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Abstract 

Three basic approaches have been used to assess population forecast uncertainty: (1) judgment 

and personal opinion; (2) a range of projections based on alternative scenarios; and (3) statistical 

forecast intervals. In terms of the latter, there are two complementary approaches: (1) model-

based intervals; and (2) empirically-based intervals. We evaluate a model-based approach in this 

paper, but enhance it by using it the information in historical data, a feature found in the 

empirically-based approach. We describe and test in this paper a regression-based approach for 

developing 66% forecast intervals for 16 age-group forecasts made using the Hamilton-Perry 

Method. We use a sample of four states (one from each census region in the United States) with 

nine ex post facto tests, one for each census from 1930 to 2010, which yields 576 observations. 

The four states and the nine test points provide a wide range of characteristics in regard to 

population size, growth, and age-composition, factors that affect forecast accuracy. The tests 

reveal that the 66% intervals contain the census age-groups in 397 of the 576 observations (69 

percent). We discuss the results, including intervals by age group, and make some observations 

regarding the limitations of our study. We conclude that the results are encouraging, however, 

and offer suggestions for further work.



1 

 

Introduction 

 Although they are widely used, population forecasts entail an amount of uncertainty, 

especially for long time horizons and for places with small or rapidly changing populations 

(Alho 1984; Alho and Spencer, 1984, 1985, 1990, 1997, 2005; Lutz, Sanderson and Scherbov 

1999; Smith, Tayman and Swanson 2013: 365; Tayman, Smith, and Lin 2007; Tayman, Smith 

and Rayer 2011; Wilson 2012). As such, virtually every forecast is wrong, making the task of an 

accurate forecast impossible, but the task is unavoidable (Keyfitz 1987: 236). It is impossible in 

that the forecasted numbers turn out to be different from what actually occurs, but unavoidable in 

that forecasts must be done in the modern world. Swanson and Tayman (1995) describe this 

irony as the "rock" and the "hard place." As they observed, demographers have developed 

several strategies for dealing with the "irony" of forecasting. They include the use of the term 

"projection" rather than "forecast," (Keyfitz 1972; Pittenger 1978; Smith and Bayya 1992; Smith, 

Tayman, and Swanson 2013: 323), "normative" forecasting (Moen 1984), and providing 

measures of forecast uncertainty. One way to assess uncertainty is to use judgment and methods 

based on judgment (Linstone and Turoff 1975, Ševčíková, Raftery, and Gerland 2013). A second 

way is to produce several alternative projections or scenarios based on different sets of 

assumptions (Campbell 1996; Cheeseman-Day 1992; Spencer 1989; Tayman 2011; Thompson 

and Whelpton 1933; U. S. Census Bureau 1966). A third approach is to develop statistical 

forecast intervals (Alho and Spencer 2005; Rayer, Smith and Tayman 2009; Stoto 1983; 

Swanson and Beck 1994). It is the latter that we explore in this paper.  

 Forecast intervals based on statistical theory and data on error distributions provide an 

explicit estimate of the probability that a given range will contain the future population. These 

intervals are sometimes called prediction intervals, probability intervals, confidence intervals, or 
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confidence limits. We call them forecast intervals to distinguish them from traditional confidence 

intervals, which—strictly speaking—apply only to sample data. 

 Two approaches have been used to develop statistical forecast intervals. The first is based 

on the development of statistical models of population growth and the second is based on 

empirical analyses of errors from past population projections. Both rely on the assumption that 

historical or simulated error distributions can be used to predict future error distributions. To a 

large extent, the two approaches complement one another, but neither is fully satisfactory. On the 

one hand, model-based intervals tend to exploit the theories and underlying inferential statistics, 

but fall short in utilizing the information available in historical data. On the other hand, 

empirically-based intervals utilize the information from historical data, but fall short in 

exploiting the theories underlying inferential statistics. We evaluate a model-based approach in 

this paper, but enhance it by using it the information in historical data. 

 We begin with a discussion the model-based and empirically-based approaches. 

This is followed by a description of our model-based approach, which employs simple 

regression models applied to a forecasting method known as the Hamilton-Perry Method 

(Hamilton and Perry 1962).
1
 We next evaluate the efficacy of the forecast intervals by 

examining population forecasts by 16 age groups for four states covering target years for 

each decade from 1930 to 2010. We conclude with a discussion and suggestions for 

future research. 

Model-Based Intervals 

 Model-based forecast intervals capitalize on the stochastic (or random) nature of 

population processes. They can be developed in a number of ways. Past applications have 

included maximum likelihood estimators of population growth rates (Cohen 1986), Monte Carlo 
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simulations of fertility and migration rates (Pflaumer 1988), regression-based projection models 

(Swanson and Beck 1994), Bayesian projection models (Alkema et al. 2011), models based on 

the opinions of a group of experts (Lutz, Sanderson, and Scherbov 1999; San Diego County 

Water Authority 2002), and time series models covering mortality rates (Lee and Carter 1992), 

life expectancy (Torri and Vaupel 2012), fertility rates (Lee 1993), net migration (De Beer 

1993), and total population size (Alders, Keilman, and Cruijsen 2007; Hyndman and Booth 

2008). Although much of the research on model-based intervals has focused on national or 

regional projections, recent research has extended the analysis to subnational projections as well 

(Cameron and Poot 2011; Tayman et al. 2007; Wilson and Bell 2004). 

 Time series models (especially ARIMA models) are most commonly used for developing 

forecast intervals for population. Although there are exceptions, these models generally assume 

that the pattern (structure) of the data does not change over time, that errors are normally 

distributed with a mean of zero and a constant variance, and that errors are independent of each 

other (Makridakis et al. 1987). Time series models typically require a fairly long series of 

historical observations and can be difficult to apply, especially when attempting to combine 

forecast intervals for all three components of growth and developing intervals for various 

subgroups of the population. 

 Providing a detailed description of model-based forecast intervals is beyond the scope of 

this paper, but we can give several examples of the intervals produced by these models and 

compare them to the high and low projection series produced using alternative scenarios. Lee 

and Tuljapurkar (1994) projected a population of 398 million for the United States in 2065, with 

a 95% forecast interval of 259-609 million. This range is considerably wider than the spread 

between the low and high projections produced by the Census Bureau at about the same time; 
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those projections ranged from 276-507 million in 2050, with a medium projection of 383 million 

(Cheeseman-Day 1992). The previous set of Census Bureau projections reported much lower 

numbers and a slightly smaller range, with a medium projection of 300 million and a range of 

230-414 million for 2050 (Spencer 1989). 

 Pflaumer (1992) made two time series projections of the U.S. population, one based on 

population size and the other based on the natural logarithm of population size. The first model 

produced a medium projection of 402 million in 2050, with a 95% forecast interval of 277-527 

million. These numbers are similar to the Census Bureau’s projections from the same time. The 

second model produced a medium projection of 557 million, with a 95% forecast interval of 465-

666 million. These numbers are much higher and provide a narrower range than the Census 

Bureau’s projections. 

 McNown et al. (1995) made time series projections of the components of growth for the 

U.S. population, as well as total population size. For 2050, they projected a total population of 

373 million, with a 95% forecast interval ranging from 243 million to 736 million. The total 

fertility rate was projected to be 2.46 in 2050, with a 95% forecast interval ranging from 0.91 to 

5.53. Life expectancy at birth for males was projected to be 75.5, with a 95% forecast interval 

ranging from 68.5 to 82.8. For fertility these intervals are much larger than those found in the 

Census Bureau projections, which assumed that the total fertility rate would range only from 

1.83 to 2.52 in 2050 (Cheeseman-Day 1992). For mortality the interval widths are not much 

different than those reported by the Census Bureau, in which life expectancy at birth was 

projected to range between 75.3 and 87.6 in 2050. 

