
Pollution, Infectious Disease, and Infant Mortality:
Evidence from the 1918-1919 Spanish Influenza

Pandemic ∗

Karen Clay, Carnegie Mellon University and NBER
Joshua Lewis, University of Montreal

Edson Severnini, Carnegie Mellon University and University of Chicago

April 22, 2015

Abstract

This paper uses the 1918 influenza pandemic to study how local environmental factors in-
teract with an infectious disease outbreak to affect health. There were large geographic
differences in pandemic-related mortality that cannot be explained by either demographic or
economic factors. We examine whether local environmental factors affected pandemic sever-
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for pollution from thermal power generation, and water quality for a panel of 559 American
cities. We estimate a significant positive effect of local emissions on pandemic-related mor-
tality, but find no relationship between the outbreak and local water quality. These results
are consistent with the epidemiology of the influenza virus, which targeted lung function.
Our estimates imply that differences in pollution levels can account for roughly 18 percent of
the cross-city variation in pandemic severity. We then evaluate the impact of the pandemic
on infant mortality in a counterfactual scenario in which all above-median cities reduced
pollution to median levels. In this scenario, we calculate that 5,551 infant deaths would
have been averted: a 13 percent decline in pandemic-related mortality.
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Phone: (514) 240-4972, Email: joshua.lewis@umontreal.ca.
Edson Severnini: Mailing address: Carnegie Mellon University, 4800 Forbes Ave, Pittsburgh, PA 15213,
Phone: (510) 860-1808, Email: ersevernini@gmail.com.



1 Introduction

The mortality rate of many infectious illnesses varies widely across countries and over

time. A growing literature emphasizes the importance of baseline health in explaining dif-

ferences in pathogen severity (see Miller et al., 2002, for example).1 Local environmental

factors, such as the availability of clean water, air quality, and access to proper nutrition may

affect the stock of health capital, and hence pathogen severity. From a theoretical perspec-

tive, however, the direction of these interaction effects is ambiguous. For example, exposure

to air pollution may lower baseline health, making individuals more susceptible to the con-

sequences of a negative health shock. On the other hand, strong selection effects could raise

average health capital, leading a population to be more resistant to the consequences of an

infectious disease outbreak. Understanding the interrelation between these various factors

and disease onset has implications for health policy and may yield important insights into

the health production process (Currie, et al., 2013).

This paper examines how local environmental factors interact with an infectious disease

outbreak to affect health. We study these questions in the context of the 1918-1919 Span-

ish influenza pandemic, an unanticipated, short-lived, and severe outbreak that killed an

estimated 675,000 Americans.2 There was wide regional variation in pandemic severity that

cannot be attributed to economic development, climate or geography (Brainerd and Siegler,

2003, p.11). One environmental factor that may have influenced the severity of the “Spanish

flu” was air quality. In the early 20th century, pollution levels in cities were high.3 There

were large regional differences in pollution levels driven by the local availability of coal for

production and energy generation.

This setting offers a unique opportunity to study health interaction effects. First, the

1A related literature documents the relationship between early childhood diseases and long run health
outcomes (see Costa, 2000; Case and Paxson, 2009).

2Worldwide 30 to 50 million people are estimated to have died from the pandemic (Crosby, 1989; Johnson
and Mueller, 2002).

3The small amount of available data on air pollution in American cities around this period suggests that
pollution levels were of the same order of magnitude to pollution in Chinese cities in the 1980s.
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pandemic occurred during a period in which there was limited scope for medical interventions.

Since this time period preceded the environmental movement by several decades, concerns

regarding sorting across cities on the basis of health preferences are also mitigated. Second,

the H1N1 strain responsible for 1918 outbreak was the result of an antigenic shift, so few

individuals had developed antibodies to protect against the new virus.4 Given that 1918

marked the first outbreak of H1N1, it is not necessary to control for previous exposure to

influenza. Third, the pandemic was short-lived, limiting the scope for viral evolution.5 We

are also able to exploit historical information on the timing of pandemic onset across localities

to directly control for evolution in influenza severity. Finally, there were large differences in

city-level pollution exposure, allowing for a cross-city comparison in pandemic severity.

To examine the interaction effects of pollution and influenza on health, we rely on a

newly digitized dataset on infant mortality for a panel of 559 American cities for the period

1915 to 1925. These data are combined with a measure of baseline city-level pollution,

which is derived from a 1915 federal report that provides information on the location and

capacity of steam and hydroelectric power stations in the United States. The empirical

analysis evaluates the extent to which heterogeneity in infant mortality during the influenza

pandemic was related to local levels of pollution using city-level variation in emissions arising

from electricity generation. The time series identification comes from interacting an indicator

variable for 1918, the main year of the pandemic, with the city-level steam capacity. All

specifications include city and year fixed effects, and many specifications include additional

controls that allow for differential trends based on geographic, demographics, and economic

characteristics.

The main results suggest that local pollution exacerbated the impact of influenza pan-

4In contrast to the more common antigenic drift, when an existing influenza virus mutates and is no
longer recognized by the immune system, antigenic shift occurs when an entirely new strand of the virus
is introduced the human population. Transmission typically occurs either directly or indirect from avian
strands of influenza. Antigenic shift often results in large scale pandemics, typically infecting between 15
an 40 percent of the population, and other examples of antigenic shift include the 1889, 1957, and 1968
influenza outbreaks.

