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Introduction 

Spatial accessibility can affect health outcomes such as breast cancer diagnosis (Dai, 

2010), health care services (Gaskin, Dinwiddie, Chan, & McCleary, 2012a; Gaskin, Price, D.T., 

& LaVeist 2009), primary care (Gaskin, Dinwiddie, Chan, & McCleary, 2012b; Luo & Qi, 

2009), surgical care (Hayanga et al., 2009), and pediatric providers (Guagliardo, Ronzio, 

Cheung, Chacko, & Joseph, 2004). Scholars have concluded that reduced number of physicians 

and health clinics increases populations’ rates of late disease diagnoses. Traditionally, spatial 

accessibility to health care has been measured based on the relationship between realized care 

and the potential for health care use -- when supply (health care system) and demand 

(population) coexist in space and time. Five dimensions of barriers between potential and 

realized care have been identified: availability, accessibility, affordability, acceptability, and 

accommodation (Guagliardo, 2004; Guagliardo et al., 2004; Penchansky & Thomas, 1981).  

Spatial accessibility to health services is influenced by factors such as the number of physicians, 

number of people living in the region, urban or rural community type, as well as socio-

demographic characteristics of the place and the population inhabiting it.    

Previously, scholars have measured accessibility to primary care using either a distance-

based measure or the ratio of physicians to population. Usually, when considering a distance-

based measure (e.g., travel distance, gravity models, or 2 Step Floating Catchment Area – 

2SFCA methods), the results inform us about physician shortages within an area; however, other 



covariates are often not considered (Langford & Higgs, 2006; McGrail, 2009; Polzin, Borges, & 

Coelho, 2014). When the outcome is defined as the ratio of physician to population, researchers 

usually control for other socioeconomic and demographic characteristics, which enables them to 

assess the relative effects of these characteristics on potential accessibility to primary care 

(Guagliardo et al., 2004), but more often than not, analyses using a gravity or 2SFCA 

methodology often do not attempt to go beyond basic mapping or spatial cluster analysis of the 

accessibility measure. This is seen as a shortfall of many of these analyses, and given the context 

of the present analysis, the state of Texas; it is particularly interesting to consider the factors 

shaping the spatial access to healthcare.  

As the demographics of Texas shift and grow increasingly diverse, the unique 

characteristics and different needs that minority groups experience should become more salient. 

In 2013 in Texas, Hispanic or Latino groups represented 41% of the population, non-Hispanic 

blacks12%, whites 41%, and other racial/ethnic groups 6% compared to a national level of 17% 

Hispanics, 12% non-Hispanic black, 62% whites, and 8% other racial/ethnic groups (Kaiser 

Family Foundation, 2013). From a health policy perspective, understanding the characteristics 

and needs of the increasingly vulnerable Hispanic groups would help inform and design adequate 

public policies that might better serve the needs of these groups. This study focuses on primary 

care physicians because of their key role in the success of preventive care and because 

accessibility to these providers represents an important indicator of overall health (Gautam, Li, & 

Johnson, 2014; Luo & Wang, 2003) 

This study will employ a spatial measure of potential accessibility to primary health care 

physicians using the 2SFCA method. Then, Ordinary Least Squares (OLS), weighted OLS, and 

spatial regression models (spatial lag and error specifications) will be used to determine the 



associations between the spatial access, residential segregation, poverty, education, 

unemployment, and type of place on potential spatial accessibility to primary care in the state of 

Texas. 

   

Literature Review 

 Residential segregation has been extensively studied by demographers, sociologists, and 

geographers when looking at a variety of health outcomes. Several studies examine residential 

segregation and potential spatial accessibility measured by the physician-to-population ratio and 

concentration of zip codes (Gaskin et al., 2012a, 2012b; Gaskin et al., 2009). Residential 

segregation was also associated with concentrated poverty (Acevedo-Garcia, Lochner, Osypuk, 

& Subramanian, 2003; Bell, Zimmerman, Almgren, Mayer, & Huebner, 2006; Dai, 2010; White 

& Borrell, 2011; Williams  & Collins 2001). Also, residential segregation limits access to 

education and job opportunities (Williams & Jackson, 2005) increasing the risk of high school 

dropout rates and low job availability, which in turn translate into lower income levels and 

ability to purchase market resources. Fewer jobs and concentrated poverty create unsafe 

neighborhoods by increasing crime, particularly violent crime, in an area. 

For example, researchers found that predominantly African American zip codes were 

negatively associated with the availability of physician services (Gaskin et al., 2012a), and that 

while Asian and Hispanic zip codes had a positive relationship with residential segregation, that 

the Hispanics and African American populations experience poorer access to health services 

compared with Whites (Williams  & Collins 2001). Furthermore, an increase in the Hispanic and 

African American population in already highly segregated counties was associated with a decline 

in the availability and use of surgical services (Gaskin et al., 2012b; Hayanga et al., 2009). 



However, Kwan suggested that when studying residential segregation, health outcomes, and 

accessibility, considering the place and space where individuals spend most of their time (e.g., 

work and daily interactions) is more important than place of residence (Kwan, 2013). 