 Swanson and Beck (1994) developed a regression-based model for making short-term 

county population projections in the state of Washington. They compared the 2/3 forecast 
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intervals associated with this model to census counts of Washington’s 39 counties in 1970, 1980, 

and 1990. They found the forecast intervals to contain the 1970 census count in 30 counties 

(77%), the 1980 census count in 24 counties (62%), and the 1990 census count in 31 counties 

(79%). These results suggest that Swanson and Beck’s 2/3 forecast intervals provided a 

reasonably accurate view of forecast uncertainty. 

 Model-based forecast intervals are valid only to the extent that the assumptions 

underlying the models are valid. In spite of their objective appearance, they are strongly 

influenced by the analyst’s judgment. The models themselves are often complex and require a 

substantial amount of base data. They are subject to errors in the base data, errors in specifying 

the model, errors in estimating the model’s parameters, and future structural changes invalidating 

the model’s parameter estimates (Lee 1992). In addition, it is the case that many alternative 

forecasting models can be specified, each providing different (perhaps dramatically different) 

forecast intervals (Cohen 1986; Lee 1974; Tayman, Smith and Lin 2007).  

 In spite of these problems, model-based forecast intervals offer one important benefit: 

they provide explicit probability statements to accompany point forecasts. The intervals are often 

wide, exceeding the low and high projections produced by official statistical agencies. Given that 

many data users (and producers) tend to overestimate the accuracy of population projections, 

model-based forecast intervals provide an important reality check. 

Empirically-Based Intervals 

 The second type of forecast interval is based on empirical analyses of errors from past 

projections (Keyfitz 1981; Smith and Sincich 1988; Stoto 1983; Smith and Rayer 2012; Tayman 

et al. 1998). Keyfitz (1981) took approximately 1,100 national projections made between 1939 

and 1968 and calculated the difference between the projected annual growth rate and the rate 
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actually occurring over time. He found this difference to be largely independent of the length of 

horizon over which the projections were made. He calculated the RMSE for the entire sample to 

be approximately 0.4 percentage points and developed 2/3 forecast intervals by applying that 

error to the growth rates projected for each country. For example, if a country were projected to 

grow by 2% per year for the next 20 years, the probability would be approximately 2/3 that the 

actual growth rate would be somewhere between 1.6% and 2.4%.  

 Keyfitz (1981) refined his analysis by separating countries according to their population 

growth rates, finding a RMSE of 0.60 for rapidly growing countries, 0.48 for moderately 

growing countries, and 0.29 for slowly growing countries. He illustrated this refinement by 

applying the 0.29 RMSE to the U.S. growth rate of 0.79% per year projected by the Census 

Bureau, yielding annual growth rates of 0.50% and 1.08%. Applying those growth rates to the 

1980 population of 260 million produced a range of 245-275 million in 2000. He concluded that 

the odds were about 2 to 1 that this range would contain the U.S. population in that year. 

 Stoto (1983) followed a similar approach, but analyzed projections containing more 

temporal and geographic diversity. Like Keyfitz (1981), he calculated forecast error as the 

difference between the projected annual growth rate and the rate actually realized over time. He 

differentiated between two components of error, one related to the launch year of the projection 

and the other to seemingly random events (the residual). For more developed countries he found 

the launch-year component to have a distribution that was stable over time and centered on zero, 

implying that the projections were unbiased. For less developed countries he found the variance 

of the launch-year component to be stable, but that earlier sets of projections had a strong 

downward bias (although recent sets had little bias). The second component (the residual) was 
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found to have a stable distribution but to have occasional outliers. For both components the 

variance was larger for less developed countries than more developed countries. 

 Stoto (1983) calculated the standard deviations for these two components of error and 

constructed forecast intervals in a manner similar to that used by Keyfitz (1981). He applied 

those intervals to projections of the U.S. population and estimated that there was about a 2/3 

probability that an interval of 241-280 million would contain the actual population in 2000, and a 

95% probability that an interval of 224-302 million would contain that population. He compared 

his results to projections produced by the Census Bureau, concluding that the Census Bureau’s 

low and high series were very similar to a 2/3 forecast interval. Keyfitz (1981) had reached the 

same conclusion. 

 Smith and Sincich (1988) also used the distribution of past forecast errors to construct 

forecast intervals, but followed a different approach. They modified a technique developed by 

Williams and Goodman (1971), in which the predicted distribution of future forecast errors was 

based directly on the distribution of past forecast errors. An important characteristic of this 

technique is that it can accommodate any error distribution, including the asymmetric and 

truncated distributions typically found for absolute percent errors.  

 Using population data for states from 1900 to 1980, they used four simple extrapolation 

methods to make a series of projections covering 10- and 20-year horizons. They calculated 

absolute percent errors for each target year by comparing projections with census counts, 

focusing on the 90% intervals for each set of projections (i.e., the absolute percent error larger 

than exactly 90% of all absolute percent errors). They investigated two approaches to 

constructing 90% forecast intervals, one using the 90% interval from the previous set of 

projections and the other using the 90% interval from all other sets of projections. They found 
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both approaches to provide relatively accurate forecast intervals. For most individual target 

years, 88%-94% of state forecast errors fell within the forecasted 90% interval. Summing over 

all target years, 91% of all forecast errors fell within the forecasted 90% interval. They 

concluded that stability in the distribution of absolute percent errors over time made it possible to 

construct useful forecast intervals for state projections.  

Rayer, Smith, and Tayman (2009) constructed and tested forecast intervals for a large 

sample of counties in the United States using the Williams and Goodman (1971) approach. They 

constructed county forecasts covering 10-, 20-, and 30-year horizons and calculated forecast 

errors for target years covering decades from 1900 to 2000. Although the center of the error 

distributions shifted considerably from one decade to the next, their shape remained relatively 

constant over time. They evaluated the performance of 90% forecast intervals based on the 

distribution of absolute percent errors and found over all decades errors for 91% of the counties 

fell within the forecast intervals for all three horizons. Although there was some decade to 

decade variation, the proportion of errors falling within the intervals was usually between 88% 

and 93% and never varied by more than 10 percentage points. 

 Smith and Rayer (2012) used the Williams and Goodman approach to construct and test 

forecast intervals for county projections in Florida. Using forecast errors for target years 1985, 

1990, and 1995, they constructed 2/3 forecast intervals for projections with launch years 1995, 

2000, and 2005 and counted the number of counties in which the subsequent population counts 

or estimates fell within the forecasted intervals. They found that 43 counties (64%) fell within 

the forecasted range for 5-year horizons and 49 counties (73%) for both 10- and 15-year 

horizons. These numbers were fairly close to the 45 counties implied by the forecast intervals. 
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Given the year-to-year volatility of Florida’s population growth, this reflects a reasonably good 

forecasting performance. 

 Tayman et al. (1998) developed statistically-based forecast intervals for subcounty 

population forecasts in San Diego County. They started by projecting the population residing in 

2,000 ft. by 2,000 ft. grid cells. These projections had 1980 as a launch year and 1990 as a target 

year. Using repeated sampling techniques and randomly selected grid cells, they developed 

projections for a large number of areas varying in size from 500 to 50,000. Forecast errors were 

calculated by comparing the 1990 projections with 1990 census counts.  Rather than 

constructing forecast intervals for the population forecasts per se, they developed forecast 

intervals for the mean errors implied by those forecasts. Empirical forecast intervals for MAPEs 

and MALPEs were developed using an approach similar to that used by Williams and Goodman 

(1971) and Smith and Sincich (1988). For areas with 500 persons, they found a 95% forecast 

interval of 67.4%-80.3% for the MAPE. For areas with 50,000 or more, the interval was 9.7%-

11.5%. For MALPE, the intervals were wider but centered closer to zero. 

