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Abstract

Analysis of the long term effects of social and public health programs us-
ing household survey data requires an understanding of patterns of household
recombination–that is the processes by which households divide and fuse over
time. In this paper we examine, in particular, the effects on educational mobil-
ity of a well-known maternal and child health and family planning program in
Matlab Bangladesh. Using a novel resampling procedure that relies on longitu-
dinally collected demographic surveillance data, we correct for biases that arise
from household recombination that occurred subsequent to a baseline census but
prior to the collection of the first round of detailed economic data. Our results sug-
gest that the program resulted in a small increase in consumption per capita, de-
creases in family sizes, small changes in household recombination, and increases
in child schooling except among the lowest education households. We also show
that approximate corrections for these biases using more limited data are reason-
ably effective.
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1 Introduction

While the process of economic mobility is often studied by examining the long
term prospects of individuals with different background characteristics, in prac-
tice changes in the well-being of individuals are importantly determined by the
households and families in which these individuals are embedded. This rela-
tionship is perhaps most clear with respect to household level measures such as
expenditure or poverty, but even arises in the study of mobility with respect to
something as individualized as education. Consider the question, for example, of
whether educational inequality at one point in time persists into subsequent pe-
riods and the degree to which this persistent inequality is influenced by various
types of public programs and services. One cannot simply look at educational
change for a given person over twenty years. Similarly one cannot learn much
by comparing the education of a child of one mother to the education of another
child born to the same mother twenty years later. Childbearing and education are
intrinsically tied to the span of childbearing of the mother and to the particular
ages of the children. Moreover educational decisions happen within the context
of households and multiple household factors may be responsible for the pro-
cesses of educational evolution over time. From this perspective it would seem
advantageous to look at educational mobility from the stand point of a particular
family line, comparing the education of children of a particular age at one point
in time to the education of children of that same age some years later in that same
line.

This approach might be relatively straightforward using long-term household
panel survey data if households stayed fixed over time; however, they do not. A
household at one point in time morphs through a process of household division
and fusion, which we combine under the rubric of household recombination. Not
only is it necessary to account for this process of recombination in the evaluation
of data on economic mobility but the process of recombination in turn can affect
the process of economic mobility. Depending on the nature of the sampling pro-
cesses and how recombination proceeds over time it may be necessary to reweight
data based on weights that may themselves be endogenous with respect to house-
hold recombination.

The importance of understanding household formation as an element of analyses
of other development outcomes has been previously recognized in the literature.
Foster 1993, for example, noted "It is increasingly recognized that certain demo-
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graphic variables should be treated as endogenous in analyses of economic and
demographic data from developing countries, very little is known about the im-
plications of the fact that joint residence is itself a choice variable." In subsequent
work looking at the relationship between household division and inequality, Fos-
ter and Rosenzweig 2002 argue "An improved understanding of the determinants
of household division is thus useful not only for dealing with the potential selec-
tivity of panel designs that drop dividing households, but in studying household
behaviour and income change generally." But both papers focus only on the pro-
cess of household division and, in part as a consequence of this, neither deals ex-
plicitly with the issue of how sampling composition is affected by the process of
household recombination and thus influences the construction of sample weights.

The process of using weights to adjust for sample attrition has, of course, achieved
substantial attention in the literature (Fitzgerald, Gottschalk, and Moffitt 1998,
Moffit, Fitzgerald, and Gottschalk 1999) . Generally, one inflates the weight of
observed sampling units households based on the assumption that attrition is
random with respect to processes of interest in the data conditional on the ob-
servables. Of course, this assumption may not be correct in general and even if it
is, the outcomes of the attritting population may be sufficiently distinct from the
observed population (e.g., attrition through mortality) that one cannot sensibly
combine the outcomes of the observed and attritted population into a single met-
ric. But little attention has been given to the question of weighting in a setting in
which the problem is not sample attrition but the process of household recombi-
nation. In this case observability may not be as much of an issue as in the case of
attrition, but the flow of people across households and the fact that the sampling
unit for a survey is generally the household creates a new set of problems.

To understand this point, consider a random sample of households collected at
time t and assume that larger (at time t) households are more likely to divide. If
all descendant households are followed, then one will correctly measure at time
t+1 the distribution of t+1 attributes such as household size. However, if these
t+1 households are used to retrospectively construct the mean household size at
time t, then the estimate will be too large because large t households are overrep-
resented in the resulting sample of t+1 households. A similar bias would arise
if household size at time t were estimated from a random sample of households
in period t+1. A simple correction in each case would be to inverse weight each
household by the number, if available, of co-descendant households with the same
antecedent household. As we detail below, however, the situation is further com-
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plicated in the presence of household fusion. The set of all descendant households
in t+1 generated from an initial sample in period t will no longer yield an unbiased
estimate of household measures at time t+1 because t+1 households composed of
members of multiple antecedent households will be more likely to be selected
than would be the case if t+1 households were selected randomly. To correctly
constitute a represented sample one would need to know the sampling probabili-
ties and descent paths of households that were not sampled at t.

This is not just a curiosity. Surveys are at times used to evaluate the consequences
of interventions that were introduced at a previous period, and in some cases ret-
rospective or previously collected data are incorporated into the analysis in order
to estimate differential change over time. In such cases we may ask if it is possible
to mimic the results of a randomized trial in which a baseline is collected from a
random sample at a particular point in time, a set of treatments is assigned to the
participants, and then outcomes are evaluated at some endline. Our answer is a
tentative yes, but as our application suggests, the data requirements for doing so
are extremely demanding.

In this paper, we tackle these larger questions of household recombination, sample
selection, and weighting mechanisms in panel datasets by looking at a specific ex-
ample. We focus, in particular, on the Matlab Health and Socio-economic Survey
done in Matlab, Bangladesh in 1996, which can be linked to an ongoing process
of population-wide vital registration and periodic censuses known as the Health
and Demographic Surveillance System (HDSS) since 1966. There are dozens of
papers and dissertations using this data, many of which use it to examine the ef-
fects of a Maternal and Child Health and Family Planning Program (MCH/FP)
begun in 1978. This combination of an HDSS with an experimentally introduced
intervention has been used in various other regions, including Navrongo (Ghana),
Rakai (Uganda) and Filabavi (Vietnam) among others. The comprehensive data
available through surveillance populations opens up a variety of possibilities for
studying the long-run effects of the interventions, but it is not always clear how to
make the link between survey sample and the vital registration data. Our paper
demonstrates how in the case of an RCT or other intervention, it is possible to
make use of the long-run HDSS data by creating weights that are endogenous to
the recombination process but correctly assess population impacts.

There are two specific issues with the Matlab data sets that reflect our broader
concerns about representativeness in panel data. First, the sampling frame for the
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1996 survey data reflects patterns of residence, inclusive of those affected by the
1978 intervention, leading to a problem of endogenous sampling (Hausman and
Wise 1981). The set of 1974 antecedents of this population is thus not necessarily
representative of the pre-intervention population, potentially biasing estimates of
the intervention. Second, the 1996 sample does not constitute a random set of the
descendants of these 1974 antecedents, thus complicating estimates of mobility
based on a 1974 frame. We correct for both the non-representative nature of the
antecedents of the 1996 sample and the incomplete sampling of descendants of
these antecedents by devising appropriate weights. The weights are constructed
using a unique resampling procedure that is possible due to the nature of HDSS
data. Results from our optimal procedures are then compared to the results of
related procedures that can be carried out using more limited data.

The effect of the program on assets and income have been looked at by Joshi and
Schultz in several of their papers, which analyze a number of long-term effects
of the MCH/FP intervention (Joshi and Schultz 2007, Schultz 2009). Joshi and
Schultz 2007 analyze women’s income, but also look at household assets. They
find that all but non agricultural assets are significantly larger in treatment areas
than comparison areas, but that gains are generally concentrated among better ed-
ucated older women. They describe this as being consistent with physical assets
being a substitute for a decrease in children for better educated women. Asadul-
lah 2012 looks specifically at household wealth mobility using the Matlab data and
focusing on the relationship between fathers’ and sons’ wealth as well as changes
in ones own wealth between 1974 and 1996 for men who were a head of household
at both times. Asadullah finds limited intergenerational wealth mobility and sug-
gests that this might be due to limited schooling mobility. But Asadullah does not
consider the sampling bias and household formation and recombination. If there
is bias in the selection of the sample so that those selected are not representative
of the population, then the treatment effect calculated is only for that selected
group, which might experience a differential impact from the program. In addi-
tion, household recombination leads to a sample of descendants that is not rep-
resentative because the changes in household structure could be correlated with
characteristics of interest such as income in 1996, leading to a correlation with the
probability of being in the sample.

