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Abstract 

Age-Period-Cohort (APC) models offer a framework to study trends of the three 

temporal dimensions underlying age by period tables. However, the perfect linear 

relationship among age, period, and cohort leads to a well-known identification issue due 

perfect colinearity from the identity Cohort = Period – Age. A number of methods have 

been proposed to deal with this identification issue, e.g., the intrinsic estimator (IE), 

which may be viewed as a limiting form of ridge regression. Bayesian regression offers an 

alternative approach to modeling tabular age, period, cohort data. This study views the 

ridge estimator from a Bayesian perspective by introducing prior distributions for the 

ridge parameters, which permits these parameters to be estimated from the data rather 

than being assigned (and fixed) a-priori. Results show that a Bayesian ridge model with 

a common prior for the ridge parameter yields estimates of age, period, and cohort 

effects similar to those based on the intrinsic estimator and to those based on a ridge 

estimator with a shrinkage penalty obtained from cross-validation. The performance of 

Bayesian models with distinctive priors for the ridge parameters of age, period, and 

cohort effects is, however, affected by the choice of prior distributions. Further 

investigation of the influence of the choice of prior distributions is therefore warranted.  
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Introduction 

Over the past few decades the age-period-cohort (APC) model has become a core 

approach for the investigation of trends in numerous social phenomena in demography 

and sociology. The application and impact of APC models has spread beyond areas in 

social sciences to epidemiology and biostatistics. Discussions about the use and 

applicability of APC models to separate cohort effects from age and period effects on 

time-specific phenomena originated eighty years ago among social scientists (Mason & 

Wolfinger, 2002).   

The age-period-cohort accounting model for age by period tabular data arrays 

involves three temporal components. The first component, age, specifies variation in the 

outcome of interest pertaining to different age groups due to biological process of aging, 

cumulated social experience, and changes in social roles and statuses. The period 

component represents influences associated with time periods that affect people of all 

age groups at the same time because of significant social, cultural, economic, political 

changes. Cohort refers to variations related to groups of people who experience an initial 

event, typically birth or marriage at the same year or years, and undergo subsequent 

social and historical events at the same ages (Yang & Land, 2013). For instance, age, 

period, and cohort are all related to the behavior of consumers. Therefore, age, period, 

and cohort make distinct contributions to account for time-specific social phenomena. 

Eliminating one of the three variables will leave results subject to spurious effects 

(Mason, Winsborough, Mason, & Poole, 1973). 
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Despite the sound theoretical and conceptual rationale for incorporating age, 

period, and cohort simultaneously in one model to study time-specific social phenomena, 

there is no consensus in terms of how to solve the fundamental identification problem of 

APC models. This methodological challenge results from the exact linear relationship 

between age, period, and (birth) cohort: cohort = period - age. Consequently, it is 

impossible to obtain valid estimations of the distinct effects of age, period, and cohort 

from standard regression-type models.  

A variety of methods have been proposed to solve the identification problem of 

APC models in recent decades, for instance, constrained generalized linear models 

(CGLM), the ridge estimator, the intrinsic estimator, and hierarchical APC-cross-

classified fixed effects and random effects models (Fienberg & Mason, 1978; Fu, 2000; 

Yang, Fu, & Land 2004; Yang & Land 2008). In the following two sections, this study 

reviews the identification problem of APC model, current solutions to the identification 

problem in detail, and then introduces the Bayesian ridge model as an alternative to 

solving the identification problem of APC model by using data on the incidence rate of 

cervical cancer among Ontario women from 1960 to 1994. 

 

The Identification Problem 

Prior to discussing some existing methods that address the identification problem 

in APC models, we first review the classical identification problem. As early as the 

1970’s, Mason and colleagues (1973) specified the APC multiple classification model for 
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cross-classified data. In the age by period two-way table, the rows and columns 

represent the main effects of age and period respectively, with the diagonals representing 

the interaction between age and period—the cohort effects. The APC multiple 

classification model is specified as 

  
g(Yij ) = µ +α i + β j + γ k + ε ij         (1) 

where   i = 1,…,a  for the ith age group;   j = 1,…, p  for jth period; and   k = 1,…,a + p −1  for 

the kth cohort. We can interpret the distinctive effects of age, period, and cohort 

through an analysis of variance (ANOVA) framework by imposing a centered-effects 

normalization in which  

   
  i=1

a

∑α i =
j=1

p

∑β j = γ k
k=1

a+ p−1

∑ = 0 ,      (2) 

 where 
Yij  denotes the outcome of interest for those from the ith age group at the jth 

period,   g(.)  is the link function for a generalized linear model (or a suitable 

transformation of the  
Yij ), and µ  is the grand mean of the dependent variable. The 

APC parameters are normalized so that each APC effect,  α i ,  
β j , and  γ k , represent 

deviations from the grand mean. In a linear model specification,  
ε ij  would denote a 

random error with mean 0 and variance  σ
2 . Generalized linear models would not 

necessarily include an error term or the accompanying residual variance parameter.  