Population Forecasting and the Hamilton-Perry Method 

 Today, population forecasts are typically done using the cohort-component method if the 

areas in question are at the county level or higher and if the mortality, fertility, and migration 

data needed to run this method are available (Smith, Tayman, and Swanson 2013: 45). A 

variation of the cohort-component method was introduced by Hamilton and Perry (1962), who 

proposed cohort-change ratios for purposes of short-term population projections. The major 

advantage of this variant is that it has much smaller data requirements than the full cohort-

component method, while still providing a forecast of population by age (as well as sex, race, 

ethnicity, if so desired). Instead of mortality, fertility, migration, and total population data by age 
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and sex, the Hamilton-Perry method requires only age (and sex, race, ethnicity, if these 

characteristics are desired in a forecast) data from the two most recent censuses. Consequently, it 

is much quicker, easier, and cheaper to implement than a full cohort-component model. Not 

surprisingly, it has mainly been used for small geographic areas in which mortality, fertility, and 

migration data are non-existent, unreliable, or very difficult to obtain (Baker et al. 2011, Smith 

Tayman and Swanson 2013: 180, Swanson Schlottmann, and Schmidt 2010). However, it also 

has been found to be useful in other domains. As two examples: (1) it can easily be used to 

forecast multi-race populations, a task not readily accomplished with the full cohort-component 

method (Swanson 2014); and (2) it provides an alternative to the traditional approach to the 

concept of a stable population, one that has revealed new insights regarding the path to stability 

(Swanson and Tedrow 2014). 

Although the Hamilton-Perry Method has primarily been used for small geographic areas, 

its minimal data input requirements combined with its capability for producing age and other 

characteristics in a forecast make it attractive for use at high levels of geography such as states 

and counties. Smith and Tayman (2003) evaluated the accuracy of Hamilton-Perry projections 

for all states and for counties in Florida using 1990 and 2000 as test points and a ten year 

forecast horizon. They found that its accuracy was equivalent to that of cohort-component 

method forecasts. Given the accuracy and other reasons for using the Hamilton-Perry method at 

the state and county level, it is, in its own right, worth exploring in terms of developing 

uncertainty measures for population forecasts, which is what we do here in that we examine state 

level forecasts.  
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Developing Forecast Intervals: A Regression Approach to Estimating CCRs 

 Appendix 1 shows the mechanics of the Hamilton-Perry method and how, despite 

the fact it does not directly employ the components of change, satisfies the fundamental 

demographic equation. An important reason for a demographic forecasting method to be 

consistent with the fundamental demographic equation is to minimize the potential errors 

associated with hidden heterogeneity (Vaupel and Yaushin 1985). 

As shown in Appendix 1, the Hamilton-Perry Method is deterministic. This is not 

surprising given its consistency with the fundamental demographic equation, which by its nature 

is an accounting method. However, we also know that population forecasting is subject to 

uncertainty since we do not precisely know the future components making up the fundamental 

equation. So, the question is how to introduce an element of statistical uncertainty into a method 

that is inherently deterministic. One answer to this question is found by employing a simple 

regression method to estimate CCRs and then applying the regression-estimated CCRs to the 

launch-year age groups to obtain forecasts by age group. 

 From equation [2] in Appendix 1, we note that nCCRx,t = nPx,t / nPx-k,t-k. From this, we can 

define the CCR for the preceding census period as nCCRx,t-k = nPx,t-k / nPx-k,t-2k. We can then 

construct a regression model with nCCRx,t as the dependent variable and nCCRx,t-k as the 

independent variable. We note that for age groups 0-4, 5-9, and the terminal open-ended age 

group that the dependent and independent observations follow the equations provided earlier. 

Given this adjustment, we can generally describe the estimated CCRs at time t as follows: 

nECCRx,t = a + b × nCCRx,t-k.      [11] 

We can then multiply the regression-estimated CCR and the corresponding population by age at 

time t to forecast the CCR at time t+k: 

  nCCRx,t+k = nECCRx,t × nPx,t. 
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Utilizing the regression measure of statistical uncertainty (the standard error of estimate) for the 

model along with the sample size and other characteristics of the data, we can generate forecast 

intervals around nCCRx,t+k. The forecast intervals are based on equation 4.2 found in Hyndman 

and Athanasopoulos, Chapter 4 (2012).
2
 These intervals can then be translated directly to the 

actual population numbers forecasted for each age group (Espenshade and Tayman 1982; 

Swanson and Beck 1994). To illustrate the method, Appendix 2 contains the 2010 forecast 

intervals for Minnesota.
3
 

Empirical Evaluation 

 To empirically examine the regression-based method for developing intervals around 

population forecasts by age generated from the Hamilton-Perry Method, we selected a sample 

made up of one state from each of the four census regions in the United States. The states 

selected are Georgia (South Region), Minnesota (Midwest Region), New Jersey (Northeast 

Region) and Washington (West Region). We then assembled census data for these four states for 

each census year from 1900 to 2010 (U.S. Census Bureau, 1973, 1982, 1992, 2000, 2010). The 

data provide nine points in time at which the forecast intervals can be evaluated 1930, 1940, 

1950, 1960, 1970, 1980, 1990, 2000, and 2010. The terminal open-ended age group are reported 

differently over the period for which we assembled census data, so we used “75 years and over” 

since it was the common denominator. This means there are 16 age groups (0-4, 5-9,…, 70-74, 

and 75+) used in the empirical evaluation. 

This sample provides a wide range of demographic characteristics in terms of variation in 

population size, age-composition, and rates of change. Table 1 provides an overview of this 

range by displaying the population of each state in 1900 and in 2010 and decennial rates of 

population change from 1900 to 2010. Although we do not show a summary of the changes in 
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age composition by state and census year, they are extensive as seen in Appendix 3, which 

provides the age data by state and census year. 

(Table 1 about here) 

 We proceed by constructing CCRs over two successive decennial periods (e.g., 1910-

1920/1900-1910) over the entire period, using regression to estimate the CCR in the more 

current period (e.g., 1910-1920) from the CCR in the earlier period (e.g., 1900-1910). We then 

use the regression-based estimate of the CCR of the “current period” (e.g., 1910-1920) to 

forecast the CCRs to the next period, the “launch year” (e.g., 1920-1930) and develop forecast 

intervals around the forecasted CCRs, which are then translated into the forecasted age groups 

for the “target year” (e.g., 1930). The forecast intervals are then examined to see if they contain 

the census age groups for the target year. 

 How well does the regression approach based on the Hamilton Perry method perform in 

its ability to predict the uncertainty of population forecasts? One way to address this question is 

to determine the number of population counts that fall inside the forecast intervals (Tayman, 

Smith, and Lin 2007). In terms of the forecast interval probability, we selected 0.66 or 66 percent 

because of prior research indicating that “low” and “high” scenarios constructed for the cohort-

component method corresponded empirically to 66% confidence intervals (Stoto 1983) as well as 

findings by Swanson and Beck (1994). Table 2 provides a summary of the results for all four 

states at each of the nine census test points. The table shows the number of times (out of 16) that 

the 66% forecast interval contained the corresponding census number for a given age group. If 

the forecast intervals provide a valid measure of uncertainty, they will contain approximately 11 

of the 16 observed population counts. The table also shows percent of the counts falling within 

the forecast intervals for all target years for each state (144 intervals), the percent falling within 
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all states for each target year (64 intervals), and the single percent falling within all states for all 

target years (576 intervals). 

(Table 2 about here) 

 In Georgia (South Census Region), we find that its population increased by almost five-

fold between 1900 and 2010. In 1900 it had the largest population of any of the four sample 

states and it retains that position in 2010. Its annual average growth rates (by decade) ranged 

from 0.05% between 1920 and 1930 to 2.34% between 1990 and 2000. Changes in its age 

composition are extensive (See Appendix Table A3.1), with large impacts associated with the 

great depression, World War II, the baby boom, and immigration to the sunbelt states more 

recently. The 66 percent forecast intervals contain their corresponding age groups 76 times out of 

144 observations, or 53 percent. Overall, Georgia has the lowest percent of census age groups 

within the 66 percent forecast intervals. 