5The pandemic lasted from September, 1918 to April, 1919, with 83% of pandemic-related mortality
occurring during the first four months of the outbreak.
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demic. We find a large and statistically significant relationship between local steam capacity

and infant mortality in 1918, which are robust to a variety of alternative estimation strate-

gies. On the other hand, we find no relationship between local water quality – as proxied

by city-level typhoid rates – and pandemic severity. Together these results are consistent

with epidemiological pathways of the disease, which targeted lung function. To interpret the

magnitude of these effects, we consider a counterfactual scenario, in which all above median

pollution cities reduced emission to the median level. In this setting, we calculate 5,551

pandemic-related infant deaths would have been averted, a 13 percent decline in influenza

pandemic severity. The results have implications for current energy policy, and suggest that

focusing solely on the direct relationship between TSP emission on health may understate

the benefits of emissions abatements policies.

The paper proceeds as follows. Section 2 discusses the history of the 1918 influenza

pandemic; section 3 describes the data; section 4 introduces the empirical strategy; section

5 presents the main findings; section 6 reports a variety of robustness exercises; and section

7 concludes.

2 Historical context

The influenza pandemic of 1918 was brief, but severe. The estimates of worldwide fatal-

ities ranged from 50-100 million. In the United States, fatalities were between 675,000 and

850,000. The pandemic occurred in three waves, the second and most severe wave began in

late September of 1918. The pandemic was extremely severe in October through January,

and mortality remained elevated in February of and March of 1919. The 1918 pandemic lives

on in the sense that nearly all influenza A cases are descendants of that virus.

Pregnant women were particularly vulnerable. They died, had stillbirths, and saw their

infants die. Maternal mortality in the registration area rose from 0.66 percent to 0.92 percent.

Almond (2006) found that stillbirths increased 60 percent in October 1918 and 40 percent
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over the period October-December 1918. The effect of influenza on pregnant women and

fetuses was not unique to this pandemic, although the effects were more severe. Influenza

has long been associated with maternal and fetal death. Almond (2006) presents evidence

on the adverse effects of having been in utero during the pandemic. Across a wide range of

health and economic indicators, the cohort that was in utero during the pandemic did worse

than adjacent cohorts.

Case fatality rates during the 1918 pandemic were greater than 2.5 percent, far higher

than usual (0.1 percent), although most victims survived. Fatalities were similar across

rural and urban areas. Victims often experienced hemorrhaging or rapid and severe onset

of bacterial pneumonia. There were wide cross-state and cross-city differences in pandemic

severity that cannot be attributed to economic, demographic, geographic or climatic factors

(Crosby, 1989, p.66). One study of the pandemic concluded that excess mortality rates

“appear to be randomly distributed and do not seem to be related to the level of economic

development, climate, or geography (Brainerd and Siegler, 2003, p.11).

Three factors were identified as potentially important contributors to influenza severity.

The first is air pollution. A relationship between air pollution and influenza has been sug-

gested by a small number of authors (Pope and Dockery 2006, Xu et al 2013, Lee et al 2014,

Liang et al 2014). The underlying mechanism is that particulate pollution and particularly

environmentally persistent free radicals can some degree of immunosuppression in infants,

increasing the severity of influenza.

A second is proximity to World War I bases. There is considerable qualitative evidence

to suggest that movement of military personnel spread influenza from base to base and from

bases to adjacent towns and cities (Morens and Fauci 2007, Erkoreka 2009, Wever and Bergen

2014). Given that the deadly second wave of the virus spread rapidly to virtually every city

in America and that the medical response was ineffective, it is not obvious why cities near

bases should have been differentially affected by the pandemic. On the other hand, there is

qualitatitive evidence that the virus weakened by late September (Sydenstricker, 1918), so
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that the first cities struck by the pandemic were exposed to a more lethal strain.

The third factor is pre-pandemic infant mortality. Some work suggests that pre-pandemic

mortality is predictive of pandemic mortality (Pearl 1921, Bootsma and Ferguson 2007,

Acuna-Soto et al 2011, Chowell et al 2008). This is consistent with baseline population

health affecting incidence of influenza. It is likely to capture a variety of factors including

population density, pollution, and health and sanitation. While there is some evidence that

typhoid might be relevant for infant mortality, it is likely to be captured by pre-pandemic

infant mortality.

3 Data

To examine the interaction effects of pollution and influenza on health, we combine newly

digitized data on infant mortality and electricity generation with additional census data on

city characteristics. Infant mortality rates were digitized for a panel of 559 American cities

for the period 1915-1925 (excluding the year 1920, for which we lack information on infant

deaths). This data comes from the Mortality Statistics, and covers 25 percent of the U.S.

population and over half of the urban population.

These health outcomes are linked to a measure of city-level pollution. We rely on a

1915 federal report that provides information on the location and capacity of steam and

hydroelectric power stations in the United States. We digitized information on all plants

with at least 5mw of capacity in 1915, covering over half of the total capacity generated in

the United States. Using GIS software, we combined these data with information on city

locations to construct a measure of local exposure to pollution from steam plant emissions.