Potential spatial accessibility and multi-group residential segregation are described from 

the risk regulators perspective (Glass & McAtee, 2006). The risk regulators perspective asserts 

that social conditions are not disease causes as previously asserted (Link & Phelan, 1995; 

Williams  & Collins 2001) but are instead "relatively stable feature[s] of a particular patch of the 

social and built environments" that shape, motivate, and induce behavioral risk factors that 

further lead to disease (Glass & McAtee, 2006, p. 1659). The main idea of the risk regulators 

theory is to highlight that social conditions are variables that influence health outcomes; however 

this influence is second-order and not causal. Contrary to causal risk factors, risk regulators 

operate through different pathways over time and space. Space – or geography – is an important 

factor, and therefore should be included in analyses in which the outcome tends to vary over 

space. When examining access to primary care, space is important because racial/ethnic 

minorities as well as individuals in lower SES groups are spatially segregated (Jargowksy, 1997; 

Kwan, 2013; Massey & Fong, 1990; Massey & Shibuya, 1995). Highly segregated places are 

characterized by significantly more contextual risk factors, which usually put individuals in 

vulnerable positions leading to risky behaviors, isolation from socioeconomic support and health 

services, and barriers to upward mobility (Do et al., 2008; Fitzpatrick & LaGory, 2003).  

The community determinants model presented by Shi and Stevens (2010) highlights that 

certain place characteristics create higher vulnerability among populations living in those places 

compared to populations that do not present these characteristics. Vulnerable populations register 

higher rates of morbidity and mortality, and are at greater risk of poor mental, physical, and 



social health than their less-vulnerable counterparts. Aggregate- level characteristics such as 

socio-demographic characteristics and health needs are likely to increase the health risks of 

particular segments of the population (Shi & Stevens, 2010). In particular, characteristics such as 

socioeconomic status (lower educational attainment and concentrated poverty) and type of place 

(metro/non-metro) can act as barriers to accessing primary care (Shi & Stevens, 2010).  

According to the risk regulators perspective, residential segregation does not directly 

influence spatial accessibility, but rather has a second-order effect. For this study, specifically, 

counties in Texas that are least exposed to residential segregation (i.e., are most integrated) may 

have a different average level of educational attainment compared with more segregated 

counties. Residential segregation can further affect spatial accessibility of primary care 

resources. Similarly, urban residents have more opportunities, especially with respect to primary 

care physicians, compared to rural residents that are not only more spatially isolated but may also 

have limited resources.  

 Being in a vulnerable position (e.g., living in a neighborhood with concentrated poverty) 

and living in a non-metropolitan area increases the burden on the populations seeking out 

medical care. Rural populations encounter greater spatial limitations for supporting adequate 

health due to the lack of infrastructure and the relative distance to health care providers. For 

example, Probst and colleagues found that distance to healthcare facilities did not vary by race, 

but by location in rural/urban environment. Rural residents and African Americans populations 

experience greater travel burdens than urban residents or whites respectively when seeking 

medical care (Probst, Laditka, Wang, and Johnson, 2007). This issue is more pronounced for 

minority populations since they have greater difficulties finding culturally adequate doctors in 

areas that are already medically underserved (Landrine & Corral, 2009). Also, residents of rural 



populations tend to have lower socioeconomic status (primarily due to lower levels of 

educational attainment) when compared with their urban counterparts. It is therefore important to 

consider type of place, when examining spatial accessibility to primary care services.  

Fewer studies have explored access to primary care in Texas counties and the negative or 

protective effect of socio-demographic characteristics and how it might affect residents’ 

accessibility to primary care physicians. One of the studies found that care-related Emergency 

Department (ED) visit rates were strongly correlated with the proportion of the population below 

the poverty line and the uninsured rate, even though the authors encourage using other covariates 

when looking at access to healthcare that they did not consider in their study (Begley, Vojvodic, 

Seo, & Burau, 2006). Various studies have analyzed the relationship between residential 

segregation and access to primary care, however in these studies residential segregation was 

never measured by the multi-group segregation index (Gaskin et al., 2012a, 2012b; Gaskin et al., 

2009; Williams  & Collins 2001). Demographic shifts and increased diversity in Texas requires 

researchers to go beyond the two-group segregation measures as defined by Douglas and Massey 

to identify the unique characteristics and special needs of minority groups (Massey  & Denton 

1988). So far, no study examined the association between residential segregation measured by 

the Theil index (a multi-group segregation index) and spatial accessibility to primary care 

measured with the 2SFCA method.  

This research contributes to the existing literature in two ways. First, it considers the 

effects of residential segregation, SES (education and poverty), unemployment, and rural/urban 

status along with a spatial accessibility index computed by the 2SFCA. Few studies have 

considered these covariates when looking at spatial accessibility to primary care. Second, it will 

employ a spatial econometric perspective and use spatial regression models for the analysis. The 



risk regulators perspective is used to present a possible mechanism through which neighborhood 

and population characteristics affect potential spatial accessibility to primary health care 

services. Also, to explain why for this particular study spatial error models might be a better 

choice than spatial lag models. 