We address a variety of issues related to economic mobility including changes
in family size, the number of descendant households and consumption growth.
But we give specific attention to changes in educational investment. Education
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is an outcome of primary interest for several reasons. The idea that child edu-
cation can be importantly influenced by reductions in the cost of fertility control
is thought to be an important motivation for a public subsidy of fertility control
given possible externalities to child schooling and the consequent public subsidies
to child schooling. Indeed, there is an extensive literature testing for a tradeoff be-
tween the quantity and quality that has bearings on the relative substitutability
of these two outcomes from the perspective of parents (Rosenzweig and Wolpin
1980, Becker and Lewis 1974). Moreover, given the relatively long time frames
between fertility reduction and the realization of educational achievement this
approach does not lend itself well to the kinds of prospectively studied random-
ized interventions that are frequently used to study more short term outcomes.

This question has been examined in Matlab with 1982 and 1974 census data using
dynamic decision rules by Roy and Foster 1996. This approach focuses on short
run change by looking at the same mother at two points in time. The question has
also been examined cross-sectionally in the Matlab population based on the 1996
data (Joshi and Schultz 2007). We argue that this latter approach is not definitive
for two reasons. First, this cross-sectional approach does not allow one to account
for differences between the treatment and comparison areas that were in place
prior to the introduction of the program. By conditioning on earlier differences,
one can control at least in part for the possibility that these early differences, rather
than the treatment program itself, were responsible for any later observed differ-
ences. Second, the cross-sectional approach does not allow one to condition on
pre-intervention educational attainment and thus to look at the consequences of
the program for educational mobility.

We focus specifically on the effect of the program on education of children 6-16,
controlling for a set of characteristics of antecedant 1974 households including
predicted 1974 consumption, 1974 family size, and 1974 child’s education. We
find that those households in the bottom third of the 1974 education distribution
did not benefit from the treatment in terms of educational attainment but those at
the top two thirds did. In addition we find that the program led to a significant
decrease in family size, as might be expected, a small decrease in the number of
descendant households, and a small increase in consumption within certain strata.
Our findings underscore the importance, when conducting longitudinal analysis,
of considering household recombination and how this process influences sam-
pling.
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2 Data

The International Centre for Diarrhoeal Disease Research (ICDDR,B) in the
Matlab region of Bangladesh began to maintain a Health and Demographic Surveil-
lance System registering all births, deaths and migrations starting in 1966. There
are data available for the full period on 149 villages, which include over 200,000
people. In 1974 the ICDDR,B conducted the first comprehensive census of the re-
gion. Censuses were again conducted in 1982, 1993 and 1996. From this census
data we have information on every single household in the region including basic
demographic information and some information on assets.

Along with collecting detailed demographic data, the ICDDR,B initiated a Ma-
ternal and Child Health and Family Planning Program (MCH/FP) intervention in
1977. This intervention was implemented in 70 of the villages, and as part of it,
women of childbearing age received doorstep delivery of contraceptives and an-
tenatal care, children received in-home vaccinations delivery, and there were in-
creased services for the prevention and management of childhood diarrheal and
acute respiratory illnesses (Fauveau 1994, Phillips et al. 1982). The family plan-
ning and maternal health portion of the intervention was first rolled out in 1977.
The services were then expanded in 1982 to include vaccinating children under 5
for measles, DPT, polio and tuberculosis, as well as providing vitamin A supple-
mentation. Such services were not provided by the government to the rest of the
region until 1988.

For this intervention, contiguous villages were grouped together into treatment
and control areas, partly to control for contamination and spillover effects be-
tween treated and not treated villages. Nevertheless, it is a case-control study
where treatment and control areas were reasonably matched on observables, though
the matching was not perfect. Much of the research on Matlab using ICDDR,B
data focuses on the outcomes of this intervention.

In addition to the censuses that were collected, in 1996 a Health and Socio-economic
Survey (MHSS) was conducted in Matlab. This survey collected detailed eco-
nomic and social data on a sample of the population, which had not been done
before. The goal was to use this data in order to look at the effect of the MCH/FP
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intervention on a wide range of outcomes and over a long period (Rahman et al.
1999).

The MHSS sample was selected from the population in 1993. In 1993, there were
38,489 households split among 7,440 baris, clusters of households in close phys-
ical proximity that are usually linked in a kin network. Of those, 2,883 baris
were randomly picked to be part of the sample. Within each bari, one house-
hold was randomly selected for the detailed interview. Sampling was done at the
bari level because it provides a better representation of family networks as com-
pared to sampling households. There were 102 baris that no longer existed in
1996, and therefore the final number of baris sampled was 2,781. A second house-
hold in each bari was also interviewed, but this was not done randomly, so most
researchers conduct analyses using only the first household, and we also focus on
this primary sample.

The detailed level of the data collected by the MHSS on income, consumption,
education, health, and other outcomes has allowed researchers to examine the
long run impact of the 1978 MCH/FP program. There are dozens of papers and
dissertations that use the data to look at various outcomes (Joshi and Schultz 2013,
Field and Ambrus 2008, Maitra 2003, Barham 2012). In order to calculate the effect
of the treatment on the whole population, these papers use the sampling weights
included in the dataset. As we will describe in the following subsection, certain
aspects of the sampling procedure could bias the results depending on the ques-
tions of interest. In particular, it is not necessarily appropriate to use the weights
given in the dataset when looking at educational mobility.

3 Creating Representative Weights for 1974

As noted, the specific issues that must be addressed in these data arise from the
fact that households were picked based on the 1993 bari configurations and not
based on the pre-treatment 1974 population. Because households were picked
based on 1993 configurations, the inverse probability weights available in the
dataset make the sample representative of the 1996 population.1 But in order to

1In general households remain stable over the period 1993-1996;therefore, although the sample
was picked based on the 1993 configurations, it is nevertheless representative of the 1996 popula-
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be able to evaluate the results from an experiment, or in this case the effectiveness
of the 1978 program on different groups, one wants the antecedents of the sample
picked post intervention to be representative of the population before the inter-
vention. A potential further complication is the sampling of households in 1996
may be in part a consequence of changes in household recombination resulting
from the intervention.

The general problem is illustrated in Figure 1. The top row of the figure denotes
a set of period t households divided into two baris. The bottom row shows the
households at time t+1 with the arrows connecting the two rows showing the
movement of individuals over time from period t to period t+1 households. Sup-
pose the sampling strategy is to sample one of the two strata with probability
1/2 each and then within the strata to select one household. Then the probability
of sampling, for example, the household in the upper left corner is 1/6. These
probabilities in combination with the household descent mapping creates a set of
probabilities that each of the period t+1 households appear in the sample. These
probabilites are noted on the diagram. Now imagine that one’s sample of t+1
households consists of all the descendants from the one household picked by the
sampling scheme. Then the weights needed to create an unbiased estimate of
some t+1 characteristic are dependent not only on the sampling probability of the
particular household picked at period t but of any household that could have been
picked in period t with a link to the t+1 household. The same is true in reverse if
the t+1 sample is representative and one constructs a period t sample from the set
of antecedents of the t+1 sample.