Our preferred measures are total steam capacity and hydro capacity within 30 miles of

each city-centroid. Additional controls include longitude, latitude, timing of the onset of

the influenza pandemic, population, urban population, share white, and employment in

manufacturing, and manufacturing wages. Demographic and manufacturing data are at the

5



county level and are from the 1910 Census of Population and 1910 Census of Manufacturing,

with the exception of manufacturing wages, which is from 1900.

In addition to pollution, we assess several other explanations for cross-city heterogeneity

in pandemic-related mortality. We examine whether proximity to major World War I bases

affected pandemic severity. We digitize information of the locations of all major army training

camps in 1918 (U.S. War Department, 1919, p.1519). For each city the our sample, we

construct a measure of distance (in miles) to the distance to the nearest base. Figure

1 displays the sample of cities in our dataset and the location of army training camps.

Additionally, we examine whether poor water quality may influenced pandemic severity. To

assess this hypothesis, we assemble data on typhoid mortality rates at the turn of the century

for 288 cities in our sample from Whipple (1908). Our measure of baseline typhoid exposure

is the average number of typhoid deaths per 100,000 population for the period 1900 to 1905.

Table 1 reports the summary statistics for the main variables of interest. We report

the sample means for the full sample and separately for cities above and below the median

level of pollution in 1915 (24mw of steam capacity). The first row shows that overall infant

mortality rates were similar across the two groups of cities. In the second row, we report

the logarithm of excess mortality in 1918. This variable is constructed as the residual infant

mortality rate after controlling for a city-specific linear trend. Infant mortality was 19%

higher in 1918 relative to trend. The influenza pandemic was much more severe in high-

pollution cities, and there was a 0.05 log point difference in excess mortality during 1918.

High-pollution and low-pollution cities differed on a range of other margins. Baseline infant

mortality rates were 7% higher in high-pollution cities and these cities were on average 46

miles closer to a World War I base. High-coal cities were also located in more populous

counties with a greater fraction of white inhabitants. The goal of the empirical analysis is

to disentangle these competing determinants of pandemic-related mortality.
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4 Empirical strategy

The empirical analysis will evaluate whether heterogeneity in infant mortality during the

influenza pandemic was related to local levels of pollution. We estimate the following model:

Log(MortRatect) = α + β
(
Influenzat × Log(Pollutionc)

)
+ λt + λtZc + λtXc + λtWc + ηc + φst + εct

(1)

where the dependent variable, Log(MortRatect), denotes the logarithm of the infant mor-

tality rate in city c in year t. The term ηc denotes a vector of city fixed effects, λt denotes a

set of year fixed effects, and φst is a linear state trend which allows for differential trends in

mortality across states.

The variable of interest,
(
Influenzat × Log(Pollutionc)

)
, identifies the interaction be-

tween baseline pollution and the year of the pandemic. The term Influenzat is a dummy

variable for the year 1918, which is meant to proxy pandemic exposure.6 The term

Log(Pollutionc) measures the logarithm of total steam capacity within 30 miles of the

city-centroid, and is meant to proxy local pollution. The interaction term,
(
Influenzat ×

Pollutionc

)
, identifies the differential impact of local pollution on infant mortality during

the pandemic year. A positive estimate of β would suggest that exposure to power plant

emissions lowered health capital in the local population, exacerbating the impact of the

influenza outbreak.7 In particular, a positive estimate of β would suggest that exposure

to power plant emissions lowered health capital in the local population, exacerbating the

impact of the influenza outbreak.

The identifying assumption requires that conditional on covariates unobservable deter-

minants infant mortality are not correlated with
(
Influenzat × Log(Pollutionc)

)
. In prac-

6We also estimate the interaction effect for 1919, given that 17% of pandemic-related mortality occurred
between January and April, 1919.

7In some specifications, we also report the direct effect of the pandemic on health – the 1918 year fixed
effect, Pollutiont – although it cannot be readily interpreted in models that include the full set of covariates.
Note that the direct effect of pollution on mortality cannot be separately identified in a model that includes
city fixed effects.
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tice, this condition requires that pandemic-related mortality was not systematically different

across high and low coal cities for reasons unrelated to air quality. There are three primary

concerns regarding this hypothesis, which we address in turn.

First, geography may have influenced both the spread and severity of the pandemic.

For example, despite the rapid diffusion of the pandemic, some accounts suggest that the

virulence of weakened by the end of the September (Sydenstricker, 1918). Since the outbreak

occurred later western states, where coal energy production was more limited, we might

identify a spurious correlation between pandemic-severity on city-level pollution. To address

these concerns, equation (1) includes the term λtZc, which denotes the city-centroid longitude

and latitude interacted with year. These terms allow for heterogeneity in pandemic-severity

according to geography.8

A second concern is city-level population characteristics may have influenced the spread

of the pandemic and hence the size of the infected population. This issue is particularly

salient given coal pollution tended to be concentrated in larger and more densely populated

cities (see Table 1). To address this concern, we interact the year fixed effects with a vector

of baseline population characteristics, Xc, which include the logarithm of total population

in 1910, percent urban in 1910, and the share white in 1910. These terms control for the

fact that local pollution levels may be correlated with determinants of viral transmission.