Based on the above discussion, this research will address the following research 

questions: 

1. Does the effect of multi-group residential segregation in areas of poor socioeconomic 

status and in rural areas has a negative effect on potential spatial accessibility? 

2. Do residential segregation, education, poverty, unemployment, and type of place have 

similar effects on spatial accessibility to primary care indices? Does this effect vary 

according to the distance considered?  

 

Data and Methods 

 The data for this study come from several sources. First is the Licensed Physician 

database for 2011, purchased from the Texas Medical Board (TMB) store. The 2011 Licensed 

Physician database contains information about the demographic characteristics of physicians as 

well as information about their practice such as license number, mailing and practice address, 

medical school attended, graduation year, and primary and secondary specialty, among others. 

The primary physician address is used for geocoding in ArcGIS 10.3. To provide more accurate 

information as well as account for possible errors in primary care physicians’ addresses, any 

missing or incomplete practice address is replaced with their mailing address.  The next source is 

the 2010 Summary File 1 (SF1) at the census tract level, and data from American Fact Finder 

(DP2 – social characteristics- and DP3 – economic characteristics) summary tables at the tract 



level for the state of Texas from the 2005-2009 5 year ACS summary file (Census Bureau, 

2010). No studies looked at residential segregation as measured by a multi-group index in 

conjunction with the effects of socio-demographic characteristics on accessibility to primary care 

as measured by the 2SFCA method. Increasing diversity and demographic shifts in Texas should 

make us alert to the unique characteristics and special needs of minority groups.  To calculate the 

multi-group residential segregation, the Theil Entropy index, I will aggregate the 2010 SF1 data 

at the block group level up to the census tract level. Having the primary care physician locations 

and the weighted population centroids at the Census tract level (Census, 2010) allows for the 

calculation of the potential spatial accessibility using the 2SFCA method.   

 

Measures of Access to Primary Care 

An index of potential accessibility to primary care for 2011 is calculated using the 

2SFCA method. The primary care specialties include: family practice, family medicine, general 

preventive medicine, gynecology, internal medicine (preventive medicine), and mammography. 

The 2SFCA method was initially used for determining physician-shortage area designations by 

Luo (2003), but subsequent studies have demonstrated the applicability of this method to 

measuring potential health care accessibility (Luo & Whippo, 2012). The 2SFCA, a special case 

of the gravity model, has most of the advantages of a gravity model yet is simple to interpret 

since it generates a special form of physician-to-population ratio (Luo, 2003; Luo & Qi, 2009; 

Luo & Whippo, 2012). The 2SFCA method reveals detailed spatial variation within larger 

administrative areas (counties) and considers potential interactions between individuals and 

physicians across administrative borders (Luo, 2003). 

The first step of this method requires that for each physician location j, all population 

locations k (the sum of each population centroids) that are within the distance d0 from location j 



(physician locations), to compute the physician-to-population ratios Rj (by dividing the sum of 

physicians 𝑆𝑗 by 𝑃𝑘 the sum of population centroids) within the catchment area (equation 1): 

Rj = 
𝑆𝑗

∑ 𝑃𝑘𝑘∊{𝑑𝑘𝑗 ≤𝑑0}

                                                                  (1) 

In the second step, for each population location i, (𝑃𝑘 - population centroids) search all 

physician locations j within the distance d0 and sum up the physician-to-population ratios (from 

previous step), Rj: 

Ai
F =∑ 𝑅𝑗𝑗 ∊{𝑑𝑖𝑗 ≤ 𝑑0

} =∑
𝑆𝑗

∑ 𝑃𝑘𝑘∊ {𝑑𝑘𝑗 ≤𝑑0 }
𝑗 ∊{𝑑𝑖𝑗 ≤ 𝑑0

}                                              (2) 

Also, ∑ 𝑅𝑗𝑗 ∊{𝑑𝑖𝑗  ≤ 𝑑0
}  - reads as the sum within j (physician locations) where the distance between 

population location i and physician locations j 𝑑𝑖𝑗  is within the desired distance 𝑑0 , then sum up 

the physician-to-population ratios calculated in step (1) - 𝑅𝑗.  

The above formulas consider the physician location j (practice or mailing address) at the 

census tract level while the centroid of the census tract measures the populations k. After primary 

care physicians are geocoded in ArcGIS 10.3, different catchments (distances from each 

physician location to population Census centroids) are calculated in Python (spatial accessibility 

indices are calculated for 10 miles, 15 miles, 30 miles, 45 miles, and 60 miles). Given the high 

computational operations and memory needed that ArcGIS could not handle, Python was chosen 

to calculate the spatial accessibility index for the entire state of Texas. Unlike ArcGIS, which 

uses a straight-line formula to calculate the distance between two points (Euclidian distance), 

while calculating the spatial accessibility index using Python, the Haversine approach was used. 

This approach takes the Earth’s spherical shape into consideration when calculating the distance 

(Westra, 2013). 