This latter issue is exactly the one that must be addressed in the context of the
MHSS. Formally, define

• It is the set of households i at time t

• Itx is the set of households i at time t of type x

• A : It+1 ⇒ It where A(K) is the set of households in It that contain an-
tecedents of members of household K ⊂ It+1

• Jt+1x is the set of households j at time t + 1 such that A(j) ⊂ Itx

• Ntx is the number of households i at time t of type x

tion.
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• St is the sample drawn at time t

Then for some outcome cit among a population with characteristics x, if

c̄tN =
1

Ntx
∑

i∈Itx

cit (1)

and

ĉtN =
1

Ntx
∑

i∈Itx

cit
1(i ∈ A(St+1))

E(1(i ∈ A(St+1)))
(2)

îtN =
1

Ntx
∑

i∈Itx

1(i ∈ A(St+1))

E(1(i ∈ A(St+1)))
(3)

it may be shown that plim
N→∞

ĉtN
îtN
− c̄tN = 0. The ratio ĉtN

îtN
is simply the weighted av-

erage of the sampled cit weighted using as weights the inverted probabilities of
appearing in the antecedent sample.2

In short, in the Matlab context, in order for the sample of antecedent households to
be representative of the population pre-treatment, it would have been necessary to
randomly select baris from the 1974 population. Then one could, for example, pick
one household per bari, trace which households descended from that household
in 1996 and randomly pick one or more descendants per 1974 household. Instead,
by randomly selecting descendants from the 1996 population for the 1996 sample
without taking into account how many of them came from each 1974 household,
the MHSS team inadvertantly exposed the sample to the outlined sources of bias.
3 By sampling baris rather than households, the bias could be mitigated because
baris tend to be made up of households that are linked by kinship. Yet, women
are likely to join the bari of their husband upon marriage, so a 1974 household
with several daughters would have descendants in several baris. In addition, the

2Note that equation has a probability limit of one. We incorporate it in our formulation to make
the analogy to a weighted sample (in which the sum of weights is normalized to one) and because
dividing by the sample estimate leads to greater efficiency. Simply put if one’s sample happens to
be larger than its expected size then equation will also be larger than its expected size.

3One of the coauthors was on the original MHSS team and now recognizes the issues with
the way the sampling was done, but at the time, the focus was on getting a representation of kin
networks, which were assumed to be manifested in the bari structure, without considering the
endogeneity of how kin networks might spread to other baris due to the formation and recombi-
nation of households.
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decision of some descendants to split and form their own bari or to join a different
bari could also be dependent on the observable and unobservable characteristics
of the 1974 household. This dynamic would again affect the probability of a 1974
household being represented in the sample.

Of course, the extent to which the actual t sampling probabilities will differ from
those that might be calculated on the basis of the t+1 sample population will de-
pend on the extent to which period t households have multiple antecedents. To
explore this issue we first must define the rules of descent. In particular for the
purpose of this paper we define a 1974 household and a 1996 household to be
linked if they meet one of three conditions:

1. Someone in the 1996 household is also in the 1974 household (Zero Order
Link)

2. Someone in the 1996 household has lived with a member of the 1974 house-
hold at any point between 1974 and 1996 (First Order Link)

3. Someone in the 1996 household has lived with a person who lived with a
member of the 1974 household prior to living with the 1996 person (Second
Order Link)

These rules create a complex web of interrelationships. For illustrative purposes
we randomly selected one 1996 household and found its antecedents. We then
took the antecedent households and constructed each of their descendants. We
then repeated this process. The resulting matrix of households is presented in Ta-
ble 1. Each 1974 household has multiple descendant households and each 1996
household has multiple antecedent households. Indeed looking across the 23,913
households in the 1974 census that are linked to at least one 1993 household, we
find that households have on average 3.62 (sd 3.04) descendant households liv-
ing in the Matlab HDSS area but only .254 (sd. .529) descendant households that
were part of the sample. Conversely the 34,365 households in the 1996 census
have on average 2.35 (s.d. 1.66) descendants. It seems likely given the variation in
the number of descendant households that the actual sampling probabilities for
different 1974 households will be quite different from the sampling probabilities
based on the 1996 sample.

The pattern of links is also relevant to the assessment of the intervention. Above
we noted that estimates of the 1974 status could be conditioned on characteristics
at time t, inclusive of whether a household lives in an area that would eventually
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receive the treatment. However, the 1996 outcomes for a particular household
living in a treated area in 1974, given recombination, may be composed in part
of indiiduals who were not in the treatment area. While this pattern would in a
sense be of the flavor of "intent to treat", the effects of a treatment might in gen-
eral depend on the treatment status of potential household partners. For exam-
ple, Arunachalam and Naidu 2008 showed that dowries rose differentially in the
treatment area. These higher dowries may have arisen because households in the
study area preferred to place their daughters of marriageable age in the treatment
area because of the better MCH services there. In such circumstances one might
see a wealth increase in the treatment area, but the extent of this would depend on
the fraction of treated households among possible marital partners. Fortunately,
however, it seems that the process of descent in Matlab was sufficiently local that
the vast majority of descendants living in a particular 1996 household had the
same treatment status in 1974. Figure 2 presents the distribution of the average
1974 status of the individuals living in a particular 1996 household. As is evident
a very high share of the households are mostly treatment or mostly comparison.
Thus, it is reasonable to see the treatment effect as the effect of being in the treat-
ment area when potential descendants have the same status.

The basic method used to resolve the problem of different sampling probabilities
is to create a representative sample of 1974 households linked to the 1996 sample
and assign weights based on the probability that a particular 1974 household is
represented in the sample given the actual sampling rules. To find these probabil-
ities, 1974 households are linked to all 1993 households. This is possible because
there is data on the full population of 1974 and 1993 households, and the Demo-
graphic Surveillance System uses a unique ID that allows individuals to be traced
at every point in time between 1974 and 1993. We thus know who they were living
with at each point in time.

In this context, an antecedent is considered a 1974 household and a descendant
is a 1996 household that is sampled based on the 1993 census. These antecedent-
descendant links can be used to calculate the probability that a particular 1974
antecedent household has a descendant that appears in the 1996 sample. In the
case of a simple random sample this calculation is straightforward. The proba-
bility that any particular 1974 household is picked is just (1− (1− p)n) if a 1974
household has n descendant households and the probability that any particular
descendant household is picked is p. In the present case, however, because of the
bari level sampling, the probability that particular households are picked is neg-
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atively correlated within baris with the extent of this correlation depending on
bari size. Due to this complication in sampling, we calculate the probabilities by
replicating the procedure implemented in 1996 to pick the sample based on the
1993 census. Note that this procedure would work for any arbitrarily complex
sampling procedure and descent definition.

To elaborate, we took the 1993 population and randomly picked 2,883 baris from
the total 7,440 baris, and then picked one household at random from each bari.
This creates a sample of 2,883 households that consist of alternate MHSS 1996
samples. We did this 100,000 times. The antecedent-descendant links were used
to establish which 1974 households were represented by at least one descendant
household in each sample. The probability of a 1974 household being represented
in an arbitrary 1996 sample, including the particular one observed, is the num-
ber of samples in which the household has at least one descendant out of 100,000
possible samples. We created probability weights by taking the inverse of the cal-
culated probability and assigning that as the weight to each 1974 household.4

Having assigned each 1974 household a weight, we created a sample of 1974
households that is linked to the actual 1996 sample by taking all of the antecedents
of the 1996 sample and grouping them together into what we are calling the "1974
sample." This consists of 5,319 households that all have at least one descendant in
the actual 1996 sample. Using the 1974 probability weights calculated earlier, we
then can get a representation of the full 1974 population.

The top panel of Table 2 shows the mean value for a number of variables in 1974
for the full population as well as for the sample both weighted and unweighted.
In the bottom panel we present p-values for a comparison between the population
means and the differently weighted samples. For all the variables, the weighted
sample is representative of the full population. The unweighted sample, on the
other hand, has significantly different means for every variable. This implies that
as expected, the 1996 sample is not linked to a representative set of 1974 house-
holds, and instead certain types of households were more likely to be represented
in the 1996 sample. The unweighted sample has a higher average family size,

4There were 3,825 households in 1974 that did not have any descendants in 1993. In this current
paper we only focus on the 1974 households which have a descendant in 1993 because we cannot
follow up those 3,825 households, although it is possible to examine and compare their character-
istics with those of the households that do have descendants in order to determine whether their
omission causes a bias.
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which seems intuitive because a household with more family members is likely
to have more descendants. On average, the households also have more cows and
more rooms, both indicative of higher wealth. It seems that the 1996 sample is
linked to a distinct set of 1974 households, that among other things are wealthier
on average than the population, but using the weights calculated, we are able to
make the sample representative of the 1974 population.