 The population of Minnesota tripled from 1900 to 2010. Its average annual growth rates 

ranged from a low of 0.66% between 1940 and 1950 to a high of 1.70% between 1900 and 1910, 

a period when the state was still receiving a large number of immigrants from Europe. As is the 

case for Georgia, changes in its age composition are extensive (See Appendix Table A3.2), with 

big impacts associated with the restrictions placed on immigration by World War I and by the 

great depression, World War II, the baby boom, and outmigration to sunbelt states in more recent 

decades. The 66 percent forecast intervals contain their corresponding age groups 113 times out 

of 144 observations, or 78 percent. Overall, Minnesota has the highest percent of census age 

groups within the 66 percent forecast intervals. 

 For New Jersey, its population grew from 1,879,890 in 1900 to 8,791,894 in 2010. New 

Jersey had the second highest population in 1900 and again in 2010. Its average annual growth 
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rates ranged from a low of 0.27% between 1970 and 1980 to a high of 2.99% between 1900 and 

1910. As is the case for Georgia and Minnesota, changes in its age composition are extensive 

(See Appendix Table A3.3) , with big impacts associated with the restrictions placed on 

immigration by World War I and the great depression, World War II, the baby boom, and  

outmigration to sunbelt states in more recent decades. The 66 percent forecast intervals contain 

their corresponding census age groups 106 times out of 144 observations, or 74 percent. Overall, 

New Jersey has the second-highest percent of census age groups within the 66 percent forecast 

interval. 

 In 1900, Washington was largely a frontier state. It had the smallest population (511,844) 

of any of the four states in the sample. However, by 2010 it had grown to 6,724,540 which 

surpassed the population of Minnesota in 2010. Its annual rates of population change are 

somewhat more dramatic than the other states between the 1900-1910 period and the 2000-2010 

period. Between 1900 and 1910 it posted an annual rate of 7.97%, the highest of any of the 

decennial growth rates in the sample. It also posted the second highest rate. Between 1940 and 

1950 the state grew at an annual rate of 3.14%. The lowest rate of annual population change 

(1.06%) is found between 1930 and 1940. The 66 percent forecast intervals contain their 

corresponding census age groups 102 times, which represents 71 percent of the 144 observations. 

Discussion 

 Overall, the 66 percent intervals contain their corresponding census age groups in 397 

cases, which represents 69 percent of the 576 total observations.
4
 In terms of the nine census 

target years, the overall results show that in five of them (1960, 1970, 1990, 2000, and 2010) the 

forecast intervals contain the census age groups substantially more than 66 percent of the time. In 

two target years (1930 and 1980), the intervals contain the census age groups 67 percent of the 



16 

 

time. In the remaining two target years, 1940 and 1950, the intervals contain the census age 

groups 48 percent and 47 percent of the time, respectively. We note that the 1940 test point 

encompasses the economic boom experienced in the 1920s and the economic depression during 

the 1930s and the large scale “baby bust” associated with it. The 1950 point encompasses the 

depression and baby bust period of the 1930s and the economic recovery stimulated by World 

War II and the initial part of the large scale “baby boom” from 1946 to 1950. 

 Table 3 contains a summary of the results by age group across all of the nine census 

target years and the four states. The table shows the number of times (out of 36) that the 66% 

forecast interval contained the corresponding census number for a given age group. If the 

forecast intervals provide a valid measure of uncertainty, they will contain approximately 24 of 

the 36 observed population counts.  In general, Table 3 shows that forecast intervals capture the 

population count at least 66 percent of the time for age groups 10-14, 15-19, 20-24 and 40-44 

through 75+. For age groups 0-4 and 5-9, the forecast intervals only encompass the population 

counts 25 percent of time. For age group 30-34, the count is encompassed 53 percent of the time 

while for age group 25-29, it is 58 percent of the time. The population counts are captured by the 

forecast intervals 61 percent of the time for age group 35-39.  

Perhaps it should not be surprising that the cohort change method is better able to capture 

older age groups than the very youngest since births are not part of a cohort change ratio. In 

addition, migration likely comes into play in that the population in the two youngest age groups 

(0-4 and 5-9) would be moving with their parents, who are likely to be in age groups 25-29, 30-

34, and 35-39, the other age groups for which the forecast intervals encompassed the population 

counts less than 66 percent of the time. Overall, we find that these effects are consistent with 

theory regarding migration in that those who tend to move are less socially integrated into 
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communities than those who tend not to move and that as adults age, community social 

integration tends to increase (Goldscheider 1978). Finally, as shown at the bottom of Table 3, the 

intervals capture the population count 69 percent of the time (397 out of 576), which matches the 

summary for Table 2.  

(Table 3 about here) 

 Although they are not shown here, the average width of the forecast intervals appears to 

us to be reasonable at the 66 percent level in that they are neither so wide as to be meaningless 

nor too narrow to be overly-restrictive. This is largely consistent with prior work by Swanson 

and Beck (1994) on confidence intervals derived from regression-based forecasts. Also 

consistent with the work by Swanson and Beck (1994), is the fact that the regression-based 

forecast intervals contain the actual numbers by age in 69 percent of the 576 observations 

provide further support that 66 percent forecast intervals based on the regression-estimated CCR 

approach are both useful and feasible. We find these results encouraging. 

 At this point, we suggest caution using this method beyond a ten-year forecast horizon. 

This is consistent with observations about the use of the Hamilton-Perry method in general 

(Swanson, Schlottmann, and Schmidt 2010) and as such is not a major limitation.
5
 We also 

suggest that this approach to developing uncertainty measures be used with care when applied to 

small populations, such as those found at the county and sub-county levels. While our sample 

provides a wide range of demographic behavior in terms of size, age composition, and 

population changes, it is a sample of states, which means that greater variability in demographic 

characteristics found at sub-state levels is not present (Swanson, Schlottmann, and Schmidt 

2010). We suggest that further research using this approach would be useful by examining both 

longer forecast horizons and smaller populations (i.e., the sub-state populations) and different 
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probability intervals. Another area for further research would be to utilize Keyfitz’s (1981) 

approach using root mean square errors in conjunction with the Hamilton-Perry Method. 

 The fact that the forecast intervals do not contain the population counts at least 66 percent 

of the time for neither the two youngest age groups (0-4 and 5-9) nor the age groups associated 

with those most likely to be the parents of these children (25-29, 30-34 and 35-39) should not be 

surprising: The dynamics of birth and migration are difficult to capture in a full cohort-

component method forecast and the Hamilton-Perry Method is a variant of the full method 

(Smith, Tayman and Swanson 2013: 177; Smith and Tayman 2003). Thus, work on these issues 

in regard to one of these two methods should be of use to the other. 
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Endnotes 

1. Although the name “Hamilton-Perry Method” is virtually universal today, the first published 

instance of cohort change ratios being used for purposes of projecting a population is found in 

Hardy and Wyatt (1911), who built cohort change ratios from the 1901 and 1906 census counts 

of England and applied them to the 1906 census to generate a forecast for 1911. Hamilton and 

Perry acknowledge that they learned about this method from a general description found in 

Wolfenden (1954) who cited the Hardy and Wyatt article. However, they were unable to secure a 

copy of the 1911 article and were, therefore, not exactly certain what was done by Hardy and 

Wyatt. In any event, Hamilton and Perry deserve credit for providing a clear and detailed 

description of this approach to population projection in a journal (Social Forces) that was read 

by many demographers in the United States and elsewhere prior to the founding of demographic 

journals such as Canadian Studies in Population (first published in 1973) Demography (first 

published in 1966) and Population Research and Policy Review (first published in 1982). 

2. The equation provided by Hyndman and Athanasopoulos (2012) is shown in equation 6 in 

Appendix 2. 

3. Space considerations prevent us from showing all of the regression, forecast intervals, and 

evaluation results here. The authors will be pleased to provide them upon request.  

