
Turnover and Dependency are Minimized
when Population Growth is Negative

Joshua R. Goldstein
UC, Berkeley

April 17, 2015

Abstract

The sum of the birth rate and death rates is a measure of pop-
ulation turnover. It is also a measure of the care-giving needs – an
alternative to the dependency ratio – since it tells the fraction of the
population that is close to birth or close to death.

Here I show that the minimum turnover for stable populations is
obtained when the population growth rate is slightly negative, exem-
plifying a case when negative population growth can be optimal.

An approximation of r∗, the population growth rate that minimizes
turnover, shows that lower values of life expectancy and/or greater
coefficients of variation of age at death make r∗ more negative.

1 Introduction

Demographers are accustomed to considering the difference between crude
birth and death rates, the growth rate of a population closed to migration.
In this paper, I consider the sum of the birth and death rates, a measure
showing how quickly the membership of the population is changing. This
measure of turnover can also be used as a measure of dependency, since both
newborns and those close to death are typically in need of large amounts of
care.

The question considered here is what rate of population growth will min-
imize turnover. High population growth is the combination of high fertility
and low mortality. Low population growth is the combination of low fertility
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and high mortality. To minimize the sum of birth and death rates, it turns
out that a slightly negative population growth rate is optimal.

From a societal point of view, a social planner – taking the very narrow
perspective of wanting to minimize the kind of dependency measured by the
turnover rate – would aim for slightly sub-replacement fertility.

In this paper, I show some of the formal properties of the turnover of sta-
ble populations. These results apply some of the insights of stable population
theory to the idea that the relevant metric of age is not just how far someone
is from birth, but also how far they are from death. Early papers on “than-
otological age” include Miller (2001). More recently, Sanderson and Scherbov
(2010) have applied this idea to new measures of aging. Riffe (forthcoming)
demonstrates ergodic results for populations defined by age from death. The
distribution and properties of “life left” has also been the focus of a number
of recent papers, such as Müller et al. (2004), Vaupel (2009), and Goldstein
(2009).

This paper also relates to the work of Lee et al. (2014), who show that
that optimal stable population growth rates vary by country and by the
objective being optimized. Their work uses complete lifetime measures of
economic profiles, rather than the approach here which uses only the begin-
ning and the end of life.

2 Definitions and an illustration

Given a life table and a stable growth rate r, the turnover rate can be defined
as the sum of the stable birth and death rates,

t(r) = b(r) + d(r). (1)

The “turnover” aspect of t comes from the fact that b term represent the
new arrivals and the d term represents the recent departures. If b(r) = 3
percent and d(r) = 2 percent, then 5 percent of the population changes from
year to year and 95 percent of the population stays the same. The “care” or
“dependency” interpretation of t(r) comes from recognizing that those close
to birth and/or close to death are typically in need of care. For the elderly,
particularly as longevity increases, remaining life expectancy is a better than
age for measuring health status and care needs. The death rate not only tells
us what fraction of the population dies in a given year, it also tells us what

2



fraction of the population is within a year of death.1 Populations with large
crude death rates also have a large demand for care of the sick and dying.

In stable populations there is a trade-off between birth and death rates.
Consider the changes in stable growth driven by birth rates. In this case,
higher growth rates lead to younger populations, which typically have lower
death rates, and lower growth rates lead to older populations which typically
have higher death rates.

Figure 1 illustrates the trade-off for the population with the life table of
Swedish females for the period 1850-1859. We see, first, that as expected
birth rates fall and death rates rise as r increases. Second, we see that the
sum of birth and death rates is “U”-shaped, with extreme values of r leading
to very high values of t, and an in-between value minimizing t. Finally, we
see that the minimum value of t is not reached, as we might have expected,
when r = 0, but rather when the growth rate is slightly negative, in this case
about -2 percent.

3 Mathematical argument why turnover is min-

imized when population growth is negative

We prove that t(r) is minimized when r < 0 by showing t(r) falls with r for
any r ≥ 0.

Recall that
t(r) = b(r) + d(r).

By definition r = b(r)− d(r), so we can rewrite turnover as

t(r) = 2b(r)− r.