A researcher looking at the effect of the treatment on certain outcomes can use the
linked sample of 1974 antecedent households in order to see what happens to the
descendants of treated versus not treated households. By applying the weights,
it is possible to obtain results that are representative for the full 1974 population.
This is especially helpful when interested in heterogeneous effects of the treat-
ment.

Another common method for calculating weights to correct for nonrandom sam-
pling is to create a propensity score weight. This consists of using observable
characteristics to calculate the probability that someone is picked to be in the sam-
ple.

We calculate propensity score weights for the 1974 population and compare them
to the weights assigned using the sampling method. In order to do this, we take
our sample of 1974 households linked to descendants in the 1996 sample and as-
sign them a value of one for being linked, while all other 1974 households get
a value of zero. This variable is the dependent variable in a logit regression.
The controls used are observable characteristics of the 1974 households includ-
ing highest education of anyone in the household, number of cows, number of
boats, education of the head of household, the age of the head of household, the
size of the family and the number of items owned by the family.5 Table 3 shows
the results of the regression used to calculate the propensity score. The coeffi-
cients from the regression are used to calculate predicted values for each 1974
household, which are equivalent to the probability that a certain 1974 household

5Information was collected on ownership of a lep, harrican, watch, radio and receipt of re-
mittance. We also conducted the propensity score analysis with all of these variables as well as
including the number of descendants. In a regular propensity score analysis this variable would
not be available, but given that we have a full census in 1993, we have it and tried using it to
see if the accuracy of the propensity score weights increased. There is no significant difference
between the weights using the number of descendants variable and those not using it, so we only
show the results for the propensity score weighting procedure where we do not include number
of descendants.
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is likely to be linked to the 1996 sample based on their observable characteristics.
The weight is the inverse of this predicted probability.

The last column of Table 2 shows the results of the propensity score weighting,
which can be compared to the sample weights, the scenario with no weights
and the actual population means. Both our sampling weights and the propen-
sity weights come very close to approximating the true population means. For
most of the variables, the propensity weights are not significantly different from
the population means, but they do differ significantly in the case of family size.
Although the propensity weights are fairly representative of the full population,
the difference in family size is worrisome because it could mean there are other
unobservables that are also significantly different from the population averages.
Therefore, our weights yield the most representative sample weighting structure.

A visual perspective on the effects of different weighting schemes is provided
by Figure 3, which compares the cumulative distributions for the 1974 family size
for the different weighting schemes. In addition to the basic measures presented
in Table 2 (actual population, population weighted, unweighted and propensity
score weighted) we add a measure of the estimate one would obtain if one used
only the sampling weights from the actual 1996 sample to reweight the 1974 sam-
ple (sample weighted). This turns out to be a straightfoward calculation because
of the fact that in the actual sample one household per bari is selected and sam-
pling is independent across baris. In particular, based on the actual sample, the
probability a particular antecedent household is picked is (1−∏j(1− pj)) where
j indexes all the 1996 households in the particular sample that are descendants of
a particular 1974 household.6

The results are quite striking. As suggested by Table 2 the distribution for the
actual population is very closely approximated by the distribution based on the
weights simulated by redrawing the sample. The propensity scores does not do as
well but is again quite close. On the other hand the sample weighted estimates co-
incide very closely with what one gets based on the unweighted data and both are
quite far from the actual population. This result can be attributed to the facts that

6Note that if each 1974 household were linked to only one household in the sample, then the
probability assigned in this way would just be the probability that the linked 1996 household is in
the sample. These weights do not account for the fact that a 1974 household could theoretically
enter the sample through any of its descendants, but only look at the particular descendants that
it did enter the sample through.
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one household per bari was picked in the 1996 sample and that many of the de-
scendants of a particular 1974 household tend to live in the same bari. As a result
the probabilities calculated from any particular sample gives very little sense of
the likelihood of a particular 1974 household being picked across multiple draws
of the sample. Specifically consider a household with five descendant households
in one five household bari versus a household with 1 descendant in a five house-
hold bari. If that bari is sampled 100% of the time then in the former case the 1974
household will be picked 100% of the time but in the latter case it will only be
picked 20% of the time. But since any given 1996 household is picked 20% of the
time, one will assign the same probability of being picked if one bases, as is typi-
cally done, this probability on the probability that the actual sampled household
was picked in a particular sample.

4 Correcting for Bias in Descendant Selection

The second problem with using the data without corrective weights is also
related to the bari structure of the sample. Because baris were the unit that was
randomly sampled, and only one household was picked from each bari, if two de-
scendants from the same 1974 household were in the same bari, they would never
both be picked to be in the sample. If, on the other hand, two descendants from
the same 1974 household were in different baris, then it is possible that both could
be picked for the sample, and even more so if they are in small or single house-
hold baris. We already mentioned how this could affect the representativeness of
the 1974 population if the characteristics of 1974 households are correlated with
the decision of their descendants to stay in the same bari or split off. In addition,
if the decision to stay in the same bari as other descendants, split off into a new
bari or join a different bari is correlated with the characteristics of the 1996 house-
holds, then it is not possible to accurately estimate average descendant outcomes,
distorting the results of intergenerational analyses. This is especially a problem
in evaluating the effect of the treatment because the treatment directly affects fer-
tility and the number of descendants, which could lead to different patterns of
household recombination that could affect the probability of being selected into
the sample.

To illustrate the problem, suppose a 1974 household has three descendants and
we are interested in the effect of the intervention on some outcome of descen-
dants from this household. We need an accurate estimate of the average outcome
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for the descendants of the household, but in most cases all three descendants will
not be in the sample. Now suppose that certain attributes determine whether
households remain in the same bari or split off. For example, it is possible that
the poorest descendant household of a family might choose to split off and look
for better opportunities in a different location, while the two richer households
remain in the same bari because they are already well off and would not want to
leave their land, assets, network, etc. If this behavior were systematic in the pop-
ulation, it would mean that two high-outcome descendants, for example, would
never both be in the sample, instead there would tend to be a richer and a poorer
descendant. Thus, if the average outcome of descendants for particular house-
holds is calculated by taking the arithmetic average of the descendants that show
up in the sample, then the sample will consistently underestimate the true aver-
age outcome of descendants. If the treatment led to an increase in the outcome of
descendants, the treatment area would be impacted by this underestimate more
than the non treatment area, leading to an underestimate of the program effect.

If household recombination is random, so that the probability of getting any com-
bination of households with certain attributes is equal then there should be no
bias, and the arithmetic average will be the average effect on descendants. This
seems unlikely though, given that certain attributes such as wealth have been
shown to play some role in household recombination.

To understand the problem more clearly, imagine the following scenario. Sup-
pose there are two descendants from a 1974 household with 1996 outcomes c1 and
c2. Theoretically we could see just c1, just c2 or both in the sample. In this exam-
ple, household c1 is never picked alone and there is a .5 chance of picking both c1
and c2 and a .5 chance of picking just c2.7 If we were to take the average of the
households if they show up together and take the value of c2 when we only have
c2, then we get the following expected outcome:

7This scenario might seem unlikely, but its purpose is to illustrate the more complicated case
of several descendants where some live in the same bari and therefore the probability of picking
two descendants living in the same bari is 0. Doing the example with more descendants makes
the calculations messier and detracts from the point of simply illustrating why it is important to
consider how descendants are weighted.
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In expectation, we are not getting the average for the descendants. If the proba-
bilities were random with respect to the outcome of the households, then with a
large enough sample, this inconsistency would average out. The problem arises if
the probability is correlated with attributes of the 1996 households. For example,
if the data consisted of two descendants for every antecedent and the probability
of being picked is correlated with outcome so that c2 is always the lower-outcome
antecedent and c1 is always the higher-outcome one, this would result in a lower
estimate of the average outcome for descendants.