4. It should be clear that we are primarily interested in measuring uncertainty in forecasts of age 

groups. This is an important topic due to the role that the absolute and relative sizes of age 

groups have in regard both to commerce (Gauthier, Chu and Tuljapurkar 2006; Martins Yusuf 

and Swanson 2012, Murdock et al. 1997) and public policy (Bongaarts and Bulatao 2000, 

Murdock et al. 1997, Smith Tayman and Swanson 2013: 23, Tuljapurkar, Pool, and 

Prachuabmoh 2005, Gauthier, Chu and Tuljapurkar 2006). We are aware that levels of 
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uncertainty in regard to forecasts of the total population are important as well. In this regard, we 

note that technically the forecast intervals we generated here apply only to the age groups. There 

are two ways in which they can be used to place intervals around the total population forecast, 

one is informal while the other is formal. In the informal approach, we obtain 66 percent forecast 

intervals for the total population by adding the lower and upper boundaries of the intervals for 

each age group. We found that in 28 of the 36 forecasts (four states at each of nine time points) 

the summed lower and upper boundaries contained the actual total population, or 78 percent. By 

state, we find: Georgia’s total population is contained in 5 of the 9 time points (56%); 

Minnesota’s is in 9 of the 9 time points; New Jersey’s is in 6 of the 9 time points (67%); and 

Washington’s is in 8 of the 9 time points (89%). By target year, we find: 4 of 4 were contained in 

the 1960, 1970, and 1990 years; 3 of 4 were contained in the 1930, 1980, 2000, and 2010 years; 

and 2 of 4 in the 1940 and 1950 years. 

The formal approach is called the “error propagation method” by Deming (1950: 127- 

134). In different forms it has been used by Alho and Spencer (2005), Espenshade and Tayman 

(1982), and Hansen, Hurwitz, and Madow (1953), among others. In this application, the error 

propagation method involves summing the squared values of the forecast intervals by age, 

finding the square root of the summed forecast interval values and dividing this square root of 

the sample size (n=16) to obtain an estimate of the standard error for the total population 

forecast. This standard error is then multiplied by the total population forecast (found by 

summing the point forecast for each age group) to obtain the margin of error. The margin of error 

is added to and subtracted from the total population forecast to obtain its 66% forecast interval. 

This approach assumes that the 16 age groups are independent, which is not an unreasonable 

assumption in that the age group forecasts are not forced to sum to any specified total (i.e., they 
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are not “controlled” to an externally produced population total). In following this approach, we 

found that in 29 of the 36 forecasts (four states at each of nine time points) the error propagation 

intervals contained the actual total population, or 81 percent. By state, we find: Georgia’s total 

population is contained in 6 of the 9 time points (67%); Minnesota’s is in 9 of the 9 time points; 

New Jersey’s is in 6 of the 9 (67%), and Washington’s is in 8 of the 9 time points (89%). By 

time point, we find: 4 of 4 were contained in the 1960, 1970, 1990, and 2010 target years; 3 of 4 

were contained in the 1930, 1980, and 2000 target years; and 2 of 4 in the 1940 and 1950 target 

years. 

Both the informal and formal approaches can be used to construct forecast intervals for 

any desired aggregations of the five-year age groups such age group 25-34, the working age 

population (e.g., ages 25-64), and so forth. 

5. The ten-year horizon is also consistent with accuracy evaluations of the Hamilton-Perry 

Method, which show that the method performs well for ten year forecasts (Smith and Tayman 

2003; Swanson and Tayman 2013) and even 20 year forecasts (Smith and Tayman 2003). 
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Table 1. Total Population 1900 and 2010 and 
Annual Rate of Change by Decade, Sample States 

  

 Census Year Georgia Minnesota New Jersey Washington 

1900
a
 2,209,974 1,747,292 1,879,890 511,844 
     

1900-1910 1.64% 1.70% 2.99% 7.97% 

1910-1920 1.05% 1.41% 2.19% 1.75% 

1920-1930 0.05% 0.72% 2.47% 1.44% 

1930-1940 0.72% 0.86% 0.30% 1.06% 

1940-1950 0.98% 0.66% 1.50% 3.14% 

1950-1960 1.35% 1.35% 2.27% 1.83% 

1960-1970 1.52% 1.08% 1.67% 1.78% 

1970-1980 1.74% 0.69% 0.27% 1.92% 

1980-1990 1.70% 0.71% 0.48% 1.64% 

1990-2000 2.34% 1.17% 0.85% 1.92% 

2000-2010 1.68% 0.75% 0.44% 1.32% 
     

2010 9,687,653 5,303,925 8,791,894 6,724,540 

     
a
 The 1900 population totals exclude those for whom age was not reported. 
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Table 2. Number of Population Counts Falling within the 66% Forecast Intervals 
by State and Target Year 

Target 
Year Georgia Minnesota New Jersey Washington Total 

Percent 
(N/64) 

1930 9 12 8 13 42 67% 

1940 3 5 11 12 31 48% 

1950 10 14 4 3 31 47% 

1960 13 14 14 8 49 86% 

1970 6 12 14 13 45 77% 

1980 7 12 12 10 41 67% 

1990 13 14 14 14 55 83% 

2000 8 15 14 15 52 81% 

2010 7 15 15 14 51 81% 

Total 76 113 106 102 397   

Percent 53% 78% 74% 71% 69%  

 
Percent 
(N/144) 

Percent 
(N/144) 

Percent 
(N/144) 

Percent 
(N/144) 

Percent 
(N/576)   
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Table 3.  Number of Population 
Counts Falling within the 66% 
Forecast Interval by Age Group 

Age Number 
Percent 

(N/36) 

0 to 4 9 25% 

5 to 9 9 25% 

10 to 14 26 72% 

15 to 19 27 75% 

20 to 24 24 67% 

25 to 29 21 58% 

30 to 34 19 53% 

35 to 39 22 61% 

40 to 44 26 72% 

45 to 49 28 78% 

50 to 54 30 83% 

55 to 59 31 86% 

60 to 64 30 83% 

65 to 69 31 86% 

70 to 74 33 92% 

75+ 31 86% 

Total 397 69% 
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APPENDIX 1 

Hamilton-Perry Method and the Fundamental Demographic Equation 

It is useful to recall that any quantitative approach to forecasting is constrained to satisfy various 

mathematical identities (Land 1986). In regard to population forecasting, an approach should 

ideally satisfy demographic accounting identities, which is summarized in the fundamental 

demographic equation: 

Pt = P0 + Births – Deaths + In-migrants – Out-migrants.    [1] 

That is, the population at some time in the future, Pt, must be equal to the population at an earlier 

time, P0, plus the births and in-migrants (to include both domestic and international migrants) 

and less the deaths and out-migrants (to include both domestic and international migrants) that 

occur between time 0 and time t. The cohort-component method satisfies the fundamental 

equation, but it is data-intensive (George et al. 2004, Smith, Tayman and Swanson 2013:180; 

Murdock and Ellis 1991, Pittenger 1976). As we show in the Appendix, the Hamilton-Perry 

Method also satisfies the fundamental demographic equation, but has far less intensive input data 

requirements than does the cohort-component method (Hamilton and Perry 1962; Smith, 

Tayman, and Swanson 2013: 176-179), Swanson Schlottmann, and Schmidt 2010, Swanson and 

Tedrow 2012).  

 The Hamilton-Perry method moves a population by age (and sex) from time t to time t+k 

using cohort-change ratios (CCR) computed from data in the two most recent censuses. It 

consists of two steps. The first uses existing data to develop CCRs and the second applies the 

CCRs to the cohorts of the launch year population to move them into the future. As shown by 

Swanson, Schlottmann, and Schmidt (2010), the formula for developing a CCR is: 

nCCRx, t = nPx, t / nPx-k, t-k.        [2] 
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  where,  

nPx, t is the population aged x to x+n at the most recent census (t), 

nPx-k, t-k is the population aged x-k to x-k+n at the 2nd most recent census (t-k), and  

k is the number of years between the most recent census at time t and the one 

preceding it at time t-k. 

The basic formula for the second step, moving the cohorts of a population into the future is: 

nPx+k, t+k = nCCRx, t × nPx, t       [3] 

  where,  

  nPx+k, t+k is the population aged x+k to x+k+n at time t+k, and 

  nCCRx, t and nPx, t are as defined in equation [2]. 