Differentiating turnover with respect to r gives

t′(r) = 2b′(r)− 1 = 2Apop(r)b(r)− 1

Consider the case when r = 0. In a stationary population, the birth rate
is the inverse of the life expectancy at birth. So, t(0) = 2Apop/e0 − 1. It is

1Accounting for this year versus next year can be done by discounting by e−1r. Thus
D(t)/N(t) is the crude death rate for year t. Whereas D(t)/N(t−1) = D(t)/(N(t)e−1r) =
d(t)er is the fraction of last year’s population dying this year, the fraction of the population
within a year of dying.
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Figure 1: Example of how turnover depends on growth rate r
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also the case that in stationary populations, the mean age of the population
is greater than half of life expectancy as long as there some variance of age
of death.2 This means that t′(0) > 0, whenever there is variance in the age
of death.

We can generalize this argument that t′ > 0 to any r > 0 as follows. The
derivative of the stable birth rate is for any r is

b′(r) =

∫
x`(x)e−rx dx

(
∫
`(x)e−rx dx)2

.

For positive r, we can define ˜̀(x) = `(x)e−rx, with an accompanying density
of deaths d̃(x) = −˜̀′(x), which is non-negative. Substituting in ˜̀, we can
now re-apply the same argument we used above to all r > 0. As long as
there is variance in the age at death, t(r) will slope upward for all r ≥ 0.
This positive slope for r ≥ 0 proves that t(r) reaches its minimum when r is
negative. 3 QED.

It is not necessarily the case that the turnover rate t(r) will be U-shaped.
For example, consider the case when the age-specific death rate is constant
over all ages at hazard h. Here, any changes in r due to fertility will change
the age-structure but this will not affect the population death rate, which
will remain at h. Generally b(r) = d(r)+r. For constant hazards, this means
t(r) = 2h + r, an upward-sloping straight line. Turnover will thus reach a
minimum when r is as small as possible. In this case, r cannot be smaller than
−h, since the smallest the birth rate can be is 0 and r = b−d. Thus, minimum
turnover with constant hazards is reached when limr→−h t(r) = h. A similar
monotonic decrease in t(r) should also be found for any hazard function
that decreases with age, since the aging of the stable population brought
about by smaller r would not increase the population death rate. One could
further explore the conditions on hazard functions needed to obtain U-shaped
turnover with respect to r.

2The relationship is
Apop(0)

e0
=

1

2

(
1 + CV 2

death

)
.

3I thank Ken Wachter for suggesting the extension of argument that t′(r = 0) > 0 to
all positive r.
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4 Minimizing turnover in human populations,

an approximation and illustration

One can gain some analytic insight into what determines the growth rate
that minimizes turnover by setting an approximation of the derivative of t
to zero and obtaining an explicit, if approximate, expression for r∗.

Defining G(r) = dt(r)
dr

, then for small absolute values of r, the first order
Taylor expansion is

G(r) ≈ G(0) + rG′(0).

Since r∗ satisfies G(r) = 0, we have an approximation for the root as

r̂∗ = −G(0)

G′(0)
.

This approach resembles the first step of Newton’s method for iteratively
finding the roots of an arbitrary function.

In this case, substituting appropriately, we have

r̂∗ =
−CV 2

death

2bA2
pop(1− CV 2

pop)
=

−2CV 2
death

e0(1 + CV 2
death)

2(1− CV 2
pop)

, (2)

where the last equality is obtained by substituting 1/e0 = b(0), and using
the relationship between Apop and e0.

Inspecting the approximation, we see that it will be negative as long as
the coefficient of variation of age of the population is less than unity, as is
the case of most all human populations.

We can also gain some insight into how r̂∗ depends on the life table. As
life expectancy increases, the growth rate that minimizes turnover will move
close to zero, since e0 is in the denominator.

The relationship between the higher moments of the life table and turnover
is less direct. However, empirically, the coefficient of variation of the age of
the population is roughly constant, remaining at about 0.6 in Sweden from
the mid-1700s to today. Taking CVpop as constant, one can then see that r̂∗

will become more negative the higher the coefficient of variation of age at
death.

Over time, the optimum rate of population growth in terms of minimizing
turnover, has remained negative but moved closer to zero. This has been
due to both the fact that life expectancy has risen at the same time that the
variance of age of death has fallen.
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As an illustration, I have calculated the exact value of r∗ and the approx-
imate value for the available time series of Swedish life tables. We see that
the approximation is very good, particularly when r∗ is close to zero. The
figure shows the numerically optimized values of r∗ for the Swedish popula-
tion by decade, as well as the approximated value using equation (2). The
largest error occurs in the 1770s, when the optimization produces a value of
−0.026 for r∗, whereas the approximation gives −0.028. For the most recent
decades, the values are accurate to 5 decimal places.
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 (Source: own calculation from HMD life tables).