There are various ways to tackle this problem. In this case we could take c2 if
we only have c2 and only take c1 if we pick both c1 and c2, which would give us
an expectation equal to the average. Yet in doing that, information on descendant
c2 would be thrown out if both descendants are in the sample. In addition, this is
a solution for this particular set of probabilities. There are also more complicated
probabilities in the data where there is a probability of seeing all three combina-
tions.

Formally, we propose a method based on extension of the method used above
to develop the 1974 measures. We then show that this method can be derived
based on constrained minimization that is robust with respect to variation in the
relationship between sampling probabilities and outcomes. We also explore the
properties with respect to a simpler but less robust procedure. In particular, we
wish to estimate

∆c̄tN =
1

Ntx
∑

i∈Itx

1
|A−1(i)| ∑

j∈A−1(i)

(cjt+1 − cit)
8 (5)

As for Equation 2, we can construct an estimate of this quantity using only the
sampled data and appropriate weights:

∆ĉtN =
1

Ntx
∑

i∈Itx

1
|A−1(i)| ∑

j∈A−1(i)

(cjt+1 − cit)
1(j ∈ St+1)

E(1(j ∈ St+1))
(6)

8|A−1(i)| denotes the size of the set of households descending from i.
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It again follows that
plim
N→∞

∆ĉtN
îtN
− ∆c̄tN = 0.

Note that (6) does not depend on the 1974 sampling probability. However, by
dividing by this probability just after the first sum and multiplying by this proba-
bility after the second sum it can be seen that the appropriate estimates of average
growth by initial characteristics is obtained by summing across descendant house-
holds in the sample that come from each 1974 household the scaled change in the
outcome

(cjt+1 − cit)
E(1(i ∈ A(j)))

|A−1(i)|E(1(j ∈ St+1))
(7)

and then combining the different 1974 households using weights derived from the
resampled 1974 probabilities.

We now show how this estimate can be derived from a constrained minimization.
The first criteria we want to meet is that any weights should lead to an outcome
where the expected value for descendants’ outcome is equal to the actual mean of
the outcomes. The way this would look in the case of two descendants with out-
comes c1 and c2 and conditional on observing at least one 1996 household with the
probability pa of picking just household 1 in the sample, probability pb of picking
both household 1 and household 2, and probability pc of picking only household
2 in the sample is as follows:

E(c) = pawac1 + pb(wb1c1 + wb2c2) + pcwcc2 =
1
2

c1 +
1
2

c2 = c̄ (8)

where wa, wb1, wb2, and wc are the weights applied to outcome 1 if it is only ob-
served, outcomes 1 and 2 if both are observed, and outcome 2 if only 2 is observed,
respectively.

There are many different possible ways of weighting the observations in order
to get an expected value for descendants equal to the average. Some of these
weights might lead to a large variance in the estimates, depending on the proba-
bilities. Therefore, in addition to getting the correct mean income in expectation
using our weights, we also want to minimize the variance from different probabil-
ities of descendant combinations being picked for different antecedents. We want
to minimize the following:
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Z = [var(pa)(w2
ac2

1) + var(pb)(wb1c1 + wb2c2)
2 (9)

+var(pc)(w2
c c2

2)− 2cov(pa, pb)(wac1)(wb1c1 + wb2c2)

−2cov(pa, pc)(wac1)(wcc2)− 2cov(pb, pc)(wb1c1 + wb2c2)(wcc2)]

Both equation 8 and equation 9 depend on the actual mean and variance of the
outcome values, but we do not have all of the outcome values. Therefore, the
weights must work more generally and not be sensitive to the mean and variance
of the outcomes. Again, this could be achieved in different ways. A sufficient
condition for equation 8 to hold is that it holds for all outcomes, which can be
ensured by taking derivatives with respect to the income values c1 and c2. In our
simple two descendant example, this yields the following two equations, both of
which need to hold in order for our first condition to be met:

pawa + pbwb1 =
1
2

(10)

pbwb2 + pcwc =
1
2

We apply a similar logic to our second condition and take second derivatives with
respect to c1 and c2 in order to come up with the following objective function:

min
wa,wb1,wb2,wc

d2Z
dc2

1
+

d2Z
dc2

2
(11)

This ensures that the variation in the fraction of households in each sample has
a small impact on the computed average income for descendants because the
weights are applicable and minimize variance no matter what the actual incomes
are. We calculate the weights by minimizing equation 11 conditional on equa-
tions 10. There are other, more complicated, criterion functions that could have
been used, but we believe that this simple one still allows us to find weights that
help to mitigate the potential bias arising from the bari structure. We will show
how our weights using this procedure compare to not using weights and that in-
deed they can help to address the potential bias.

Solving the minimization problem, we find that the weights that minimize the
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variance of the estimates and in expectation yield the true average outcome are
based on the probability of sampling a 1996 household. The combination in which
a household appears (whether a descendant appears alone in the sample or if there
are several other descendants in the sample from the same antecedent) does not
affect the weight. This is surprising because as shown in our example in equa-
tion 4, the combination of descendants in a bari affects the expected value we get.
Yet in trying to minimize the variance in a manner general enough to apply to
all income values, the combination in which the descendants appear is no longer
important. Nevertheless, the weight not only depends on the probability of being
picked in 1996, but also on the total number of descendants. With the number of
descendants in the denominator of the weight, those households who come from
an antecedent with many descendants receive a smaller weight. Finally, the prob-
ability of the 1974 household i being represented in 1996 also factors in to account
for the possibility that there is no descendant in the sample at all. Therefore, for
our two descendant example the weights are:

wa = wb1 =
Pr(i)

2 ∗ Pr(1)
= w1

wc = wb2 =
Pr(i)

2 ∗ Pr(2)
= w2

where Pr(i) is the probability of the antecedent i of the household being repre-
sented by a descendant in the 1996 sample. We can generalize this result to assign
a weight to every descendant j of a 1974 household i with M descendants:

wj =
Pr(i)

M ∗ Pr(j)

This expression is exactly the formula derived above (Equation 6).

Without the outcomes of descendants to help assign the weights directly based on
our original two specifications, it was necessary for us to come up with weights
that are generalizable no matter what the incomes might be. Given that there are
a number of ways we could have devised the weights, it is important to show that
using the weights improves estimates. To do this, we have conducted a simula-
tion to demonstrate how the weights compare to not using weights.

The simulation is a simplified case of our data in order to focus on the effect of
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the weights when the probability of being picked is correlated with the outcome,
and how the performance of the weights depends on the extent of the correlation.
We do not incorporate the sampling structure but instead look at how our weights
perform in the case where we have 1000 antecedents and each has at least one de-
scendant chosen for the sample. Therefore, here our Pr(i) is equal to 1 because
each antecedent has probability 1 of having a descendant in the sample. 9

In the simulated data, each antecedent has exactly two descendants and each of
their descendants has randomly been assigned a log outcome from a normal dis-
tribution with mean 8.58 and variance 1.15.10 This mean and variance were chosen
as they were the mean and variance of one outcome in the data, log consumption
for the 1996 sample.

We assigned probabilities for the following three events: household 1 is selected,
household 2 is selected, both household 1 and household 2 are selected. The
probabilities of being chosen are based on the random outcomes using a logis-
tic function in order to ensure a correlation between outcomes and probabilities.
We varied the size of that correlation by multiplying outcomes in the logistic ex-
pression times a coefficient δ, which is manipulated. The same δ is used for all

9Expanding this simulation to include the sampling structure that determines the probability
that an antecedent household is selected does not change the results of how our weighting scheme
compares to not using weights. This is because if we used the original sampling structure, we
would then need to multiply times the 1974 weight of each antecedent in order to get the results for
the population. But due to the fact that we had to create the 1974 weight based on the probability
that an antecedent’s descendant is in the 1996 sample, this is the same as Pr(i), and so multiplying
times the inverse of this, which is our 1974 weight, we have:

W f inal(j) = w1974 ∗
Pr(i)

M ∗ Pr(j)
(12)

w1974 =
1

Pr(i)
=⇒

W f inal(j) =
1

Pr(i)
∗ Pr(i)

M ∗ Pr(j)
=

1
M ∗ Pr(j)

Therefore, the final weight that is used is the same as our simplified weight in the simulation, so it
is not necessary to complicate things by including the sampling structure.

