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Abstract

With an intention of producing a statistically-based cause-of-death shortlist, we re-

classified the causes of death based on their age profile, expressed here in terms

of the rate of aging. We are using individual-level mortality data from the Czech

Republic for period 1998-2011 and connect them to the HMD exposures. The anal-

ysis is limited to males aged 30 and over. The cause-specific mortality curves were

smoothed using non-parametric procedures and an optimized cluster analysis was

applied to the smoothed data. We ended up with three dissimilar age patterns,

which we entitled as “premature”, “Gompertzian”, and “degenerative”. The find-

ings suggest that a similar but refined analysis can produce a meaningful disease

grouping with a potential of application in future mortality research.
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‡Institut National d’Études Démographiques, Paris; email: mesle@ined.fr

1



Camarda C.G. et al. Draft for the PAA 2015 - Do not circulate or cite 2

1 Introduction

The current revision of International classification of diseases (ICD) contains around

12,000 items (causes of death, diseases, health-related events). As it is impossible to

take into account all of the ICD detail in demographic analyses, researchers seek for a

convenient cause-of-death shortlist, which would be small in size but explicative in its de-

sign. Typically, a simple list of main ICD chapters is used, although its inconvenience is

obvious (contains a heterogeneous mixture of diseases of diverse origin and its explanatory

power is therefore quite limited).

Evidence-based COD shortlists, as well as analyses of cause-specific senescence, remain

rare attempts. An elaborated reclassification of diseases based on their etiology was

published in the 1990s (Meslé, 1999). An analytical shortlist derived from a thorough

study of comparability was published recently in 2012 (Pechholdová, 2012). A few other

studies also focused at the relationship between aging and cause of death (Horiuchi et al.,

2003) or aimed at regional similarities of age-cause-specific profile (Brouard and Lopez,

1985; Meslé and Vallin, 2002).

In our paper we propose a statistically-oriented reclassification of causes of death

based on their intrinsic characteristic: the age profile (the rate of aging, more precisely).

We reduce the element of subjectivity to minimum by using non-parametric mortality

models and by performing a cluster analysis with optimized number of clusters. We

then analyse the content of each cluster and describe, if possible, its main etiological and

risk factors. The analysis of the outcomes can shed new lights on the debate about the

controversial hypothesis on rate of aging as a fundamental human invariant: working on

the rate-of-aging by cause of death, one can better isolate cause- specific features which

are confounded in the overall mortality age-pattern.

2 Data and methods

We are using individual-level data on deaths in the Czech Republic covering the period

1998-2011. We have information on the age, sex, date of death, underlying COD and six

contributing CODs (a multiple-cause of death dataset). Based on these data, we are able

to compute death counts by single year of age at the ICD10 3-digit level. Correspondent

exposure population are taken from the Human Mortality Database (2014).

2.1 Estimating cause-specific rate-of-aging

In this paper we present the analysis for males only and starting from age 30. Moreover,

in order to produce reliable outcomes for cause-specific age-patterns, we select only causes

in which we have got at least 10 available data-points over ages. The final dataset contains
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m = 71 ages for n = 531 CODs and it can be described as a set of two matrices:

D = (di,c) and E = (ei,c) = e11,n , (1)

where di,c are the death counts for age i and COD c, e is the series of exposure over ages

and 11,n is a 1×n matrix of ones. From these matrix we can compute the matrix of cause-

specific death rates M = (mi,c) = (
di,c
ei,c

) , which can also be seen as a fully non-parametric

representation of the underlying cause-specific force of mortality over ages, µc(x).

Our aim is to classify CODs according to their rate-of-aging would could be seen as

the first relative derivative of the force of mortality with respect to age:

r(x) =
∂µc(x)
∂x

µc(x)
=
∂ ln(µc(x))

∂x
. (2)

Computing derivatives directly on the raw death rates implies the usage of difference

operator over ages and it is common knowledge that such computation is highly affected

by noise in the data. A possible solution would be to impose a parametric structure to

each cause-specific mortality pattern, but this leads to two main issues: (1) it is hard to

select a parametric which well suits each cause-specific age pattern; (2) a given parametric

model will impose a rigid outcome in terms of derivative, e.g. a Gompertz model imposes

a constant rate-of-aging over age.