A final concern is that 1918 infant mortality was elevated in high pollution cities as a

result of the war. If high coal cities experienced a disproportionate increase in wartime

production (and hence local pollution levels), we might observe a relative increase in infant

mortality in these cities, independently of the pandemic. To address this issue, Wc controls

for baseline economic conditions (log manufacturing wages in 1900 and log employment in

manufacturing in 1910), which we then interact with year.9 In addition to these issues, we

explore the sensitivity of the results to a range of alternative specifications and controls.

8The baseline model imposes a linear functional form for longitude and latitude, although the results are
robust to nonlinear specifications.

9A concern with this procedure is ‘over-controlling’, since economic conditions are likely correlated with
baseline pollution levels. As a result, our preferred specification do not include these covariates.
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5 Results

5.1 The overall impact of the pandemic on infant mortality

Before examining the interaction between pandemic-related mortality and local levels

of pollution, we first provide evidence of the direct impact of the influenza pandemic on

infant mortality rates. We estimate a series of regressions that control flexibly for trends

in mortality between 1915 and 1925, and separately include a dummy variable for each

year between 1915 and 1925. These year fixed effects capture residual infant mortality –

annual deviations from trend – for every year in the sample period. A positive estimate on

I(Y ear = 1918), for example, would indicate that infant mortality exceeded its trend during

the year 1918, consistent with pandemic-related infant mortality.

Table 2 reports these estimates. Column (1) controls for a linear year trend, column (2)

allows for linear state-specific trends, and column (3) includes a linear city-specific trend.10

Each row reports the estimates based on a different year fixed effect. In each specification,

the point estimate in 1918 is large and statistically significant, implying that infant mor-

tality rates exceeded trend by roughly 19% during the pandemic year. Assuming all excess

mortality in 1918 can be attributed to the pandemic, these results imply that influenza was

responsible for 10,920 infant death in our sample and 41,348 infant deaths nationwide. We

cannot rule out that some fraction of the spike in mortality in 1918 was driven by alterna-

tive factors, such as U.S. entry into World War I. Nevertheless, the absolute magnitude of

these results, and their size relative to estimates found for 1917, provides strong suggestive

evidence of the deviation was primarily driven by influenza.

We compare these estimates to previous assessments of pandemic severity. Infant

mortality accounted for 5.2% of excess mortality for the period 1918-1919.11 Apply-

ing these estimates, we calculate that nationwide mortality attributable to the pandemic

10The results are robust to the inclusion of squared year trends.
11To derive this calculation, we calculate the change in total deaths by age group between 1917 and

1918-19 (Vital Statistics, 1917, 1918, 1919).
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was 41, 348/0.052 = 797, 208 deaths, which is comparable to previous studies that place

pandemic-related deaths between 675,000 and 850,000.

The point estimates in non-pandemic years are generally small. Infant mortality rates

exceeded trend by 4% in 1917, which in part may reflect U.S. entry into World War I in

April 1917.12 There was a slight decrease in mortality relative to trend between 1919 and

1922, which may reflect the relative economic prosperity during this period. Interestingly,

the 5% decrease in infant mortality rates in 1919 is consistent with previous studies which

have found that the vast majority of pandemic-related mortality occurred during the four

month period from September, 1918 and January 1919 (see Markel et al, 2007).

5.2 Differences in pandemic-severity by local pollution

In Table 3, we examine the extent to which heterogeneity in the pandemic effect was

related to local levels of pollution. Column (1)-(4) reports the estimates of β from equation

(1) across several different specifications. Column (1) includes city and year fixed effects

and a linear state trend; column (2) includes the longitude and latitude controls, allowing

the pandemic to differentially impact mortality according to geography; in column (3), we

add controls initial population characteristics; and in column (4) we add controls for initial

economic conditions.

Across all four specification, the interaction effects are positive and signification, ranging

from 0.012 to 0.016. Our preferred estimates imply that differences in city-level pollution

can account 16% of cross-city heterogeneity in pandemic-related mortality. Comparing across

above and below median pollution cities, our estimates imply the gap in pandemic mortality

should be 0.0146 × (4.90 − 1.24) = 0.05 log points. Differences in pollution levels can thus

account for the entire observed gap in excess pandemic mortality found in Table

Excess infant mortality was 21% in above-median pollution cities in 1918 (see Table 1).

12The war may have influenced infant rates through a variety of channels: Volutuntary food rationing
may have be harmful for health, increased industrial production may have raised exposure to air pollution,
and selection effects (based on the anticipated outbreak of war) may have lowered average infant health.
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Given 11,044 annual births, this estimate implies that the pandemic was responsible for

46,592 additional infant deaths in 1918 – 193 per city. To interpret the magnitude of these

results, we consider a counterfactual scenario in which all above-median cities reduced steam

production to median capacity. This scenario would have led to a reduction 1.73 log points

in individual-level exposure to pollution in these cities.13 As a result, excess infant mortality

would have been 0.21−(1.73×0.0146) = 18.5% in this counterfactual scenario, which implies

that 5,551 infant deaths would have been averted, a 13% decline in pandemic severity.