10Although we only do the simulation with two descendants per antecedent household, the
results are generalizable to more descendants and we have done some simulations including more
than two descendants, but do not include the results here. We have also done simulations where
we change the variance of the income variable, and this has also not affected the general result, so
we omit those results.
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three probabilities. The three probabilities are:

Pr(1) =
eδ∗c1

eδ∗c1 + eδ∗c2 + eδ∗c̄ (13)

Pr(2) =
eδ∗c2

eδ∗c1 + eδ∗c2 + eδ∗c̄

Pr(1&2) =
eδ∗c̄

eδ∗c1 + eδ∗c2 + eδ∗c̄

where c̄ is the arithmetic mean of the two outcomes. The coefficient delta varies
from 0 to 1 in .01 intervals. A coefficient of 0 implies that each event has a one
third probability of occurring irrespective of outcome, so there is zero correlation
between outcomes and probability. As the coefficient grows, the dependence be-
tween outcome and probability increases up to when the coefficient becomes 1,
which gives the highest dependence between outcome and probability.

When the correlation is positive, if one household has a higher outcome than an-
other, it will always have a higher probability of being selected alone, the prob-
ability of selecting both households will be next highest, and the probability of
selecting the low-outcome household alone will be smallest. As the coefficient
grows, this ordering of probabilities does not change, but the differences in prob-
abilities become starker.

A sample of descendants is chosen based on the probabilities. One of the events
is randomly chosen based on the probability of each event occurring.11Depending
on the combination of descendants chosen for each antecedent, the weighted mean
income is calculated based on the weights (wj =

1
2∗Pr(j) ). The mean outcome is also

calculated with no weights, which entails taking the arithmetic mean if both de-
scendants are in the sample, and taking the plain value of the descendant chosen
if only one is in the sample. These two means are compared to the actual mean
outcome for each descendant. Actual mean outcome is subtracted from the simu-
lated mean outcome with and without weights and the absolute value is averaged
to find the mean difference between actual and sample descendant outcome for
the 1000 antecedents.

11This is done by assigning each event a piece of the unit interval equal to its probability, and
then randomly choosing a number on the unit interval which determines the event based on which
piece the number falls into.
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In order to make sure the simulation is robust to outliers in the events picked,
a set of events was chosen 500 times. The average of the absolute mean difference
and squared error was calculated for each sample. This analysis was done with
1000 samples having different income values (and thus probabilities). This proce-
dure was done for each δ from 0 to 1 in .01 intervals.

Figure 4 shows the sample average difference between the outcome calculated
with our weights and the actual outcome, as well as the sample average difference
between the outcome calculated without weights and the actual outcome.This is
graphed for various deltas which represent how dependent the probabilities are
on outcome. A delta of 0 signifies that the probability is not dependent on out-
come at all, and a delta of 1 signifies a high degree of dependence between out-
comes and the probabilities. The figure demonstrates higher variability in the
average error when no weights are used versus when weights are used. Although
the weights do not always perform better than not using weights, on average
they are consistent in the level of error no matter what the correlation between
outcome and probability, and this level is relatively low. The level of error ranges
from almost none to almost .35 when no weights are used, while the error with
the weights remains consistently under or close to .1.

If there is no correlation between outcome and the probability of certain combina-
tions of households being picked, it would be better to use no weights. In that sce-
nario, the mean descendant outcomes calculated using no weights are very close
to the actual mean outcomes for the sample. When delta goes above .17, then the
weights become better to use. This switch occurs for a relatively small delta, so
if there is reason to believe a link exists between outcome and the probability of
being chosen in the sample, then it is better to use the weights as compared to no
weights.

The extent of the correlation can be tested using the census conducted in Matlab in
1996 that collected data from most of the households that were present in 1996. 12.
This survey has very limited data, but it does include several variables on house-
hold assets and household infrastructure which can be used to create an index as

12The MHSS sample was drawn on the 1993 census. However, we also use data from the 1996
census, because it contains various asset measures and household structure. It does not, however,
included education
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a proxy for household income. 13 The index is based on the importance of these
assets and infrastructure for predicting income in the MHSS. Although the MHSS
does not have an income variable, it provides data on consumption and the value
of assets, which are regressed on the assets and infrastructure variables in 1996
that are analogous to the 1996 SES ones.14 The coefficients from these regressions
give two sets of weights for how important different assets are in predicting the
income of a household. These weights are applied to the asset and infrastructure
variables in the 1996 SES survey and create an index based on consumption and
an index based on value of assets. These measures of consumption and wealth,
used as proxies for income, can be used to calculate the correlation between in-
come and the probability of being chosen for the sample. The probability values
come from the simulations done for the first set of weights. The log probability
of being picked to be in the MHSS is regressed on the log income index to get an
elasticity. Using the consumption based index gives an elasticity of 0.339 signifi-
cant at the .01 level, and using the assets value based index gives an elasticity of
0.402 significant at the .01 level as well.15

To put this in the context of where these coefficients fall in terms of δ, similar
regressions were run using the simulated data. Regressions of the probability of
being picked on the simulated income were run for each δ between 0 and 1 at .01
intervals. Figure 5 plots how the coefficient grows linearly as δ increases. The
horizontal dashed and dotted lines plot the coefficient values based on the regres-
sions using the consumption index and the asset index respectively. The vertical
dash and dot line marks the δ at which the no weight and the weight lines crossed
in Figure 4. The coefficient from the consumption regression crosses a little below
where it becomes better to use the weights, while the coefficient from the asset
regression crosses above where it becomes better to use the weights. This makes
it difficult to make a definitive statement on whether it is better to use the weights.

13The variables used for the index are whether a household has a cow, boat, clock, or radio;
whether it gets its drinking water from a tubewell; and whether the roof is made of tin.

14The assets used to compute the value of assets are homestead land, ornaments (gold, silver)
savings in bank, television, radio, clock, electric fan, cycle, and furniture.

15These are the values from running a regression using all of the descendant households of
the 1974 households that are present in 1996 and that have data in the SES in 1996. Given that
there are 2,599 households in 1993 that are not present in 1996 (6 percent of households present
in 1993), such data are not available on the full set of descendants for some 1974 households. The
regressions were restricted to 1974 households for whom there was data on every one of their
descendant households in 1996, and the results were very similar (.339 for consumption and .401
for assets value, both significant at the .01 level).
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Nevertheless, due to the use of an index to proxy for consumption and an index to
proxy for the value of assets, there is a possibility of measurement error. Testing
this using the actual consumption and value of assets in the 1996 MHSS and the
indexes created, there is evidence of classical measurement error. Assuming this is
true of the full population data, it would imply our coefficients are biased down-
ward.16 The assets coefficient is already at a point that would imply that using
the weights is better, and if the coefficients are biased downward, then it is likely
the consumption coefficient would also be above the point marking indifference
between using and not using weights. Therefore, in the case of the Matlab data, it
makes sense to use the weights devised when conducting aggregate analyses.

Up to now, the discussion has focused on the performance of the weights on av-
erage for the sample. Except in the cases where there is very little correlation
between income and the probability of being selected, the weights give a good
approximation of the mean income of descendants on average for the sample. If
we are interested in how they perform for individual households though, the av-
erage squared error is much bigger when using the weights as compared to not
using weights. This is because as the sample gets bigger, the average income with
the weights will be close to the expectation (in accordance with the law of large
numbers), which due to the construction of the weights should be equal to the
actual mean income. So with a sample of 1000, this holds true. But when looking
at each individual antecedent and how the income calculated with the weights
compares to the actual income, the squared difference is much bigger because the
weights can cause some outliers. This is because chance means that sometimes
even an event with a small probability will be picked, but that means it will have
an extremely large and distorting weight.

Figure 6 shows how the weights compare to using no weights for individual an-
tecedent households. The average squared error for an antecedent when not using
weights is around 0.4, while the average squared error per antecedent starts out a
little less than 9 and grows to almost 20 when using the weights. This is because,
especially as the probabilities become more dependent on the income draws, there
are more likely to be outliers with a very small or very large probability, which
means a very large or small weight. Using such a large or small weight will give
a more skewed average income than if no weight is applied. Nevertheless, even
though for individual antecedents there is higher variability in the mean income
calculated, looking at the whole sample, the very small incomes (due to very small

16Evidence of classical measurement error can be supplied by the authors upon request.
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weights) will be balanced by the antecedents that get very large incomes due to
large weights, and in this way the average income for the sample will approach
the actual average income.