In this paper we decide to follow a non-parametric approach for modeling raw death

rates. This allows us to identify instantaneous rate-of-aging for each cause-specific age-

pattern which would be free from any predetermined structure. Specifically we smooth

our data using a P -spline approach (Camarda, 2012; Eilers and Marx, 1996). For our

aims, the advantage of this approach lies in the straightforward computation of relative

derivatives of mortality age-pattern with respect to age.

For a given COD and within a P -spline approach, estimated cause-specific force of

mortality can be described, in a logarithm scale, as a linear combination of B-splines

spanning over ages and coefficients which are penalized to achieve a smooth behavior of

the age-patterns. In formula:

ln(µ̂c) = Bq β̂c .

where Bq ∈ Rm×r is a matrix of r B-splines of degree q with knots equally spaced by a

distance h. They are common for all CODs patterns. This formulation reduces also the

dimensionality of our problem from m, number of ages, to r, length of the vector β̂c. In

the following we choose r = 17.

This representation naturally allows for incorporating the relative derivative of the

force of mortality. A linear combination of B-splines can be derived with respect to x and

equivalently, operating directly on the coefficients β̂c, we can write the relative derivative



Camarda C.G. et al. Draft for the PAA 2015 - Do not circulate or cite 4

of the force of mortality as follows:

rc(x) = C β̂c =
1

h
Bq−1 α̂c (3)

where C is a matrix incorporating both original B-splines and computing first order

difference of the estimated coefficients β̂c (Camarda, 2008). The vector α̂c denote the

first difference of the estimated coefficients for a given COD and its length is equal to

r − 1.

In other words we can either use the original estimated coefficients or apply difference

operator on them to obtain identical rc(x). This result allows us to apply cluster analysis

directly of the first difference of estimated coefficients α̂c without loosing smoothness

behavior of the age-patterns as well as keeping the relationship between instantaneous

rate-of-aging for each COD and the associated age profiles.

2.2 Clustering cause-specific rate-of-aging

We aim to classify all n COD by their instantaneous rate-of-aging which we reduced

to a vector of lagged-coefficients for each COD c. Hence our set of observations is

[α̂1, α̂2, . . . , α̂n], where each observation is a r − 1 dimensional real vector.

Several options are available when a cluster analysis is performed. In the following

we followed a k-means clustering which allows us to cluster our observations as well as

to extract a center for each cluster. These “centers” could served as prototypes for the

different rates-of-aging present in human mortality, although they may not necessarily be

a member of the data set themselves.

In few words, we aim to partition the n observations into k sets S = {S1, S2, . . . , Sk}
so as to minimize the within-cluster sum of squares. In formula our objective would be:

arg min
S

k∑
i=1

∑
α∈Si

‖α− νi‖2 (4)

where νi is the mean of points in Si, i.e. the center for cluster i. The algorithm proposed

by Hartigan and Wong (1979) and implemented in the R-routine kmeans() was used for

this paper.

As one can easily see, the procedure highly depends upon the number of selected

clusters k and an inappropriate choice of k may yield poor results. Various criteria are

available for optimize the number of clusters. Instead of subjectively pick a given number

of clusters, or a specific selection criterion, we run 24 different indices for determining the

number of clusters. To easily obtain all these outcomes, we modified the main routine

available in the R-package NbClust (Charrad et al., 2014). Each index will have thus its
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associated optimal k. We select the modal values of the final distributions.

Figure 1 presents the frequency distribution for 24 indices according to the associated

optimal number of cluster. Though there is a large spectrum of possible optimal k, it

seems that having 3 clusters is preferable for the relative majority of the proposed indices.

We thus run our k-means in (4) with k = 3.
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Figure 1: Distribution of optimal number of clusters for cause-specific rate-of-aging for
24 different methods. Czech Republic, Males, 1998-2011, ages 30-100.

Once we obtain the means for each cluster νi, we can assign each observation to the

cluster with the nearest mean. The center of each cluster can then be used to evaluate

the centers of the 3 different instantaneous rate-of-aging

γi =
1

h
Bq−1 νi for i = 1, 2, 3

and the associated age-profiles.