5.3 Steam versus hydroelectric capacity

Local steam energy production may have influenced pandemic severity independently of

air pollution. Electricity infrastructure may have been related to local economic conditions

and housing quality, both of which may have influenced the severity of outbreak. To examine

this issue, we re-estimate equation (1) including an interaction term of the pandemic year

with both local steam and hydro capacity. Intuitively, both steam and hydro capacity

should have similar effects on health through increased local electricity infrastructure, but

steam capacity is also associated with higher local levels of local pollution. The comparison

between hydroelectric and steam capacity provides insight into whether the estimates in

Table 3 reflect the broad based effects of electricity access or those attributable specifically

to pollution emissions.

Table 4 reports the estimated interaction effects of steam and hydro capacity. The point

estimates for steam capacity are all statistically significant, ranging from 0.012 to 0.017.

Meanwhile, the point estimates for hydro capacity are small – ranging from 0.003 to 0.007

– and statistically insignificant. These results provide confidence that interaction effect

between steam capacity on pandemic-related mortality reflects local exposure to air pollution,

as a opposed to some other characteristic that may have been related to local electricity

infrastructure.

13To derive this estimate reduction, we calculate the average change in the sample of high coal cities,
weighting cities by number of births.
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5.4 Other determinants of pandemic severity

Table 5 assesses the importance of alternative determinants of pandemic-severity, namely

baseline health and proximity to World War I bases. One of the most important determinant

of infant health during the early 20th century was water quality, which differed widely across

cities. We proxy water quality by the baseline city-level typhoid rates, a bacterial infection

that fell sharply with the introduction of clean water technologies (Cutler and Miller, 2005).

To assess whether differences in local water quality influenced pandemic-severity, we add the

interaction term, I(Year=1918)× Log(baseline typhoid mortality), to the main specification

in equation (1). These results are reported in column (1). The point estimates for typhoid are

small and statistically insignificant. These results may reflect the fact that poor water quality

typically led to gastrointestinal illnesses rather than diseases that affected lung function.

In column (3) we examine whether baseline health (more broadly) influenced pandemic-

severity. We interact baseline infant mortality (average infant mortality between 1915 and

1917) with the 1918 year effect. The point estimate is positive and significant, consistent

with research that argues that pre-pandemic mortality is predictive of pandemic mortality

(Pearl 1921, Bootsma and Ferguson, 2007). The point estimates for air pollution remain

significant despite the inclusion of this covariate, which is consistent with air quality having

exacerbated the influenza outbreak primarily through its effects on morbidity rather than

the selection effects associated with mortality differentials.

Given that the pandemic spread first off of World War I bases, and the first weeks of the

outbreak were considered the most virulent, nearby cities may have experienced higher rates

of pandemic-related deaths. To study this question we re-estimate equation (1), interacting

city-centroid distance to the nearest World War I base with the 1918 fixed effect. The

results are reported in column (2). The point estimate is large and statistically significant,

consistent with the view that the most virulent strains spread off of army encampments.

The results imply that an 80 mile decline in distance (roughly the gap between the 25th and

75th percentile) is associated with a 10% increase in excess pandemic mortality. Again, the
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estimates for air pollution are robust to the inclusion of this covariate.

In column (5) we estimate a model including all four of these potential determinants of

pandemic severity. The general pattern remains unchanged: air pollution, baseline mortal-

ity, and exposure to World War I bases all exacerbated the outbreak. To assess the relative

importance of these mechanisms, we interact the point estimates with the standard devia-

tions of the independent variables. Together these three factors can account for half of the

cross-city variation in excess pandemic mortality. The two dominant factors were local air

quality and proximity to World War I bases, which each accounted for 18% of this cross-city

dispersion.

6 Robustness checks

In Tables 6 and 7, we examine the robustness of the results to several alternative spec-

ifications and controls. A major concern with the baseline findings is that evolution in the

severity of the influenza strain may have been spuriously correlated with local pollution

levels. Despite the fact that the pandemic was a very short-lived phenomenon, previous re-

search suggests that the virus may have weakened in the weeks following the initial outbreak

in early September (Syndenstricker, 1918). If the virus did evolve as it spread across the

country, and the evolution was correlated with city-level pollution levels, the baseline results

may be biased. For example, if the virus weakened as it spread west, and western cities

simultaneously were less dependent on coal as a source of electricity generation, the baseline

results might overestimate the relationship between air pollution and pandemic severity.

To address this issue, we construct a measure of the timing of pandemic onset. Specif-

ically, we rely on a map constructed by Syndenstricker (1918) that identifies the week of

approximate beginning of the pandemic across 376 localities (before Sept. 14th, Sept. 14th-

21st, Sept. 21st-28th, Sept 28th-Oct. 5th, after Oct. 5th). We digitize this information,

and assign each city in our sample to one of these five bins. We then interact this measure

13



with the vector of year fixed effects. By controlling for the week of pandemic onset, these

models identify the impact of pollution across population exposed to similar strains of the

virus. The results are reported in row 2 of Table 5. For reference, we report the baseline

estimates in the first row. Controlling for the timing of pandemic onset has little effect on

main findings. Across the four estimation strategies the point estimates are very similar

to the baseline results. These results confirm that the interaction effect between pollution

exposure and pandemic-related mortality was not driven by evolution in strain severity.