 



Socio-demographic Characteristics 

 Residential segregation is the primary independent variable for this aim. Though Massey  

and Denton (1988) encourage the use of “a battery of indices rather than one single index”,  due 

to the multidimensional phenomenon of segregation, previously mentioned dimensions 

(evenness, exposure, concentration, centralization, and clustering) are designed to measure 

segregation among two population groups (usually comparing Non-Hispanic whites with blacks 

or Hispanics (Massey  & Denton 1988; Reardon & Firebaugh, 2002).  Given the high racial 

diversity in the state of Texas, a multi-group index is more suitable for an adequate description 

of the complex patterns of racial segregation and integration. As previously mentioned, multi-

group residential segregation as measured by the Theil Entropy index will be calculated at the 

Census tract level. Calculation of Theil index is done in two steps. First, the Entropy (E) index 

will be calculated in which E is seen as a measure of population "diversity" (Reardon & 

Firebaugh, 2002). Then, the multi-group index will be calculated using the Entropy index 

calculated in Step 1. Overall, Theil information index (H) measures how evenly groups are 

distributed among organizational units (Reardon & Firebaugh, 2002).  

E= ∑ ⫪m  ln
1

⫪m

𝑛

𝑘=0

                                                                          (3) 

H= ∑ ∑
𝑡𝑗

𝑇𝐸 
⫪𝑗𝑚 𝑙𝑛

⫪𝑗𝑚

⫪𝑚

𝐽
𝑗=1

𝑀
𝑚=1                                                            (4) 

First, the Entropy Index (E) computed according to equation (3) can be identified as a measure of 

diversity. If all individuals are members of a single group, we can conclude that there is no 

diversity among populations. If individuals are evenly distributed among the M groups (⫪m = 

1/M for all m), then the index is maximized. The Information Theory Index is calculated based 

on equation (4). This index captures “evenness” to the extent that groups are evenly distributed 

among organizational units (Reardon & Firebaugh, 2002). 



Demographic characteristics will be measured at the Census tract level by the following 

variables: the poverty rate, proportion of the population age 25 and over without a high school 

education, unemployment rate, and whether the Census tract is located in a motropolitan area or 

not. A metro/non-metro variable will be created based on the U.S. Department of Agriculture 

Economic Research Service (ERS) Rural-Urban Continuum Codes classification based on the 

population size and degree of urbanization (USDA, 2011).  Metropolitan counties are counties 

with a population between 250,000 and/more 1 million inhabitants, while non-metro counties 

have populations between 2,500 and/more 20,000 or more inhabitants  

 

Measures of Spatial Autocorrelation 

First, an exploratory analysis will be conducted to determine possible clustering in the 

data. Moran’s I statistic will be used to detect possible global autocorrelation for all dependent 

and independent variables. The interpretation of the Moran’s I is similar to the interpretation of a 

correlation coefficient. For example, if the observed value is greater than the expected value, 

then the specific observation is surrounded by neighbors with similar values; otherwise if the 

observed value is smaller than the expected value, that specific observation is surrounded by 

neighbors with different values.   

 To determine whether global autocorrelation is present for the residuals of the OLS and 

weighted OLS models, Global Moran’s I statistics is used. Usually the Global Moran’s I tool 

offers a single summary spatial correlation measure that can be interpreted as a standard 

correlation. For example, if the Moran’s I value is 0.5 that would indicate a highly significant 

degree of global autocorrelation in the OLS or weighted OLS models residuals. Based on the 

Moran’s I’s values further modeling including spatial lag and error regressions will be used 



(Anselin, 1988, 1995; Anselin & Bera, 1998; Anselin, Bera, Florax, & Yoon, 1996; 

Schabenberger & Gotway, 2005).  

 

Statistical Models  

Second, OLS and weighted OLS models for potential spatial accessibility to primary care 

physicians at the tract level will be analyzed. For non-spatial data, OLS seems the most 

appropriate approach for prediction if assumptions like normality of residuals and equal variance 

(homoskedasticity) are met. If the data display spatial heterogeneity, then several OLS 

assumptions do not hold; specifically, autocorrelation of the residuals from the model and 

heteroskedasticity in the residuals from the model. Tobler’s First Law of Geography states that 

everything is related to everything, but things that are closer together are more related (Tobler, 

1970). Since the outcome, spatial accessibility to primary care physicians, varies by census tracts 

(e.g., some tracts have a high number of primary care physicians and a high number of 

population in the tract, while other tracts have fewer physicians or none and fewer population) 

weighted least squares models will be used to evaluate the effect of tract population on spatial 

accessibility to primary care. Three different models for spatial accessibility at distances of 15, 

30 and 60 miles, measured as the distance between population centroids at the tract level and 

primary care physician locations will be considered, each including the same five covariates: 

residential segregation, % in poverty, % without high school education, unemployment rate, and 

type of place. Each outcome will be fit using OLS and weighted least squares with the following 

model specification, 

𝐴𝑐𝑐𝑒𝑠𝑠𝑖 = 𝛼 + 𝛽1𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑖 + 𝛽2%𝑝𝑜𝑣𝑒𝑟𝑡𝑦𝑖 + 𝛽3𝑢𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑖 +

                                   𝛽4%𝑛𝑜 ℎ𝑖𝑔ℎ 𝑠𝑐ℎ𝑜𝑜𝑙𝑖 + 𝛽5𝑚𝑒𝑡𝑟𝑜𝑖 + 𝜀                                                      (5)                                                                           



where 𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑖, %𝑝𝑜𝑣𝑒𝑟𝑡𝑦𝑖, 𝑢𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑖 , %𝑛𝑜 ℎ𝑖𝑔ℎ 𝑠𝑐ℎ𝑜𝑜𝑙𝑖, are the z scored 

variables described above, 𝑚𝑒𝑡𝑟𝑜𝑖 is a dummy variable for metro/non-metro status, α represents 

the intercept, while ε the model error term. However, a visualization of the Q-Q plot and the 

Shapiro Wilk test indicate non-normality in the standardized residuals, a violation of the OLS 

normality assumption. After using White’s correction, the non-normality in residuals is still 

present.   

 

Spatially Autoregressive Models 

After evaluating the residuals of the OLS and weighted OLS models for autocorrelation 

and using the specification tests to determine which model would be appropriate for each 

outcome, spatial lag and spatial error models will be used. Expected spatial associations between 

spatial accessibility to primary care and each of the covariates is measured by the spatial lag 

model as it accounts for local structure in the dependent variable, while the spatial error model 

accounts for autocorrelation in the model residuals.  

The spatial lag model has the following specification, 

𝑦 =  𝜌𝑊𝑦 + 𝑥𝛽 + 𝜀                                                                                            (6) 

where 𝜌 is the spatially parameter, 𝑊𝑦 is the spatially lagged potential accessibility to primary 

care services for row-standardized spatial matrix W, 𝑥 is a matrix of observations on the 

explanatory variables, and 𝜀 is a vector error term. 

 Also, the spatial error model is specified below, 

𝑦 = 𝑥𝛽 +  𝜀                                                                                                          (7) 

𝜀 =  𝜑𝑊𝜀 +  𝛾 



where the first equation is the baseline equation presented for the OLS model, 𝜀 is the vector of 

error terms that are spatially weighted by the weight matrix (W),  𝜑 is the spatial error coefficient 

(if no spatial correlation between errors is present then 𝜑 = 0), and 𝛾 is a vector of uncorrelated 

error terms. 

The same covariates used for the OLS and weighted OLS models will be considered for 

these models as well. To model the spatial structure of the Census tracts, a row-standardized 

spatial connectivity matrix is used following a distance-based algorithm of classifying cases as 

neighbors. This approach selects k nearest neighbors (where k is the number of neighbors; for 

this study, k=4). 

 

Results 

Table 1 highlights descriptive of the spatial accessibility indices represented by the mean, 

median, and standard deviation. For example, the mean and median values for accessibility 

indices that were measured by the distance between population centroids at the Census tract level 

and primary care physician locations look slightly different. There is a notable variation, 

highlighted by the standard deviation of these indices presented in Table 1 for these spatial 

accessibility indices. For better visualization 3 maps are presented in Figure 1, 2, and 3 each 

describing spatial accessibility index within 15, 30, and 60 miles for the state of Texas, San 

Antonio (up right corner), Houston (down left corner), and Dallas. 

 

  



Table 1 Descriptive for Spatial Accessibility Index Within Different Distances  and Predictors and Moran’s I 

 Mean Median Standard deviation  Moran’s I 

15 miles distance 0.47 0.19 0.52  0.56 

30 miles distance 0.83 0.63 0.77  0.60 

60 miles distance 1.21 0.95 0.90  0.55 

Multi-group residential segregation 0.04 0.02 0.08  0.12 

% in poverty 12.50 15.57 12.36  0.09 

% without high school education 23.72 21.20 15.75  0.15 

Unemployment rate 7.40 6.70 4.43  0.07 

Metro/non-metro 0.17 - 0.38  0.26 

 

 
Figure 1 Spatial Accessibility index within 15 miles for Texas, San Antonio, Houston, and Dallas Census 

tracts 

 



Patterns emerge and can be identified in each of the three figures 1, 2, and 3. Clusters of 

higher values of spatial accessibility can be seen in the San Antonio – Austin – Dallas corridor 

and the area around Houston. For each index within the maps for San Antonio, Houston, and 

Dallas it can be observed that the spatial accessibility to primary care physicians vary based on 

the location to the center of the city. The other clusters of spatial accessibility are somehow 

consistent for each index.  

 
Figure 2 Spatial Accessibility index within 30 miles for Texas, San Antonio, Houston, and Dallas Census 

tracts 

 

 

 

 



  Table 2 presents results from the OLS and weighted OLS models for the association between 

potential spatial accessibility and socio-demographic variables as well as type of place. 

Surprisingly OLS models indicate that spatial accessibility rates increase as the % without a high 

school education and the unemployment rate increases for the three outcomes (15, 30, and 60 

mile spatial accessibility indices). However, for the spatial accessibility index within 15 miles 

unemployment rate is significant only at 90% level.   