3 Results

Figure 2 presents the outcomes in terms of instantaneous rate-of-aging and age-patterns

for the 3 selected clusters. They can be seen as the representative profiles for the 531 cause-

specific age-patterns. To feel the leverage of each cluster in terms of overall mortality, we

employed line widths proportional to the number of deaths within each cluster.

The first cluster (red solid lines in Figure 2) is typified by decreasing rate of mortality

change and by an unusual age pattern, reaching maximum around age 50 and declining

since then. About 6% of all deaths are concentrated within this class.
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Based on the CODs belonging to this cluster, it can be entitled as Premature . The

first cluster contains a mixture of genetically-conditioned diseases (such as rarer types

of cancer, epilepsy, lupus, ulcerative collitis), accidental deaths (traffic accidents, suicide,

homicide, drowning), but also alcohol related mortality.
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Figure 2: Instantaneous rate-of-aging (left) and log-mortality (right) for the centers of
the 3 clusters formed by k-means algorithm. The width of the lines is proportional to the
number of deaths within each cluster. Czech Republic, Males, 1998-2011, ages 30-100.

The characteristic pattern of the second cluster is the closest to the Gompertz idea

of senescence: a quasi-constant rate of mortality change / linear log of the force of mor-

tality. The cluster contains some bacterial infections, malignant melanoma of skin, acute

respiratory diseases, most of digestive and genitourinary diseases, and accidental falls.

Surprisingly, the Gompertzian cluster only contains a small fraction of deaths (about

12%).

As Figure 2 suggests, by far the most deaths are grouped in the third cluster (ca. 82%),

which shows an overall decrease of the rate of aging and where death rates rise rapidly

until age 60 to increase at decreasing rate until the oldest ages groups. This group has

the lowest mortality at the starting age and the highest mortality as of age 50. The group

contains tuberculosis, colorectal cancer, stomach cancer, and most of the smoking-related

mortality (notably cancer of trachea, bronchus, lung, and upper airways, and other cancer

highly suspected to be related to smoking: cancer of bladder and kidney). The cluster also

contains smoking-related conditions from the chapter of respiratory diseases (emphysema

and other chronic obstructive pulmonary diseases, chronic bronchitis). Other man-made

(occupational) respiratory infections are classified here as well (pneumoconioses). Next

important CODs in this cluster are diabetes, dementias and Alzheimer disease. We also

find majority of circulatory diseases (and thus the majority of all deaths) in the same
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group (ischemic heart disease, stroke, hypertension). Interestingly, the group contains

virtually no accidental deaths. Therefore, the cluster could be entitled as Degenerative ,

or Man-made - it is probably the man-made etiology which creates the deceleration-like

age pattern of this cluster, via a lifetime selection of individuals with healthier life styles,

implying that an important part of these deaths are preventable.

Finally Figure 3 illustrates the results of the clustering with three optimal clusters

highlighted. We can see the clear dissimilarity of the main three groups. Beyond the op-

timal number of clusters, several sub-clusters can be identified at lower similarity distance.

Exploring the content of these sub-clusters is the agenda of the future work.
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Figure 3: Dendogram of the cluster analysis carried on the cause-specific instantaneous
rates-of-aging. Czech Republic, Males, 1998-2011, ages 30-100.

4 Summary

Using optimized clustering methods, we identified three predominant age patterns of

human diseases. The first type is virtually age-independent, and is present in individuals

with either congenital predisposition or at high risk behaviour (such as severe alcohol

consumption). The mortality in second group of diseases rises progressively with age

without signs of deceleration in the most advanced ages. Most important in the terms

of death counts, however, is the group with decelerating mortality, which we entitle as
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degenerative due to a strong man-made component.

In the future work, the analysis design can be further refined. For example, we could

pre-group the diseases entering into the analysis based on common medical definitions

rather than work on the ICD 3-digit level. We could also explore other levels of clustering,

to define more clusters within the main three groups. Finally, to validate the proposed

groupings, the method should be tested on other countries as well.
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