 Given the nature of the CCRs, 10-14 is the youngest five-year age group for which 

projections can be made if there are 10 years between censuses. To project the population aged 

0-4 and 5-9 one can use the Child Woman Ratio (CWR) or more generally a “Child Adult Ratio” 

(CAR). These ratios do not require any data beyond what is available in the decennial census. 

For projecting the population aged 0-4, the CAR is defined as the population aged 0-4 divided by 

the population aged 20-34. For projecting the population aged 5-9, the CAR is defined as the 

population aged 5-9 divided by the population aged 25-39. The CAR equations for projecting the 

population aged 0-4 and 5-9 are:  

  Population 0-4:  5P0,t+k = (5P0,t /15P20,t) × 15P20,t+k    [4a] 

Population 5-9:  5P5,t+k = (5P5,t / 15P25,t ) × 15P25,t+k    [4b] 

  where  

  P is the population,  

  t is the year of the most recent census, and 
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  t+k is the projection year. 

There are other “adult” age groups that could be used to define CAR (Smith, Tayman, and 

Swanson 2013: 178). The definitions shown in the two preceding equations are designed for a 

population in which fertility is at or below replacement, (i.e., the TFR is less than 2.1 or so), 

which correlates with the fact that first births tend to be postponed. 

 Another way to project the youngest age groups is to take their ratios at two points in 

time and apply that ratio to the launch year age group (t). In the first step, the ratios are as 

follows: 

  Population 0-4:  5R0,t = 5P0,t / 5P0,t-k       [5a] 

  Population 5-9:  5R5,t = 5P5,t / 5P5,t-k.      [5b] 

In the second step, the projected population at t+k is found as follows: 

  Population 0-4:  5P0,t+k = 5P0,t × 5R0,t      [6a] 

  Population 5-9:  5P5,t+k = 5P5,t × 5R5,t.      [6b] 

We use the ratio method in this paper since it is better suited for the regression-based 

method for creating intervals around forecasts for the two youngest age groups. . One reason that 

it is better suited with the regression-based method is that the CAR values are substantially 

different than the CCRs, whereas the ratios are not. This means that the CAR values are potential 

outliers that could serve as influential observations that deleteriously affect model construction 

(Fox 1991). Another reason is that the mean age at childbearing changed over the time period 

represented by the sample data we employ (see, e.g., Heuser 1976; NCHS, 2013). 

Projections of the oldest open-ended age group also differ slightly from the projections 

for the age groups beyond age 10 up to the oldest open-ended age group. If for example the final 

closed age group is 70-74, with 75+ as the terminal open-ended age group, then calculations for 
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the CCRx+,t require the summation of the three oldest age groups to get the population age 65+ at 

time t-k: 

  ∞CCR75,t = ∞P75,t / ∞P65,t-k.       [7a] 

The formula for projecting the population 75+ for the year t+k is: 

  ∞P75+,t+k = ∞CCR75,t × ∞P65,t.      [7b] 

 To show the Hamilton-Perry Method satisfies the fundamental demographic equation, we 

restate equation [2] using the terms in equation [1]: 

  Pt+k = Pt + B – D + I – O 

  where, 

  Pt = Population at time t (the launch year), 

  Pt+k = Population  at time t+k (the projection year), 

  B = Births between time t and t+k, 

  D = Deaths between time t and t+k, 

  I = In-migrants between time t and t+k, and 

  O = Out-migrants between time t and t+k, 

then, 

nCCRx,t = (nPx-k,t-k + B – D + I – O )/ nPx-k,t-k    [8] 

Since we can also express equation [3] in terms of equation [1]: 

nPx+k,t+k = ((nPx-k,t-k + B – D + I – O) / (nPx-k,t-k)) × ( nPx,t)  [9] 

where x+k >= 10, then, 

nCCRxt = (nPx-k,t-k – D + I – i) / nPx-k,t-k, and 

since N = I – O, where x+k ≥ 10, we have 

  nCCRx,t = (nPx-k,t-k – D + N) /(nPx-k,t-k).     [10] 
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 Equations [8], [9], and [10] show that the Hamilton-Perry Method is not only consistent 

with the fundamental demographic equation, but also closely related to the cohort-component 

method. The Hamilton-Perry Method simply expresses the individual components of change—

births, deaths, and migration—in terms of CCRs. As such, it satisfies the fundamental 

demographic equation.  
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Appendix 2 

Calculation of 2010 Point and Interval Forecasts, Minnesota 

We use data from 1980-2010 for Minnesota to illustrate the derivation of point and interval 

forecasts using regression combined with the Hamilton Perry method. We begin by computing 

the CCRs and ratios for the two youngest age groups (Ratios) for 1980-1990 and 1990-2000 as 

shown in Table A2.1. We then estimate the Ratio for 1990-2000 by regressing the observed 

1990-2000 Ratios against the observed 1980-1990 Ratios using the following: 

ERatiosx,1990-2000 = 0.1676667 + (0.8644256 × Ratiosx,1980-1990)  [1] 

adj. r
2
 = 0.755 and se = 0.07124.  

Thus usual assumption in the Hamilton-Perry method is that the launch year ratios are held 

constant. Under this assumption, point forecasts in 2010 are computed by: 

  Popx, 2010 = ERatiosx,1990-2000 × Popx,2000, where x (0-4 and 5-9),   [2] 

  Popx, 2010 = ERatiosx,1990-2000 × Popx-10,2000, where x (10 to 74), and  [3] 

  Popx, 2010 = ERatios75+,1990-2000 × Pop65+,2000, where x (75+).   [4] 

The 1990-2000 ERatios and point forecasts for population by age are shown in Table A2.1. 

 Table A2.2 shows the 66% forecast intervals for both the 1990-2000 ERatios and 2010 

population. We first develop intervals around the 1990-2000 ERatios by: 

  ERatiosx,1990-2000 ± moe       [5] 

  where, 

  moe is the margin of error at a given probability level. 
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Assuming that the regression errors are normally distributed, an approximate margin of error 

associated with a forecast is given by Hyndman and Athanasopoulos (2012) as follows: 
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      [6] 

where 

n is the total number of observations,  

2n
t


is the t-distribution value corresponding to the probability level, 

X  is the mean of the observed x values (0.940349), 

sx
2
 is the variance of the observed x values (.020186), and 

se is the standard error of the regression. 

In this paper we show 66% forecast intervals, which are represented by a tn-2 value of 1.0. 

Equation [6] shows that the forecast interval is wider when x is farther from X (or the average of 

the 1980-1990 Ratios). That is, we are more certain about our forecasts when values of the 

predictor variable are close to its sample mean. For example, the largest margin of error is for 

ages 75+ (0.09091). The 1980-1990 ERatio for that group (0.52634) is 44% below the average 

ERatio.  

 We then translate the intervals around the 1990-2000ERatios into population forecast 

intervals by applying equations [2] through [4] to the lower and upper limits determined by 

equation [5]. Table A2.2 also compares the 2010 census population against the forecast intervals. 

In this example, only one interval for ages 5 to 9 does not contain the 2010 census population. 