 
Figure 3 Spatial Accessibility index within 60 miles for Texas, San Antonio, Houston, and Dallas Census 

tracts 

 

 



Table 2 Associations Between Residential Segregation, SES, Education, Unemployment, Type of Place and 

Spatial Accessibility Using OLS and Weighted OLS Models, 2011  

Models  Estimate Robust SE  Pr(>|t|) Observed Moran’s I 

OLS model (15 miles)     0.52 

Segregation (Theil Index)  -0.08 0.01 <0.001***  

 % in Poverty  -0.12 0.02 <0.001***  

 % ≤ High School  0.18 0.02 <0.001***  

Unemployment rate  0.04 0.02 0.028*  

Metro/non-metro  -1.09 0.02 <0.001***  
Intercept  0.19 0.02 <0.001***  
      

OLS model (30 miles)     0.57 

Segregation (Theil Index)  -0.10 0.01 <0.001***  

 % in Poverty  -0.23 0.02 <0.001***  

 % ≤ High School  0.17 0.02 <0.001***  

Unemployment rate  0.09 0.02 <0.001***  
Metro/non-metro  -1.22 0.02 <0.001***  
Intercept  0.21 0.02 <0.001***  

      

OLS model (60 miles)     0.52 

Segregation (Theil Index)  -0.10 0.01 <0.001***  
 % in Poverty  -0.30 0.02 <0.001***  

 % ≤ High School  0.14 0.02 <0.001***  

Unemployment rate  0.13 0.02 <0.001***  

Metro/non-metro  -1.18 0.03 <0.001***  

Intercept  0.20 0.02 <0.001***  

Weighted OLS model (15 mi)     0.50 

Segregation (Theil Index)  -0.10 0.01 <0.001***  

 % in Poverty  -0.14 0.03 <0.001***  

 % ≤ High School  0.22 0.03 <0.001***  

Unemployment rate  0.04 0.02 0.026*  

Metro/non-metro  -1.10 0.02 <0.001***  

Intercept  0.19 0.02 <0.001***  

      

Weighted OLS model (30 mi)     0.54 

Segregation (Theil Index)  -0.12 0.01 <0.001***  

 % in Poverty  -0.28 0.02 <0.001***  

 % ≤ High School  0.21 0.02 <0.001***  

Unemployment rate  0.10 0.02 <0.001***  

Metro/non-metro  -1.26 0.02 <0.001***  

Intercept  0.25 0.02 <0.001***  

      

Weighted OLS model (60 mi)     0.49 

Segregation (Theil Index)  -0.11 0.01 <0.001***   

 % in Poverty  -0.36 0.02 <0.001***  

 % ≤ High School  0.18 0.02 <0.001***  

Unemployment rate  0.15 0.02 <0.001***  

Metro/non-metro  -1.21 0.03 <0.001***  

Intercept  0.26 0.02 0.0010***  

Significance level: ***p≤0.0001, **p≤0.05, *p≤0.01, Population Weight at Census tract level 



Also, as residential segregation, % in poverty, and living in a non-metropolitan area increase, 

potential spatial accessibility to primary care physicians decreases. Surprisingly, increase in 

unemployment rate increases potential spatial accessibility to primary care physicians.  

When the variability in the population size is controlled for, the effects of the estimates 

have a slightly higher effect on spatial accessibility than in the OLS models. The directionality of 

the relationship between the outcome and estimates is similar to the one discussed for OLS 

models. We can see a potential spatial accessibility advantage for census tracts with higher 

unemployment rates and with % of population with less than a high school education. Also, a 

disadvantage in potential spatial accessibility to primary care services with increases in 

residential segregation, % in poverty, and whether populations reside in a rural area as seen in 

Table 2.    

Further, Moran’s I is calculated to evaluate the correlation in the model residuals. Also in 

table 4.2 the global observed Moran’s I for each of the OLS and weighted OLS models 

considered – the 15-mile, 30-mile, and 60-mile catchments, respectively is presented. All of the 

observed values are greater than the expected values indicating a highly and significant degree of 

global autocorrelation in the OLS and weighted OLS model residuals.  Based on these results, 

spatial regression models are further estimated. Since the results from the OLS and weighted 

OLS models are almost similar for 15, 30, and 60 miles only the results from 15 and 60 miles 

will be illustrated in table 3 for the spatial lag and error models.  

 

 

 

 

 



Table 3 Associations Between Residential Segregation, SES, Education, Unemployment, Type of Place and 

Spatial Accessibility Using Spatial Regression Models, 2011 

    

Parameters  Estimate Robust standard error Pr(>|z|)  

Spatial lag model (15 miles)      

Segregation (Theil Index)  -0.05 0.01 0.0002***  

 % in Poverty  -0.05 0.02 0.002**  

 % ≤ High school  0.09 0.02 <0.001***  

Unemployment rate  0.01 0.01 0.3717  

Metro/non-metro  -0.76 0.02 <0.001***  
Intercept  0.13 0.01 <0.001***  

𝜌  0.64    

LR test vs. OLS  1665.8    

AIC  7504.8    

      

Spatial lag model (60 miles)      

Segregation (Theil Index)  -0.06 0.01 <0.001***  
 % in Poverty  -0.19 0.02 <0.001***  
 % ≤ High school  0.06 0.02 0.0002**  