The stable growth rate r∗ that minimizes dependency and its approximation
for Swedish both-sex decennial period life tables. Source: Own calculation
from HMD life tables.

We can also ask what total fertility rate would correspond to the rate of
intrinsic growth that minimizes turnover. Using the approximation

TFR∗ = eµr
∗
/(0.4886`µ),
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where 0.4886 is the proportion female at birth, µ is the mean age of child-
bearing, and `µ is the probability of survival to the mean age of childbearing,
the figure shows the optimal TFR for Sweden over the last centuries, letting
µ = 30, along with the replacement-level TFR in the corresponding stable
population. We see that the optimal number of births from the point of view
of minimizing turnover has remained remarkably constant over the centuries.
The target growth rate has risen slightly but at the same time the fertility
rate necessary to produce a given growth rate has fallen, with the net re-
sult being virtually no change in the total fertility rate needed to produce
minimum turnover.
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 (Source: own calculation from HMD life tables).

Figure 2: The total fertility rate that would minimize dependency in the
stable population corresponding to the Swedish both-sex decennial period life
tables and the associated replacement-level TFR. Source: Own calculation
from HMD life tables.

Of course, one should not forget that this is for “stable” populations, and

8



does not take into account the dynamics of changing population age structure
over the course of the demographic transition. In actual demographic history,
the period with the minimum dependency ratio would correspond some time
after fertility rates had fallen but before the population had aged significantly,
in the same manner as the traditional demographic dividend argument.

5 Extension to weighted dependency

In drawing a correspondence between turnover and dependency we have as-
sumed that those close to birth and those close to death require the same
amount of care. One can relax this assumption, by considering the weighted
sum of birth and death rates, where the relative weights correspond to the
relative care demands.

Define the weighted dependency rate as

tw(r) = wbb(r) + wdd(r),

where the weights wb and wd provide the “costs” of births and deaths (or
those near birth and death). These costs could be monetary, or time costs,
or some other currency.

For convenience we can divide tw by the sum of the weights. Letting,
w = wb/(wb + wd), we have

t∗w(r) = wb(r) + (1− w)d(r).

Note that minimizing t∗w will also minimize tw.
Some algebra then shows us that the derivative of weighted dependency

around stationarity is

t′
∗
w|r=0 =

1

2
(1 + CV 2

death)− (1− w),

which is minimized when w = 1
2
(1 − CV 2

death). For example, if C = .5, then
the weighting w = 3/8 on births and 1−w = 5/8 on deaths, will make r = 0
the stable population with the minimum dependency rate. If we increase the
“cost” of those near death relative to those just born, then it will be optimal
to have fewer elderly, and thus the optimal growth rate will be higher than
in the case where the weights are equal. Since we showed that r∗ < 0, when
weights are equal, it makes sense that in order for the optimum growth rate
to be zero, the weights on death would need to increase.
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6 Conclusion

In this paper, I have defined a new quantity, the turnover rate, as the sum of
the birth and death rates. Turnover is of interest not just as a measure of the
speed of change of membership of a population but also because new arrivals
(young children) and impending departures (the ill close to the death) require
high amounts of care. Thus the sum of birth and death rates is a measure of
dependency.

In stable populations, I showed that turnover is minimized when popu-
lation growth is negative. A way to view this is to consider the population
with zero growth and to ask whether the birth or death rates respond more
to a marginal change in the growth rate. It turns out that the death rates are
more responsive than the birth rates and so turnover can be minimized by
reducing the death rate further, without a fully offsetting effect of increasing
the birth rate.

Each life table has its own own rate of negative population growth that
minimizes dependency. Over the range of human life tables, as illustrated
by Swedish life tables from the mid-1700s to today, the rate of population
growth that minimizes turnover has risen from about -3 percent to about -0.1
percent today. The increase in optimal population growth has been driven
both by increasing life expectancy and by the lessening variance of age at
death.

The ideas considered here could be extended in various ways. For ex-
ample, rather than considering ages of birth and death, one could consider
schedules of dependency, as Lee et al. (2014) do. Their argument could be
extended to account for the relationship between dependency and years of
remaining life. Another direction more closely linked to what we have done
here would be to investigate further the effect of the variance of age at death
on dependency and the accompanying change in optimal fertility. Another
perspective that could be taken is that of the multigenerational family, in
which the expected fraction of the family that is dependent will depend on
demographic rates.
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