Row 3 reports the estimates for models in which the linear state trend is replaced by

a city-specific trend. The results are robust to this alternative specification. Meanwhile,

row 4 presents estimates for the balanced panel of cities reporting infant mortality for the

full period 1915 through 1925. Again, the point estimates are very similar to the baseline

results, indicating that non-random selection was not driving the original findings. In row

5, we examine the sensitivity of the results to excluding the year 1923 from the analysis. We

find evidence that baseline pollution was negatively related to infant mortality in 1923 (see

Table 7), which might reflect a relative slowdown in economic activity in these cities. By

excluding this year from the sample, we address concerns that the main estimates overstate

the positive interaction effect in 1918. The results are robust to this sample restriction.

In the final three rows, we examine the sensitivity of the estimates to alternative measures

of local pollution exposure. Specifically, we estimate model based on power plant capacity

within 10, 50, and 100 miles of each city-centroid. The relative magnitude of these various

estimates depends on the atmospheric dispersion of power plant pollution, itself a function of

the pollution density, meteorological conditions, local terrain, and smokestack height. Recent

evidence from Illinois shows that 40 percent of primary PM2.5 exposure occurs within 30

miles of a power plant, with another 30 percent occurring between 30 and 125 miles (Levy

et al., 2002).14 Historically, the dispersion was likely more limited, as plants were built with

lower smoke stacks. In general, the point estimates are similar in magnitude to the baseline

14In contrast, secondary sulfates and nitrates disperse more widely, with over 50 percent of exposure
occurring beyond 125 miles.
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findings, albeit less precisely estimated. The results for steam capacity within 10 miles of

the city centroid are only marginally significant, which is likely due to the fact that there

is less cross-city variation in steam capacity as we restrict attention to the smaller radii.

Nevertheless, the broad findings from these results support the initial evidence that local

pollution levels exacerbated the impact of the influenza pandemic.

As a final test of the estimation strategy, we conduct a series of placebo exercises to ex-

amine whether steam capacity was related to city-level mortality in any of the non-pandemic

years. Specifically, we estimate the interaction effect between local steam capacity and non-

pandemic years, replacing the 1918 dummy variable with each year fixed effect between 1915

and 1925. This exercise addresses concerns that wartime production was directed towards

cities that had large amounts of steam capacity. As a result, increased pollution associated

with the spike wartime production may have led to a differential rise in 1918 mortality in

these cities, independently of the pandemic. By examining the interaction effect in 1917, we

can shed light on this issue.

The results are presented in Table 7. There is little evidence that annual deviations in

infant mortality rates were systematically related to local levels of pollution in non-pandemic

years. The one exception is the 1923, in which high steam capacity cities experienced a rel-

ative decline in infant mortality. Importantly, all but one of the point estimates for 1917 are

insignificant, and much smaller than the 1918 interaction effect, suggesting that increased

production associated with World War I is not the driving force between the baseline find-

ings. Moreover, the remaining point estimates are generally smaller in magnitude, and less

statistically significant than for the pandemic year, supporting the empirical strategy.

7 Conclusion

This paper exploits the 1918 Spanish influenza pandemic to examine how environmental

factors interact with infectious illnesses to affect health. Combining information on infant
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mortality and air pollution, we find that 17% of the cross-city variation in pandemic severity

can be explained by differences in air quality. On the other hand, cross-city differences in

water quality had little effect on pandemic-related mortality. Together, these findings are

consistent with the epidemiology of the H1N1 influenza virus which directly targeted lung

function. These results provide an example of how one particular environmental factor can

interact with one particular infectious illness to affect the health of the local population,

however, more research is needed to identify how various environmental inputs interact in

the health production process.

Outdoor air pollution is directly responsible for 1.3 million premature deaths per year

worldwide (WHO, 2009). Our results suggest that by exacerbating the impact of a disease

outbreak, the full health effects of poor air pollution may actually be much larger. Given the

pervasiveness of the influenza virus, which is responsible for between 250,000 and 500,000

deaths per year worldwide (WHO, 2014), there is large scope for policies aimed at improving

air quality to mitigate the impact of this disease.
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Figure 1: Sample selection and the location of army training camps in 1918
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Notes: Each circle denotes to a city in the sample and each triangle denotes either a National Guard
Camp, a National Army Cantonment, or other large World War I camps.
Source: U.S. War Department, 1919, p.1519.
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Figure 2: Pandemic-related mortality, coal consumption, distance to WWI bases, and base-
line typhoid exposure
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Figure 3: Correlation between coal consumption and other determinants of pandemic-severity
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Table 1: Summary statistics

Full sample ≥ median city-level < median city-level
pollution pollution

Log(infant mortality) 4.37 4.37 4.37
[0.34] [0.36] [0.32]

Log(excess infant mortality in 1918) 0.19 0.21 0.16
[0.20] [0.18] [0.21]

Log(steam capacity within 30 miles) 3.23 4.90 1.24
[2.17] [1.09] [1.27]

Log(hydro capacity within 30 miles) 0.88 0.72 1.07
[1.50] [1.42] [1.57]

Log(baseline infant mortality) 4.45 4.48 4.41
[0.34] [0.36] [0.32]

Log(baseline typhoid mortality) 3.39 3.24 3.60
[0.62] [0.58] [0.60]