Unemployment rate  0.08 0.01 <0.001***  

Metro/non-metro  -0.86 0.03 <0.001***  
Intercept  0.15 0.01 <0.001***  

𝜌  0.63    

LR test vs. OLS  1640.9    

AIC  7235.9    

      

Spatial error model (15 miles)      

Segregation (Theil Index)  -0.0294 0.01 0.0135*  

 % in Poverty  -0.0260 0.02 0.1154  

 % ≤ High school  0.0706 0.02 <0.001***  

Unemployment rate  0.0092 0.01 0.4856  

Metro/non-metro  -0.8126 0.03 <0.001***  

Intercept  0.1363 0.04 0.0002***  

𝜌  0.6819    

LR test vs. OLS  1656.9    

AIC  7513.6    

      

Spatial error model (60 miles)      

Segregation (Theil Index)  -0.05 0.01 <0.001***  

 % in Poverty  -0.15 0.02 <0.001***  

 % ≤ High school  0.04 0.02 0.0144*  

Unemployment rate  0.07 0.01 <0.001***  

Metro/non-metro  -0.93 0.03 <0.001***  

Intercept  0.17 0.04 <0.001***  

𝜌  0.68    

LR test vs. OLS  1618.4    

AIC  7258.4    

Significance level: ***p≤0.0001, **p≤0.05, *p≤0.01 

 



The results of spatial models are presented in Table 3. Results for spatial lag and spatial 

error models look similar to the ones presented from the OLS regression in Table 2. Since spatial 

accessibility indices for 15, 30, and 60 miles had similar results, I only present results for spatial 

indices calculated for 15 and 60 miles. General and Robust Lagrange multiplier statistics are 

tested for the presence of residual autocorrelation in the OLS models, indicating that the error 

model is better in these circumstances (Anselin et al., 1996). 

The spatial error model controls for the autocorrelation in the model error term. The 𝜌 

parameter presented for each model (15 and 60 miles) is over 0.6 indicating a significant 

autocorrelation in the error term. When autocorrelation in the error term is controlled for, an 

overall decrease can be seen in the regression coefficients for residential segregation, % in 

poverty, % without a high school education, and living in rural areas in predicting Census tracts 

spatial accessibility rates (when comparing the OLS estimates from table 2 with the estimates 

from table 3 for the error model).  Also, the spatial error term shows a significant improvement 

in total fit of the OLS model (a drop in AIC over 1,500 compared to the OLS model).   

The spatial lag models indicate slightly different results from the error and OLS models. 

We see similar decrease in the overall regression coefficients, however not as much as in the 

spatial error models. When the outcome is the spatial accessibility within 15 miles, the regression 

estimate for unemployment becomes insignificant (similar for the spatial error model).  Other 

than the unemployment estimate, all other regression estimates experience an overall decrease 

for the spatial lag model (with the outcome spatial accessibility index within 15 and 60 miles). 

When the spatial lag model is compared with the OLS model, as in the case of spatial error 

model we observe a significant improvement in the overall fit (the drop in AIC is over 1,500 

compared to the OLS model). The spatial autoregressive parameter, 𝜌, indicates a significant 



autocorrelation in the lagged spatial accessibility rates. The regression coefficients for the spatial 

lag and error models are almost similar; however the spatial error models (for spatial 

accessibility within15 and 60 miles) present lower estimates compared to the lag model. In terms 

of model fit the spatial lag models perform better than the spatial error models for both 

outcomes, indicating that the spatial process that generates the data might work more on the 

dependent variable rather than the error component of the data. However, the basic Lagrange 

multiplier statistics indicates that the spatial error model is a slightly better model than the spatial 

lag model and that the spatial error model might provide a better representation of the process.  

Even though, statistically, the spatial lag model is the best model, conceptually, the 

spatial error model is more likely to explain the spatial pattern present in the spatial accessibility 

index and that the result of unobserved independent variables might be omitted from the model. 

 

Discussion and Limitations                  

The purpose of this research was to determine whether multi-group residential 

segregation in areas of poor socioeconomic status and in rural areas has a negative effect on 

potential spatial accessibility. Also, this research addressed the possibility that estimates of the 

covariates considered might have differential effects on spatial accessibility indices calculated 

based on 15, 30, and 60 miles.  

Results from this study indicate that indeed residential segregation has a significant 

negative effect on potential spatial accessibility to primary care and that any increase in 

residential segregation index would lower spatial accessibility to primary care physicians in the 

state of Texas. On a similar note, Gaskin and colleagues (2012) found that African American zip 

codes were negatively associated with the availability of physician services after controlling for 



socioeconomic and other factors. In contrast, Hispanic and Asian zip codes were positively 

affected by segregation; however, residential segregation was computed as a two-group measure 

instead of a multi-group measure. Probst and colleagues also found that rural residents and 

African Americans populations experience higher travel burdens than urban residents or whites, 

respectively, when seeking medical care (Probst, Laditka, Wang, & Johnson, 2007).  The “risk 

regulators” theoretical framework treats residential segregation’s effect on spatial accessibility to 

primary care as a second-order rather than causal, as had been previously theorized (Williams  & 

Collins 2001). Also, % in poverty and living in a rural area have demonstrable negative impacts 

on spatial accessibility to primary care. For example, the estimate for ‘% in poverty’ has a 

consistent negative association with spatial accessibility in the OLS and weighted OLS models. 