42 

 

 

Table A2.1 Ratios, 1980-1990 and 1990-2000 and Projected Population 2010, Minnesota 

    Ratios
a
   

 Population  1990-2000 2010  

Age 1980 1990 2000 1980-1990 Observed Estimated
b
 Population  

0 to 4 307,249 336,800 329,594 1.09618 0.97860 1.11501 367,501  

5 to 9  296,295 345,840 355,894 1.16722 1.02907 1.17641 418,677  

10 to 14 333,378 313,297 374,995 1.01968 1.11341 1.04890 345,711  

15 to 19  399,818 297,609 374,362 1.00443 1.08247 1.03572 368,607  

20 to 24  393,566 316,046 322,483 0.94801 1.02932 0.98696 370,105  

25 to 29  363,435 381,759 319,826 0.95483 1.07465 0.99286 371,689  

30 to 34  313,104 397,984 353,312 1.01123 1.11791 1.04160 335,898  

35 to 39 246,356 361,274 412,490 0.99405 1.08050 1.02675 328,381  

40 to 44  202,860 304,810 411,692 0.97351 1.03444 1.00900 356,492  

45 to 49 187,051 237,050 364,247 0.96223 1.00823 0.99925 412,181  

50 to 54 193,199 191,410 301,449 0.94356 0.98897 0.98312 404,743  

55 to 59  189,457 173,066 226,857 0.92523 0.95700 0.96727 352,325  

60 to 64 170,638 171,220 178,012 0.88624 0.93000 0.93358 281,427  

65 to 69 149,114 160,036 153,169 0.84471 0.88503 0.89769 203,647  

70 to 74  121,034 134,486 142,656 0.78814 0.83317 0.84880 151,097  

75+ 209,416 252,412 298,441 0.52634 0.54566 0.62254 369,954  

Total 4,075,970 4,375,099 4,919,479       5,438,435  

         
a
 Ages 0-4 = P0-4,t /  P0-4,t-10.       

  Ages 5-9 = P5-9,t /  P5-9,t-10.       

  Ages 10-74 = Px+10,t /  Px,t-10.       

  Ages 75+ = P75+,t /  P65+,t-10.       

         
b
 Based on the regression equation, 0.1676667 + (0.8644256 × Ratios1980-1990)  

         
c
 Ages 0-4 = Est.1990-2000 Ratio0-4 × P0-4,2000.      

  Ages 5-9 = Est.1990-2000 Ratio5-9 × P5-9,2000.      

  Ages 10-14 = Est.1990-2000 CCRx × Px-10,2000.      

  Ages 75+ = Est.1990-2000 CCR75+ × P65+,2000.      
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Table A2.2  66% Forecast Intervals, 2010, Minnesota             

 1990-2000 Ratios  
2010 Population 

Forecast  2010 Census 

Age 
Point 

Forecast
a
 

Margin 
of Error

b
 

Lower 
Limit

c
 

Upper 
Limit

d
   

Lower 
Limit

e
 

Upper 
Limit

e
   Population 

Inside 
Interval 

0 to 4 1.11501 0.07615 1.03886 1.19116  342,402 392,599  355,504 X 

5 to 9  1.17641 0.07909 1.09732 1.25550  390,530 446,825  355,536  

10 to 14 1.04890 0.07415 0.97475 1.12305  321,272 370,151  352,342 X 

15 to 19  1.03572 0.07390 0.96182 1.10962  342,306 394,907  367,829 X 

20 to 24  0.98696 0.07344 0.91352 1.06040  342,565 397,645  355,651 X 

25 to 29  0.99286 0.07346 0.91940 1.06632  344,188 399,190  372,686 X 

30 to 34  1.04160 0.07400 0.96760 1.11560  312,035 359,762  342,900 X 

35 to 39 1.02675 0.07376 0.95299 1.10051  304,791 351,972  328,190 X 

40 to 44  1.00900 0.07356 0.93544 1.08256  330,502 382,481  352,904 X 

45 to 49 0.99925 0.07349 0.92576 1.07274  381,867 442,495  406,203 X 

50 to 54 0.98312 0.07343 0.90969 1.05655  374,512 434,973  401,695 X 

55 to 59  0.96727 0.07346 0.89381 1.04073  325,568 379,083  349,589 X 

60 to 64 0.93358 0.07377 0.85981 1.00735  259,189 303,665  279,775 X 

65 to 69 0.89769 0.07447 0.82322 0.97216  186,753 220,541  202,570 X 

70 to 74  0.84880 0.07603 0.77277 0.92483  137,562 164,631  151,857 X 

75+ 0.62254 0.09091 0.53163 0.71345   315,930 423,979   328,694 X 

           
a
 From Table A2.1.          

b 
Based on equation 6, using a t-value of 1 for a 66% forecast interval.    

c 
Point forecast – margin of error.        

d 
Point forecast + margin of error.        

e
 2000 population × upper and lower limits of the 1990-2000 ERatios.    
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Appendix 3 

Population by Age, 1900 to 2010 by Decade 

 

 

Table A3.1  Population by Age, 1900 to 2010, Georgia                 

Age 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 

0 to 4 325,473 376,641 363,229 316,404 313,122 422,486 471,901 421,709 414,935 495,535 595,150 686,785 

5 to 9  313,524 347,369 382,373 353,910 319,056 355,208 440,198 470,311 446,831 483,952 615,584 695,161 

10 to 14 277,865 315,217 365,312 338,860 325,009 311,293 411,650 480,924 469,598 466,614 607,759 689,684 

15 to 19  241,478 280,383 307,549 334,836 328,410 291,806 331,554 442,571 530,773 497,152 596,277 709,999 

 20 to 24  229,199 260,140 272,814 288,126 304,638 276,193 271,211 416,949 516,084 522,634 592,196 680,080 

 25 to 29  172,819 214,250 230,373 222,930 277,500 276,270 251,770 330,790 481,276 589,952 641,750 673,935 

30 to 34  127,782 169,314 180,749 183,399 236,138 255,385 256,351 273,995 448,765 584,944 657,506 661,625 

35 to 39 111,711 152,232 185,500 186,959 209,545 254,264 260,063 256,934 356,263 531,619 698,735 698,059 

40 to 44  97,256 109,644 140,477 151,156 174,120 219,640 244,981 260,140 291,069 484,079 654,773 699,481 

 45 to 49 78,565 85,850 125,849 133,154 156,489 182,855 229,397 252,278 266,793 374,918 573,017 722,661 

 50 to 54 78,307 96,240 106,175 131,455 134,244 153,118 196,204 232,825 261,211 294,033 506,975 668,591 

55 to 59  46,756 61,442 66,256 84,633 102,773 126,309 161,507 207,126 246,907 259,735 375,651 573,551 

60 to 64 42,863 55,526 64,125 67,562 83,965 100,096 125,668 175,565 215,869 238,779 285,805 496,006 

 65 to 69 27,942 35,469 44,269 45,142 75,095 95,556 113,144 137,744 188,897 218,078 236,634 356,007 

70 to 74  18,887 21,911 29,550 33,738 42,732 60,606 81,647 97,362 141,977 169,973 199,061 250,422 

75+ 19,547 23,349 28,292 34,398 40,887 63,493 95,870 132,352 185,857 266,219 349,580 425,606 

Age Not 
Reported 6,357 4,144 2,940 1,844 0 0 0 0 0 0 0 0 

Total  2,216,331 2,609,121 2,895,832 2,908,506 3,123,723 3,444,578 3,943,116 4,589,575 5,463,105 6,478,216 8,186,453 9,687,653 

Sources:             

U.S. Census Bureau, Table QT-P1, 2000 and 2010 census.         

U.S. Census Bureau, Table 19, General Population Characteristics, 1990 census.       

U.S. Census Bureau, Table 19, General Population Characteristics, 1980 census.       