What this means is that it is important for a researcher to think about the type
of analysis he or she is running in order to determine whether using the weights
is appropriate. In the case where one is interested in average effects, such as run-
ning regressions, using the weights would lead to more accurate results (if there is
a link between the probabilities of being picked and the variable of interest). If, in-
stead, one is interested in the effects on certain quintiles of the population, which
would involve using the average income to break people up into those quintiles,
then the weights would distort the data. Therefore, it is important to be aware
of the goal of any analysis and how using these weights might affect it in order
to make sure that the weights are used correctly and are helping to improve the
accuracy of the results rather than leading to additional bias or distortions17.

5 Census Data

Before proceeding to the weighted data we take advantage of the population
level data, inclusive of the 1996 census, to characterize overall economic and de-
mographic mobility and to provide a benchmark that will serve to evaluate the
effectivness of the different weighting schemes. The 1996 census data contains ba-
sic characteristics of households including the demographic structure and some
household asset information but crucially, does not obtain information on educa-
tion, thus necessitating the use of the sample weights to look at economic mobility.

We start by constructing an indicator that permits us to aggregate educational
attainment across ages within households and to compare changes over time.
Making use of the education data we determine the mean and standard deviation
of completed schooling for children aged 6-16 in the MHSS using the household
cross-sectional weights. We then substract from each individuals education, both
in the 1974 and 1996 data, the mean schooling and divide by the standard devia-
tion of schooling from 1996 calculated by age to create an educational z-score. We

17Although in the empirical section we break up the 1974 data into thirds based on income, we
use the full population and not the weights to do this. We only use the weights in running the
regressions
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then aggregate at the household level and year to obtain, in effect, a household
level z-score of child education that reflects the relative intensity of child educa-
tion of each household. In addition to the education data we have the consump-
tion index constructed using the sample data that was described in the previous
section and measures of the family size in 1974 and 1996 census. For purpose of
the regression analysis we divide 1974 household z-scores, the 1974 family size,
and the income index into three categories in order to condition on possible pre-
treatment differences in characteristics to look at possible heterogeneity in differ-
ent outcomes by treatment status. We use the middle category in each case as the
reference category.

Plots of the cumulative distribution of the educational index by treatment and
comparison and year are presented in Figure 7. The 1974 data are based on the
census and the 1996 data are based on cross-sectional sampling weights from the
MHSS. Not surpisingly educational intensity in 1974 was about one standard de-
viation (relative to the 1996 base) less than it was in 1996. We also see differentials
in education between treatment and comparison both before and after the pro-
gram, though the differences appear to be somewhat larger in 1996. This result
is important because it suggests that there were preexisting differences between
treatment and comparison area in education in 1974 that should lead one to ques-
tion the validity of inference about the effects of the treatment program on ed-
ucational differences in 1996 without controlling for preexisting differences. As
noted above, this is one important reason for looking at household education in
1996 conditional on the education of 1974 antecedent households. 18

Figure 8 provides a lowess plot of the average antecedent-descendant change in
family size by household education z-score and treatment status. Overall fam-
ily sizes dropped by 1-2 persons per household between 1974 and 1996 and this
drop was lower among the lower educational intensity households in 1974 than
among the higher educational intensity households. There was also a uniform
drop by educational intensity when comparing treatment and comparison house-
holds. Consistent with the notion that the family planning program lead to rapid
increase in contraceptive use and decline in fertility, the treatment households

18These differences were noted in Roy and Foster 1996 and are attributable to the presence of the
Matlab regional capital being in the southern part of the treatment area. That paper shows there
were not preexisting differences onces this area was excluded. If one were not directly interested
in household educational mobility then it may be possible to address the issue by conditioning,
for example, on educational differences at the level of the village
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declined by about half a person more per houseohlds than did the comparison
households. The uniformity is striking, evidently the intervention was quite ubiq-
uitous in its effect not being differentially adopted by households with higher ed-
ucation. Indeed a regression analysis reported in Table 4 confirms this impression
from a statistical perspective. On average the treatment program lead to a signifi-
cant .57 decline in family size and none of the interaction terms between treatment
and baseline status are different from zero individually or collectively. We also see
from the baseline characteristics evidence of convergence in family size–large fam-
ilies lost on average four members and small families increased in size by about 2.
Family sizes decline the most among higher education households but there are
no significant differences in family size by baseine consumption per capita.19

Of course, family sizes may have also been affected by changes in household divi-
sion. If, for example, the treatment program had lead to lower levels of household
division because, say of lower crowding, then one would expect the results in
Figure 8 to underestimate the effects of fertility on family size. This seems not
to be the case, however. Figure 9 presents the number of descendant households
per antecedent household by educational intensity and treatment status. There
does seem to be a relationship between educational intensity and household di-
vision, with the highest number of descendant households among households
with an educational intensity roughly one standard deviation below the mean in
1996 showing the highest average number of descendants–close to 4. However,
there is only a small difference in the number of descendant households between
treatment and comparision areea. Again Table 4 provides statistical evidence on
this point. Net of other factors, higher education households had fewer descen-
dant households, larger families had more descendant households, and wealthier
households had fewer. But the overall treatment effect is not statistically signifi-
cant (column 5) and the only interaction effect that is statistically significant is for
lower consumption households, which appear to have more descendant house-
holds in the treatment area.

Figure 10 provides a similar perspective with respect to change in consumption
per capita as measured by the respective indices. Overall there seems only a small
difference in consumption growth between treatment and comparison households

19Although Figure 8 suggests a U shaped relationship between household size and education,
there are very few households with a Z-score between 1 and 2, therefore the highest education
group in 1974 encompasses the households with the highest decrease in education that have a
Z-score between .5 and 1.
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given educational intensity in 1974. This result suggests that the evident reduc-
tions in family size by 1996 have not lead to significant increases in the per capita
availability of certain assets. Of course, this result should be interpreted with
some caution because the consumption index for 1974 is based on the observed
relationship between consumption per capita and assets and family size in 1996.
Suppose the true coefficient on the coefficient on family size fell from 1974 to 1996
. Then the estimated difference between 1996 and 1974 will be negatively corre-
lated with family size in 1974. If family size is correlated with educational invest-
ment this could affect the observed relationship between estimated consumption
growth and educational investment by treatment status. One partial fix would
then be to condition on 1974 family size as well as 1974 educational investment.
The regression in Table 4 which controls for each of the initial variables does in-
deed give a different picture. Once one conditions on initial consumption and
initial family size as well as educational investment one sees small (1.7%) differen-
tial consumption growth in the treatment area households. Again, this difference
seems, like family size, to be fairly ubiquitous with none of the individual inter-
action coefficients in column (5) being significant at greater than the 10% level.
In terms of the level effects we see greater consumption growth in the higher
and lower education households, in the larger families in 1974, and among those
households with lower baseline consumption.

6 Household Education Using the Sample Weights

Before proceeding to the analysis of educational outcomes, which requires the
use of sampling weights, we consider the application of our different weighting
schemes to family size change which has the advantage that we can compare dif-
ferent weighting schemes to those at the population level. We do this using the
approach from Table 4 but exclude the interaction terms as the family size changes
seemed to be similar across the different strata. The results appear in Table 5. The
first column replicates column (2) of Table 4. The second column implements our
preferred scheme. A combination of 1974 and 1996 probabilities and the total
number of descendant households are use to average results across descendant
households and then these are aggregated using the 1974 resampled weights. The
third column is analogous to our propensity score approach and uses the pre-
dicted number of descendant households based on a regession that includes only
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the 1974 asset variables. The basic idea is to find an approach that would be ef-
fective in the presence of sampled data but without full information on the actual
number of descendant households for each antecedent. The fourth column con-
structs the simple within sample average of education of the descendants but then
weights using the 1974 sample weights. The fifth column constructs a weighted
mean among the sampled descendants using the 1996 cross-sectional weights and
then weights antecedents using the 1974 sample weights. The sixth column is
the same as the fifth except that it does not adjust using the resampled weights.
Finally the seventh column works with the unweighted data. Estmates are clus-
tered using the 1996 household to reflect the fact that each 1996 household, once
sampled, can contribute multiple antecedents and thus contributes multiple ob-
servations.