This result highlights the idea presented by Shi and Stevens (2010) in which certain place 

characteristics create higher vulnerability among populations living in those places compared 

with populations that do not present those place characteristics. This can be seen as a “vicious 

circle”, where communities with higher levels of residential segregation face higher levels of 

concentrated poverty (Acevedo-Garcia & Lochner, 2003). Other consequences could be that 

residents of these communities are more likely to have lower levels of educational attainment, 

have access to fewer job opportunities, and experience higher unemployment. For this study, 

even if unemployment rate and % without a high school education were statistically significant 

their estimates seemed to have a positive effect on spatial accessibility index. Therefore this can 

further translate into fewer minority populations competing for high-earning jobs or earn 

competitive salaries when compared to populations living in more affluent neighborhoods. Fewer 

economic resources and lack of health knowledge can in turn act as a barrier to accessing 

primary care for individuals living in more segregated neighborhoods.  



The second part of this study tested whether the effect of the independent variables 

considered varied by the distance considered when calculating spatial accessibility indices. Each 

statistical analysis considered three spatial accessibility indices, which were calculated for 15 

miles, 30 miles, and 60 miles distance between population centroid at the tract level and primary 

care physician locations. Indeed, the independent variables considered did vary by distance. Each 

of the three models with spatial accessibility (15, 30 and 60 miles) presented slightly different 

estimates, indicating that, for this particular study, potential spatial accessibility to primary care 

physicians in Texas did vary by distance, however the results were slightly different. 

Also, since the Global Moran’s I values indicated the presence of spatial autocorrelation 

further spatial lag and error models were tested. Even though, the general and robust Lagrange 

multiplier statistics that tests for the presence of residual autocorrelation in the OLS models 

indicated the error model as the best model, the results (AIC’s) between spatial lag, error, and 

OLS indicated the spatial lag as having a slightly better fit (Anselin et al., 1996). The spatial lag 

model indicates a diffusive process in the spatial accessibility index. This implies that the value 

of the spatial accessibility index in one particular location is influenced by the value of its 

neighbors. However, the “risk regulators” framework shows support for the theory behind the 

spatial error model, that there might be unobserved independent variables that are omitted from 

the model that could explain these processes.  

Although this research may provide valuable knowledge regarding the influence of multi-

group residential segregation and other factors on spatial accessibility to primary care, the 

following limitations should be acknowledged. Usually these types of studies analyze smaller 

areas (rather than an entire state) because they are computationally expensive and the level of 

error increases commensurately. Choosing the catchment (threshold) to calculate the spatial 



accessibility to primary care services is important. Previous studies used driving distance (which 

accounted for driving speed limits) from the population centroids to physician locations. For this 

analysis, I choose various catchments to calculate the spatial accessibility index: 10, 15, 30, 45, 

and 60 miles; however, only results for the 15, 30, and 60 miles catchments were presented given 

the similarities in outcomes. One study found that sicker individuals are more likely to travel 

longer distances if hospitalization is involved (McGrail & Humphreys, 2014). This study cannot 

determine whether rural populations are more likely to do that since the measure examines 

potential spatial accessibility without knowing if access was realized (i.e., actually seeing a 

physician). Additionally, Phibbs and Luft (1995) conducted a study in upstate New York 

underscoring the fact that straight- line distance can be a very reasonable proxy for travel time, 

unless the study focuses on specific hospitals or dense urban areas with high congestion and 

reliance on surface streets.  

Furthermore, for this particular study, not all population-weighted centroids at the tract 

level were able to identify a physician location since they may have been outside of the 60-mile 

range. In addition, spatial accessibility index was computed at the tract level, and therefore some 

values for the index are zero due to smaller populations in a tract, the lack of primary care 

physicians, or simply the absence of primary care physicians for particular tracts, especially 

when considering smaller distances (e.g., 10 and 15 miles). Regarding residential segregation 

there might be a small disadvantage when computing the multi-group index. Usually this index 

considers all 4 racial/ethnic groups (non-Hispanic whites, non-Hispanic blacks, Hispanics, and 

non-Hispanic other), however this mix of racial/ethnic groups can be usually found in 

metropolitan areas (e.g., San Antonio, Austin, Houston, Dallas, etc.). If the presence of one 

racial/ethnic group is missing, the final index computed would have a smaller value.    



Despite these limitations, this research demonstrates that even after controlling for factors 

such as residential segregation, percent in poverty, percent without a high school education, 

unemployment, and type of place, the potential spatial accessibility to primary health care 

services was lower in higher-poverty, segregated, and rural areas. Further studies should focus on 

smaller areas (for example, one or more counties, even Metropolitan Statistical Areas – MSA’s), 

which will reduce the intense computational processes and potential for error. Also, future 

studies should consider additional covariates such as the percentage of population with medical 

insurance or the percentage of linguistically isolated communities.  
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