach. We explicitly do not migrate those who are projected to be 

inundated. Our current understanding of the human migratory response to environmental events 
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is not robust enough to model where these inundated persons will potentially move. There are 

quite a few hypotheses on human migration and climate change, mostly drawing from 

environmental events in the 20th century3,46-49. These hypotheses, however, result in empirical 

migration effects that are highly dependent upon the type of environmental pressure. Drought, 

flooding, tropical cyclones, and tsunamis all exhibit differing migration patterns 50-52 with very 

little research suggesting the effect of sea level rise on human migration systems 3. Furthermore, 

very little research has been undertaken that would be the bedrock of modeling who moves, 

where, and in what proportion49. Will impacted populations migrate landward? Could future 

coastal cities resemble Venice, Italy, complete with populations still adapting to rising sea 

levels? Or will populations move to more land-locked cities for protection? These questions still 

remain unanswered. For these reasons, we have chosen to simply model the confluence of two 

converging processes: coastal sea level rise and coastal population growth.  

We employ a linear/exponential (LIN/EXP), regression-based extrapolation based on the 

past 70-years of population change for 1940-2010.  Geographies that have experienced growth 

will utilize a linear regression while geographies that have experienced decline will utilize an 

exponential regression. A LIN/EXP model is used to ensure that 1) long range linear projections 

of decline do not project negative populations and 2) that long range exponential projections of 

growth do not produce extreme values of runaway growth.  Recent research suggests that a 

LIN/EXP model outperforms both a linear and an exponential model, respectively 53. Included 

within the regression formulas is an adjustment factor allowing for the projected and observed 

populations at launch year to be identical. This is computed by adding the residual of the 

estimate at time t back into the regressed estimate of time t. This allows the projection to go 
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through the launch year population.  The small data requirements make these extrapolation 

methods ideal for small-area projections and the use of a regression-based extrapolation allows 

for estimates of forecast intervals 54.  

If the base housing stock is growing: 

(4)                ( ) ( ( )t z t

ijH z H t            

If the base housing stock is declining: 

(5)                    * ( * )t z t

ijH e z H e t          

The use of a regression-based extrapolation allows for the creation of forecast intervals. 

We follow a long line of inquiry in determining the credibility of population projections using 

forecast intervals55-60. These forecast intervals use the standard error of the estimate for the 

models and their sample sizes. Intervals were generated using equations 4.1 and 4.2 from 

Hyndman & Athanasopoulos’ Forecasting: Principles and Practice 61. We have chosen to 

produce a set of three population projections for each block group, an upper, middle, and lower 

bound based on the 90% forecast interval. Thus we produce a set of 210,942 projections – one 

for every block group in the study area (n=70,314) as well as for the upper and lower bound. 

Evaluation of Projections. Forecast intervals, produced through the use of a regression-based 

projection, allow us to determine the degree of feasibility in a projection. Previous analyzes have 

used the 2/3 or 66% forecast interval to assess the degree of accuracy in a population projection 

28,56 representing empirical “low” and “high” scenarios from cohort-component projections 62. 
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The use of a 2/3 interval is “neither so wide as to be meaningless nor too narrow to be overly-

restrictive” 60.  

To assess the degree of feasibility, we assess all intervals on the 2008-2012 ACS estimate 

of housing units for each census block group in the study area. We produce projections based on 

the equations in the preceding section with base period 1940-2000. If less than 2/3 of the ACS 

estimates of housing units in 2010 falls within the 2/3 forecast interval, then the results would 

suggest less than ideal accuracy in terms of long-range projections. Alternatively, if greater than 

2/3 of the ACS estimates of housing units falls within the 2/3 forecast interval, then the results 

would suggest an ideal amount of accuracy in terms of long-range projections. Table S1 shows 

the number of ACS housing unit projections that fall within the 2/3 forecast interval. Overall, 

68.4% of the 2010 estimates fell within the forecast interval suggesting a great degree of 

feasibility associated with these projections. 
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Table S1. Number of 2010 Housing Counts that fall within the 2/3 Forecast Interval.  

State 

# when 2010 fell 

within forecast 

interval 

# of block 

groups Percent 

Alabama 262 362 72.4% 

California 11,808 16,336 72.3% 

Connecticut 1,469 2,253 65.2% 

District of Columbia 350 450 77.8% 

Delaware 377 573 65.8% 

Florida 7,048 9,880 71.3% 

Georgia 267 400 66.8% 

Massachusetts 2,054 3,775 54.4% 

Maryland 1,919 2,684 71.5% 

Maine 466 794 58.7% 

Mississippi 159 270 58.9% 

North Carolina 716 1,086 65.9% 

New Hampshire 162 258 62.8% 

New Jersey 3,897 5,747 67.8% 

New York 6,873 10,705 64.2% 

Oregon 729 1,086 67.1% 

Pennsylvania 1,623 2,154 75.3% 

Rhode Island 457 813 56.2% 

South Carolina 605 942 64.2% 

Texas 2,528 3,513 72.0% 

Virginia 1,919 2,576 74.5% 

Washington 2,399 3,657 65.6% 

TOTAL 48,087 70,314 68.4% 

 

Assessing At-Risk Populations. At-risk projected populations of displacement under prescribed 

sea level rise scenarios were calculated using equation 4.  

4)  
1 1(( )*A )t t t t t

ij ij ij ij ijPR PR P PR      
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Where the population at risk of displacement (PRt) is equal to the population projected at time t 

(Pt) minus the sum of the previously displaced populations (PRt-1) multiplied by the land lost due 

to sea level rise (At).  

 Land lost due to sea level rise is calculated with a spatial overlay workflow in ArcGIS 

10.1 as one minus the percentage of land lost under the preceding amount of sea level rise, ie 1ft 

divided by 0ft, 2ft divided by 1ft, etc. The first step in the analysis was to utilize a base, 0m 

Mean Higher High Water (MHHW) layer, which was derived from NOAA’s 0m scenario, and 

used as the initial condition to calculate a base of dry land area contained within the geographies 

of 2010 Census Block Groups. The resulting calculation is therefore a total area of dry land 

currently available for human habitation within each Census Block Group geography.  Each 

subsequent scenario is expressed as the ratio of each scenario to the previous scenario. This was 

repeated for the 0ft through 6ft scenarios. 
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Figure S2. Accounting for Population Dynamics in the Inundation Model. These are the 

dynamic growth curves for four counties under the 1.8m scenario. All counties are exposed to 

dynamic population growth rates based on the amount of inundation. The greater the deviation 

from the Projected Population line, the greater the impact inundation has on a county’s 

population growth. 

 

 

Sea Level Rise Curves 

Adapting methods developed for the US National Climate Assessment 63, the following quadratic 

equation was used as the basis for calculating deterministic curves for high (1.8m), medium 

(0.9m), and low (0.3m) sea level rise scenarios at 2100: 

E(t) = at + bt2; where  
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E(t) = eustatic sea level rise, in meters, at time t;  

a = global linear trend sea level rise constant of 0.0033 m/yr;  

t = years since 2010;  

b = sea level rise acceleration coefficient (units of m/yr2), with bhigh = 1.86E-04; bmedium = 7.44E-

05; and blow = 0 

  

 

  

 

 

  