U.S. Census Bureau, Characteristics of the Population (Georgia, Vol. 1, Part 12), March 1973 (years 1900 through 1970).    
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Table A3.2  Population by Age, 1900 to 2010, Minnesota                 

Age 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 

0 to 4 228,290 226,840 261,394 231,001 230,057 332,460 416,005 331,771 307,249 336,800 329,594 355,504 

5 to 9  217,447 220,233 248,599 256,751 220,176 267,652 380,650 402,635 296,295 345,840 355,894 355,536 

10 to 14 192,064 214,402 233,961 253,788 238,918 223,787 324,710 415,021 333,378 313,297 374,995 352,342 

15 to 19  170,177 215,148 219,609 239,946 257,349 207,460 251,352 373,405 399,818 297,609 374,362 367,829 

 20 to 24  160,674 216,670 217,919 214,432 245,592 213,712 194,883 292,037 393,566 316,046 322,483 355,651 

 25 to 29  148,607 187,438 213,646 193,469 225,097 220,780 193,160 249,516 363,435 381,759 319,826 372,686 

30 to 34  131,055 153,195 189,778 189,705 204,311 212,765 206,487 206,769 313,104 397,984 353,312 342,900 

35 to 39 121,193 135,612 168,540 192,934 192,452 205,447 211,163 192,863 246,356 361,274 412,490 328,190 

40 to 44  100,646 117,256 135,353 172,980 187,196 189,729 204,868 202,710 202,860 304,810 411,692 352,904 

 45 to 49 72,042 105,289 122,435 147,143 182,525 176,212 194,149 202,904 187,051 237,050 364,247 406,203 

 50 to 54 57,896 88,110 105,208 122,171 162,931 170,805 176,190 193,956 193,199 191,410 301,449 401,695 

55 to 59  45,293 59,272 87,437 100,813 129,941 157,690 159,840 177,011 189,457 173,066 226,857 349,589 

60 to 64 35,137 45,188 69,827 84,372 103,137 134,854 146,056 155,454 170,638 171,220 178,012 279,775 

 65 to 69 28,251 34,825 45,827 69,079 82,635 105,188 131,315 130,155 149,114 160,036 153,169 202,570 

70 to 74  19,424 23,536 30,188 48,256 60,455 73,705 102,086 110,251 121,034 134,486 142,656 151,857 

75+ 19,096 27,696 34,751 46,145 69,528 90,237 120,950 168,513 209,416 252,412 298,441 328,694 

Age Not 
Reported 4,102 4,998 2,653 968 0 0 0 0 0 0 0 0 

Total  1,751,394 2,075,708 2,387,125 2,563,953 2,792,300 2,982,483 3,413,864 3,804,971 4,075,970 4,375,099 4,919,479 5,303,925 

             

Sources:             

U.S. Census Bureau, Table QT-P1, 2000 and 2010 census.         

U.S. Census Bureau, Table 19, General Population Characteristics, 1990 census.       

U.S. Census Bureau, Table 19, General Population Characteristics, 1980 census.       

U.S. Census Bureau, Characteristics of the Population (Minnesota, Vol. 1, Part 23), March 1973 (years 1900 through 1970).    
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Table A3.3  Population by Age, 1900 to 2010, New Jersey                 

Age 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 

0 to 4 206,446 266,942 338,696 329,668 256,264 458,906 642,197 589,226 463,289 532,637 563,785 647,731 

5 to 9  196,725 242,279 322,958 380,918 280,722 371,826 582,212 692,648 508,447 493,044 604,529 671,855 

10 to 14 174,347 228,695 291,236 384,342 337,776 290,544 524,380 710,409 605,841 480,983 590,577 685,713 

15 to 19  166,746 236,541 255,161 364,396 375,112 295,859 396,363 611,831 670,665 505,388 525,216 652,864 

 20 to 24  178,228 250,613 271,042 350,402 376,912 350,403 321,054 509,198 614,828 566,594 480,079 609,920 

 25 to 29  176,408 236,172 286,617 332,810 361,291 409,890 362,373 463,164 574,135 668,917 544,917 657,765 

30 to 34  158,858 213,082 263,733 331,332 340,976 409,434 435,080 403,475 563,758 691,734 644,123 703,929 

35 to 39 144,124 199,647 251,252 338,222 322,760 393,917 472,429 413,929 479,749 622,963 727,924 702,384 

40 to 44  117,887 166,638 207,122 291,871 315,720 357,760 446,139 465,492 400,074 573,696 707,182 675,301 

 45 to 49 92,115 136,295 185,551 246,388 297,595 318,504 406,721 477,978 394,038 466,481 611,357 609,260 

 50 to 54 78,915 112,003 151,688 205,434 259,570 305,235 350,531 439,103 432,520 376,528 547,541 558,208 

55 to 59  60,248 75,739 108,505 157,128 198,622 263,516 304,112 380,677 430,048 355,677 423,338 493,551 

60 to 64 49,226 62,678 86,297 124,676 158,024 215,546 262,777 314,045 367,660 363,521 330,646 427,084 

 65 to 69 33,955 45,948 56,135 88,449 119,172 164,921 222,457 245,757 303,670 340,232 293,196 372,200 

70 to 74  23,186 31,193 38,149 58,951 80,239 109,441 163,149 194,112 227,037 269,960 281,473 306,975 

75+ 22,476 29,946 39,197 53,643 79,410 119,627 174,808 257,120 329,064 421,833 538,467 488,842 

Age Not 
Reported 1,128 662 792 244 0 0 0 0 0 0 0 0 

Total  1,881,018 2,535,073 3,154,131 4,038,874 4,160,165 4,835,329 6,066,782 7,168,164 7,364,823 7,730,188 8,414,350 9,263,582 

             

Sources:             

U.S. Census Bureau, Table QT-P1, 2000 and 2010 census.         

U.S. Census Bureau, Table 19, General Population Characteristics, 1990 census.       

U.S. Census Bureau, Table 19, General Population Characteristics, 1980 census.       

U.S. Census Bureau, Characteristics of the Population (New Jersey, Vol. 1, Part 32), March 1973 (years 1900 through 1970).    
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Table A3.4 Population by Age, 1900 to 2010, Washington                 

Age 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 

0 to 4 53,243 108,756 126,434 114,854 121,918 263,326 315,633 280,442 306,123 366,780 394,306 439,657 

5 to 9  56,423 99,678 128,258 136,013 116,762 203,786 301,051 328,397 296,011 371,093 425,909 429,877 

10 to 14 48,233 92,802 117,553 138,393 127,842 159,695 275,510 348,892 321,995 337,662 434,836 438,233 

15 to 19  44,104 99,647 106,485 137,922 146,725 157,695 208,575 329,903 369,023 322,711 427,968 462,128 

 20 to 24  46,403 122,058 111,014 130,401 148,867 175,619 173,804 295,964 400,542 351,680 390,185 461,512 

 25 to 29  46,093 126,074 120,421 120,651 146,594 195,087 166,376 238,704 389,997 411,822 403,652 480,398 

30 to 34  47,118 106,963 119,446 115,448 134,757 188,636 179,899 193,398 354,645 443,366 437,478 453,383 

35 to 39 46,368 90,149 117,587 122,833 124,990 180,749 198,495 181,020 273,382 427,690 483,950 448,607 

40 to 44  37,863 77,286 95,805 118,105 118,525 159,090 189,191 192,828 213,832 376,073 491,137 459,698 

 45 to 49 26,027 64,992 81,764 108,280 117,709 136,714 176,071 203,880 193,473 284,674 454,223 492,909 

 50 to 54 20,754 52,413 69,451 90,223 112,915 125,939 150,495 188,774 198,548 216,869 391,749 495,296 

55 to 59  14,127 33,661 55,053 69,260 96,698 115,306 129,003 166,878 203,986 191,602 285,505 453,078 

60 to 64 10,407 24,144 42,352 57,530 77,569 103,916 110,066 138,028 179,037 189,382 211,075 382,087 

 65 to 69 7,195 16,585 27,298 44,440 57,963 86,551 98,659 107,008 151,324 186,679 176,225 270,474 

70 to 74  4,161 10,374 16,647 30,075 41,943 59,655 80,938 84,335 112,023 149,355 160,941 186,746 

75+ 3,325 9,614 16,266 26,988 44,414 65,199 99,448 130,718 168,215 239,254 324,982 370,457 

Age Not 
Reported 6,259 6,794 4,787 1,980 0 0 0 0 0 0 0 0 

Total  518,103 1,141,990 1,356,621 1,563,396 1,736,191 2,376,963 2,853,214 3,409,169 4,132,156 4,866,692 5,894,121 6,724,540 

             

Sources:             

U.S. Census Bureau, Table QT-P1, 2000 and 2010 census.         

U.S. Census Bureau, Table 19, General Population Characteristics, 1990 census.       

U.S. Census Bureau, Table 19, General Population Characteristics, 1980 census.       

U.S. Census Bureau, Characteristics of the Population (Washington, Vol. 1, Part 49), March 1973 (years 1900 through 1970).    

 