As is evident from the table, the formal weight procedure matches quite closely
the results from the full population with a treatment coefficient of -.567 on treat-
ment versus -.589 in the population. The standard error is about three times larger
reflecting the much smaller size of the sample. The predicted sample is in the same
ballpark but smaller and less significant. Evidently there is significant loss of in-
formation when using the predicted number of descendants rather than the actual
number. The other measures provide a somewhat mixed bag. The combination of
1974 and 1996 weights gives the closest estimate to -.589 among these remaining
measures. The only difference with our preferred estimate is that it uses averages
over sampled descendants rather than the actual number of descendants. The
similarity is perhaps not surpising given the simulation results above. Recall that
the correlation between the consumption index and the weighting probabilities in
the data is right at the crossing point in 4. Two of the estimated treatment effects
are too large in absolute value: the simple 1974 weights and no weights. Both
of these approaches ignore the differences in 1996 sampling probabilities that are
attributable to bari size. Thus the gap seems to be attributable to differences in
bari size that may reflect differences in household division that were higher for
high consumption households in the tratment area as illustated in Table 4. On the
other hand, the 1996 weights alone seem to result in the an underestimate of the
treatment effect.

We now turn to the analysis of educational mobility. Figure 11 presents the 1996
household average child educational z-score by 1974 education and treatment sta-
tus and is constructed using the formal procedure defined above given the ab-
sence of educational attainment data in the 1996 census. The hashed lines indicate
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confidence intervals. We see, consistent with the results reported previously, that
there was an overall increase in child education in the treatment area relative to
the comparison area for households with the same 1974 educational attainment.
However, this effect appears to dissipate at the lowest levels of education. Evi-
dently households with low levels of education in 1974 did not differentially ben-
efit from the treatment program even though there was a comparable decline in
family size for these households as shown above.

The results are confirmed in the statistical analysis that appears in Table 6. These
specifications include overall treatment status and the interaction between treat-
ment status and low initial education.20 Other interaction terms were not signifi-
cant and have been omitted so that we focus on comparisons across the different
estimation methods. The point estimates suggest that except among low educa-
tion households in 1974 there was a .216 standard deviation increase in the edu-
cation among the 1996 households. There is by contrast no effect (and the point
estimate is negative) in the lowest education households. Thus the treatment pro-
gram was in a sense regressive because the higher education households bene-
fited differentially from the program. In terms of level effects we see a .364 stan-
dard deviation increase in education among the higher educational households in
1974 and a very strong gradient in terms of consumption with high consumption
households gaining .204 standard deviations and low consumption households
losing -.167 relative to the mean education. These data suggest substantial in-
creases overall in education and relatively little cross-group mobility in education
on average.

Overall the different weighting schemes seem to give somewhat different conclu-
sions. The method using predicted descendants is quite comparable to that using
total descendants. The other weighted methods tend to yield a somewhat smaller
estimate of the treatment effect with the two estimates using the 1996 weights
alone or with the 1974 weights being substantially smaller. Interestingly, the no
weight estimates do rather well. While this gives one some pause about the nature
of this exercise it is worth noting that there is no way to predict that in practice.
We expect it is an issue of the fact that the 1974 weights tend to bias upward the
estimates of the treatment effect and the 1996 weights to bias it downward. The
combination seems to come in about right, at least given the particular correlations
between weights and the educational outcome variable being examined here.

20Note that the number of observations is lower because only those households with children
ages 6-16 for whom we calculate education are included.
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7 Conclusion

We started out wanting to answer the question of what are the long term effects
of a maternal and child health and family planning program on economic mobil-
ity. In order to properly conduct this analysis, though, we had to think through
the broad question of how to devise the appropriate weights for panel data when
there might be bias in the selection of the sample, and we created those weights
based on the MHSS and HDSS data from Matlab, Bangladesh. We first laid out
the various issues that arise with the Matlab data due to the post-1978 selection of
the MHSS sample. Although this is a problem specific to the Matlab data, it is one
that might apply in any of the other HDSS sites where an intervention was con-
ducted on a sample of the population, or only a sample of the HDSS population
was later tracked after an intervention in the region. It could arise even in the case
of regular panel data if the formation and recombination of households combined
with the choice of descendants picked to be surveyed leads to selection bias in the
sample that is followed up. Therefore, in the case of any development interven-
tion where there are such data limitations, we have created a possible framework
for weights that can help to mitigate the bias.

We devised a procedure to help solve the two main problems with the MHSS/HDSS
data. For the first, to make the 1996 sample representative of the 1974 population,
we used the nature of the HDSS data which allowed us to mimic the process that
had been used to create the original sample in order to come up with probability
weights. Even in the case of panel data where the full population is not available
to conduct this sort of resampling procedure, propensity score weights also give
extremely good results in helping to correct the sampling bias. For the second
problem, we have found a formula for weights that can be universally applied in
the case of multiple descendants where not all descendants have the same prob-
ability of being picked. Nevertheless, the application of these weights is not ad-
visable if there is no correlation between the probability of being selected and the
characteristics of interest, or if the analysis is not focused on aggregate data.

Using the sample weights to look at the main question of interest, we found that
the maternal and child health and family planning program led to a differential
increase in education among relatively high education households but a farily
comparable decline in family size across the different strata. We can only specu-
late about the differences in effects. The most plausible explanation may be that
households with lower taste for education (and or higher demand for child la-
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bor) reduced their family size but given demand for household child labor this
increased the per child demand for household labor. Another possibility is that
somehow the treatment effects differentially affected the process of household re-
combination. One reason that we might be skeptical of this conclusion is the rel-
atively small differences across educational strata in treatment effects for family
size, consumption and the number of descendant households.

As discussed, there are many similar interventions where baseline surveys and
subsequent household composition changes of the study population are not avail-
able. Employing similar weights to the ones we have created here, which take into
account the various issues created by the process of household formation and re-
combination, could lead to significant improvements in the evaluation of these
development interventions.
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Table 2: Different 1974 Sample Weights Compared to the Full 1974 Population

(1) (2) (3) (4)
Mean Values for 1974 Population and Weighted Samples

Full 1974 Our Resampling No Propensity Score
Population Weights Weights Weights

Highest Edu 4.136 4.234 4.259 4.182
Number of Cows 1.158 1.180 1.353 1.174
Edu of Head 2.272 2.276 2.137 2.288
Age of Head 45.75 45.72 46.74 45.85
Family Size 6.095 6.127 6.811 6.185
Num of Rooms 1.219 1.213 1.284 1.215

Observations 24,788 5,319 5,319 5,309
Weights 24,788 24,029 5,319 24,594

P Values for Difference between Full Population and Sample
Our Resampling No Propensity Score

Weights Weights Weights
Highest Edu 0.260 0.030 0.427
Number of Cows 0.504 0.000 0.498
Edu of Head 0.953 0.003 0.752
Age of Head 0.939 0.000 0.611
Family Size 0.544 0.000 0.015
Num of Rooms 0.544 0.000 0.580
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Table 3: Propensity Score Regression

VARIABLES Dep Var: Dummy=1 if Linked to MHSS1

Highest Edu in Household -0.0110*
(0.00658)

Family Size 0.130***
(0.00693)

Articles Owned -0.00129
(0.00181)

Number of Cows 0.0126
(0.0111)

Number of Boats 0.0159
(0.0290)

Edu of Head of Household -0.0239***
(0.00708)

Age of Head of Household -0.000923
(0.00127)

Constant -1.991***
(0.0620)

Observations 24,749
Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Figure 4: Average absolute difference between sample and actual descendant
income means for different levels of correlation
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Figure 5: Coefficients of Probability Regressed on Income for the Simulated Data
and the 1996 Census Data
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Figure 6: Average squared difference between sample and actual descendant
incomes
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