Log(distance to nearest WWI base) 4.20 3.95 4.51
[0.82] [0.79] [0.75]

Log(population in 1910) 11.62 12.20 10.93
[1.05] [0.99] [0.60]

Percent urban in 1910 0.64 0.74 0.52
[0.23] [0.21] [0.18]

Share white in 1910 0.95 0.97 0.93
[0.11] [0.05] [0.15]

City population in 1920 68,351 98,351 32,017
[276,828] [369,379] [42,639]

City births in 1920 1,642.4 2335.0 803.6
[6,495.9] [8,661.9] [1,078.8]

Notes: Median city-level pollution is defined as 24.7mw of steam capacity in 1915.
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Table 2: Impact of the influenza pandemic year on infant mortality

Estimated effects
(1) (2) (3)

I(Year=1915) -0.138*** -0.140*** -0.0854***
[0.013] [0.013] [0.009]

I(Year=1916) 0.0014 0.0004 0.016*
[0.010] [0.010] [0.008]

I(Year=1917) 0.035*** 0.034*** 0.043***
[0.009] [0.009] [0.008]

I(Year=1918) 0.188*** 0.187*** 0.188***
[0.010] [0.0010] [0.0010]

I(Year=1919) -0.052*** -0.050*** -0.051***
[0.013] [0.013] [0.012]

I(Year=1921) -0.020** -0.018* -0.020**
[0.010] [0.010] [0.008]

I(Year=1922) -0.041*** -0.040*** -0.044***
[0.010] [0.010] [0.009]

I(Year=1923) 0.020** 0.021** 0.010
[0.010] [0.010] [0.009]

I(Year=1924) -0.007 -0.008 -0.020**
[0.011] [0.011] [0.009]

I(Year=1925) -0.004 -0.007 -0.021***
[0.011] [0.011] [0.008]

Controls
Year trend Y
State-year trend Y
City-year trend Y
Obs 4,928 4,928 4,927

Notes: Each cell reports the point estimates from a different
regression. The coefficient I(Y ear = j) denotes the fixed
effect for observations in the jth year. Standard errors are
clustered at the city-level. ***,**,* denote significance at
the 1%, 5%, and 10%, respectively.
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Table 3: The effect of the pandemic on infant mortality, by local steam capacity
Dep variable: Log(infant mortality)

Estimate effect
(1) (2) (3) (4)

I(Year=1918) × SteamCap30mile 0.0164*** 0.0160*** 0.0146** 0.0117*
[0.0047] [0.0049] [0.0062] [0.0062]

Controls
State-specific trend Y Y Y Y
Longitude & latitude × year Y Y Y
Population covariates × year Y Y
Manufacturing covariates × year Y

Observations 4,927 4,901 4,901 4,868
R-squared 0.641 0.648 0.654 0.659
Number of clusters 559 555 555 551

Notes: Each cell reports the point estimates from a different regression. The variable
SteamCap30mile denotes logarithm of steam capacity within 30 miles of the city-centroid. Popu-
lation covariates include county-level controls for the logarithm of population, percent urban, and
share white in 1910. Manufacturing covariates include the logarithm of manufacturing wages in
1900 and the logarithm of manufacturing employment in 1910. Standard errors are clustered at
the city-level. ***,**,* denote significance at the 1%, 5%, and 10%, respectively.
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Table 4: The effect of the pandemic on infant mortality, by local steam and hydro capacity
Dep variable: Log(infant mortality)

Estimated effects
(1) (2) (3) (4)

I(Year=1918) × SteamCap30mile 0.0167*** 0.0165*** 0.0148** 0.0118*
[0.0047] [0.0049] [0.0062] [0.0062]

I(Year=1918) × HydroCap30mile 0.0058 0.0071 0.0070 0.0025
[0.0068] [0.0073] [0.0075] [0.0075]

Controls
State-specific trend Y Y Y Y
Longitude & latitude × year Y Y Y
Population covariates × year Y Y
Manufacturing covariates × year Y

Observations 4,927 4,901 4,901 4,868
R-squared 0.641 0.648 0.654 0.659
Number of clusters 559 555 555 551

Notes: Each cell reports the point estimates from a different regression. The variables Steam-
Cap30mile and HydroCap30Mile denote logarithm of steam and hydro capacity within 30 miles
of the city-centroid. Population covariates include county-level controls for the logarithm of pop-
ulation, percent urban, and share white in 1910. Manufacturing covariates include the logarithm
of manufacturing wages in 1900 and the logarithm of manufacturing employment in 1910. Stan-
dard errors are clustered at the city-level. ***,**,* denote significance at the 1%, 5%, and 10%,
respectively.
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Table 5: Other determinants of pandemic severity
Dep variable: Log(infant mortality)

Estimate effect
(1) (2) (3) (4) (5)

I(Year=1918) ×
SteamCap30mile 0.0173** 0.0123* 0.0153** 0.0168** 0.0170**

[0.00673] [0.00649] [0.00604] [0.00678] [0.00670]

Log(baseline typhoid mortality) -0.00237 0.0138 0.0106
[0.0230] [0.0236] [0.0237]

Log(distance to nearest WWI base) -0.0507*** -0.0344* -0.0448**
[0.0173] [0.0192] [0.0195]

Log(baseline infant mortality) 0.0924** 0.0789*
[0.0395] [0.0475]

Observations 2,811 4,349 4,323 2,606 2,586
R-squared 0.666 0.656 0.678 0.678 0.681
Number of clusters 288 485 439 266 262

Notes: Each cell reports the point estimates from a different regression. The variable SteamCap30mile denotes
logarithm of steam capacity within 30 miles of the city-centroid. All models control for state-specific trends, and
geographic and population covariates. Standard errors are clustered at the city-level. ***,**,* denote significance
at the 1%, 5%, and 10%, respectively.
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Table 6: Robustness checks
Dep variable: Log(infant mortality)

Estimated effects
(1) (2) (3) (4)

Baseline specification

I(Year=1918) × SteamCap30mile 0.0164*** 0.0160*** 0.0146** 0.0117*
[0.0047] [0.0049] [0.0062] [0.0062]

Control for timing of influenza outbreak

I(Year=1918) × SteamCap30mile 0.0169*** 0.0160*** 0.0144** 0.0125*
[0.0054] [0.0053] [0.0064] [0.0065]

Control for city-specific trends

I(Year=1918) × SteamCap30mile 0.0144*** 0.0122** 0.0136** 0.0114*
[0.0047] [0.0049] [0.0060] [0.0060]

Balanced Panel

I(Year=1918) × SteamCap30mile 0.0155*** 0.0150*** 0.0139** 0.0107*
[0.0045] [0.0048] [0.0061] [0.0061]

Drop 1923 from the sample

I(Year=1918) × SteamCap10mile 0.0156*** 0.0144*** 0.0130** 0.0101
[0.00468] [0.00492] [0.00615] [0.00614]

Alternative measures of local pollution

I(Year=1918) × SteamCap10mile 0.0117** 0.0099* 0.0063 0.0055
[0.0050] [0.0052] [0.0064] [0.0062]

I(Year=1918) × SteamCap50mile 0.0163*** 0.0164** 0.0125 0.0080
[0.0054] [0.0065] [0.0078] [0.0084]

I(Year=1918) × SteamCap100mile 0.0208*** 0.0238** 0.0193* 0.00916
[0.0069] [0.0105] [0.0107] [0.0118]

Controls
State-specific trend Y Y Y Y
Longitude & latitude × year FEs Y Y Y
Population covariates Y Y
Manufacturing covariates Y

Notes: Each cell reports the point estimates from a different regression. The variable
SteamCap30mile denotes logarithm of steam capacity within 30 miles of the city-centroid. Popu-
lation covariates include county-level controls for the logarithm of population, percent urban, and
share white in 1910. Manufacturing covariates include the logarithm of manufacturing wages in
1900 and the logarithm of manufacturing employment in 1910. Standard errors are clustered at the
city-level. ***,**,* denote significance at the 1%, 5%, and 10%, respectively.
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Table 7: Pollution interaction effects, by year
Dep variable: Log(infant mortality)

Estimated effects
(1) (2) (3) (4)

I(Year=1915) × SteamCap30mile 0.0077 0.0065 -0.0044 -0.0053
[0.0056] [0.0063] [0.0081] [0.0083]

I(Year=1916) × SteamCap30mile 0.0000 0.0052 0.0009 0.0001
[0.0050] [0.0061] [0.0072] [0.0074]

I(Year=1917) × SteamCap30mile 0.0055 0.0096* 0.0061 0.0024
[0.0048] [0.0054] [0.0064] [0.0066]

I(Year=1918) × SteamCap30mile 0.0164*** 0.0160*** 0.0146** 0.0117*
[0.0047] [0.0049] [0.0062] [0.0062]

I(Year=1919) × SteamCap30mile 0.0064 0.0135** 0.0122 0.0129
[0.0067] [0.0066] [0.0090] [0.0086]

I(Year=1921) × SteamCap30mile -0.0140*** -0.0116** -0.0057 -0.0027
[0.0045] [0.0052] [0.0069] [0.0071]

I(Year=1922) × SteamCap30mile 0.0042 0.0011 0.0053 0.0060
[0.0049] [0.0052] [0.0065] [0.0067]

I(Year=1923) × SteamCap30mile -0.0097** -0.019*** -0.021*** -0.0208***
[0.0048] [0.0056] [0.0070] [0.0073]

I(Year=1924) × SteamCap30mile -0.0025 -0.0019 0.00080 0.0022
[0.0049] [0.0056] [0.0067] [0.0069]

I(Year=1925) × SteamCap30mile -0.0045 -0.0073 -0.0011 -0.00027
[0.0053] [0.0062] [0.0074] [0.0078]

Controls
State-specific trend Y Y Y Y
Longitude & latitude × year FEs Y Y Y
Population covariates Y Y
Manufacturing covariates Y

Notes: Each cell reports the point estimates from a different regression. The variable SteamCap30mile
denotes logarithm of steam capacity within 30 miles of the city-centroid. Population covariates include
county-level controls for the logarithm of population, percent urban, and share white in 1910. Manufactur-
ing covariates include the logarithm of manufacturing wages in 1900 and the logarithm of manufacturing
employment in 1910. Standard errors are clustered at the city-level. ***,**,* denote significance at the
1%, 5%, and 10%, respectively.
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