When  
Yij  is continuous, model (1) can be written in matrix form as: 

     Y = Xβ + ε        (3) 
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where  Y   is a column vector of outcomes,  X  is the design matrix with composed of a 

unit vector and an ANOVA-coded design matrix normalized using the last category 

level of each APC factor as reference, β  is the parameter vector, 

  
β = (µ,α1,…,α a−1,β1,…,β p−1,γ 1,…,γ a+ p−2 )T ,     (4) 

and ε   is a vector of random errors with mean 0 and variance  σ
2 .  In an identified 

model, ordinary least squares can be used to obtain estimates of the model parameter 

vector β  as 

   b = (XT X)−1XT Y       (5) 

However, a unique estimator  b  does not exist due to the perfect linear dependence 

among age, period, and cohort. In this case, the design matrix  X  is one less than full 

rank, and the  XT X  matrix is singular and is not invertible without special numerical 

methods such as a Moore-Penrose generalized inverse or singular-value decomposition. 

In the case of the unconstrained APC model, there are infinitely many solutions of  b  

that fit the data equally well as a result of this linear dependency. This is the 

fundamental identification issue pertaining to the unconstrained APC model.  

 

Current Solutions to the Identification Problem 

Several decades ago, scholars started to address the identification problems of 

APC models. One early method proposed by Mason and colleagues (1973) was to 

impose at least one constraint on the parameter vector β . For instance, the effects of 
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two age groups, two periods, or two cohorts can be constrained to be the same with a 

priori reasoning. With such a constraint, APC models become just-identified and unique 

estimates of model parameters exist. Even though different choices of equality 

constraints will not affect model fit, the coefficients and significance of age, period, and 

cohort vary considerably and the results can be difficult to interpret with arbitrary 

choices. Thus, in order to use the constrained generalized linear model (CGLM), it is 

crucial to justify the assumption of equality based on theoretical reasons (Glenn 1976). 

However, such theoretical information is not always available and differs in every 

situation.  

Ridge regression is another method commonly used to deal with the identification 

problem caused by perfect multicollinearity. Ridge regression was proposed over 50 

years ago as an estimator to accommodate models with highly-correlated predictors 

(Hoerl 1962; Hoerl and Kennard 1970; Marquart 1970). Modern variants of ridge 

regression methods exist today in the form of the lasso and lars, estimators (Tibshirani 

1996; Efron 2004), which are known collectively as regularization methods. These 

methods are commonly applied to high-dimensional problems where the goal is to select 

an optimal subset of predictors having coefficients with minimum variance. Kupper and 

Janis (1980) were perhaps the first to suggest that ridge regression might be applied to 

APC models.  Fu (2000) applied the ridge estimator to the APC multiple classification 

model.  
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The ridge estimator overcomes the identification issue by adding a ridge penalty 

to the diagonal of   XT X . Increasing this penalty shrinks the parameter vector toward 0. 

Let  X  be the  n× m    (m < n ) design matrix and  I  the  m× m  identity matrix. Letting λ  

be the shrinkage or ridge parameter ( λ ≥ 0 ), the ridge estimator is defined as  

bR = (X
TX + λI)−1XTY      (6) 

Equation (6) shows that ridge parameter induces bias except when λ is equal to 0. 

Typically, the values of λ lie in the range of (1.0-8, 1). Like many shrinkage estimators, 

the ridge estimator yields biased estimates. A tradeoff is a smaller mean square error. In 

particular, increasing λ  results in estimates that are more biased relative to OLS, but 

with a smaller mean square error. The choice of the shrinkage parameter is critical.  In 

the unconstraind APC model, any choice of λ  will produce the same model fit when 

gauged by criteria such as the residual sum of squares. A ridge trace plot is typically 

examined to show the behavior of the coefficient vector under varying values of λ .  

Alternatively, cross-validation measures can be constructed to find the optimal value of 

λ  that produces a little bias but substantially lowers the variance is the λ that 

minimizes a generalized cross-validation (GCV) measure (Fu 2000). 

   
GCV(λ) = 1

n
yi − ŷi

1− tr(H) / n
⎛
⎝⎜

⎞
⎠⎟

2

i=1

n

∑  ,      (7)                                                 

where  H  is the “hat” matrix    H = X(XT X + λI)−1XT , and   tr(H) is the sum of diagonal 

elements of  H . This approach requires repeated model fitting over a range of values of 

λ in search of the minimum GCV value.   
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Yang et al. (2004) popularized the intrinsic estimator (IE)—which has been 

demonstrated by Fu (2000) to be a limiting form of ridge regression-—to cope with the 

identification problem of the APC model. Given that the design matrix  X  is one less 

than full column rank, the parameter space  b  of the APC model can be decomposed 

into the sum of two linear subspaces:  

        b = B + tB0 ,       (8) 

where t is a real value for a specific solution,  B  refers to the null subspace corresponding 

to the zero eigenvalue of   XT X  and only relies on the design matrix (i.e., the number of 

age, period, and cohorts), and  B  represents the complement non-null subspace 

orthogonal to the null space and is the intrinsic estimator. One way to compute intrinsic 

estimator is to use the Moore-Penrose generalized inverse of   XT X  denoted by    (XT T)+  

(Fu & Hall, 2006): 

       bIE = (XT X)+ XT Y .       (9) 

This approach is equivalent to a principle component regression 

   bIE = (QL0
−1QT )XT Y ,      (10) 

where  Q  is the  m× m  orthogonal matrix of eigenvectors of   XT X  and  L is an  m× m  

diagonal matrix containing the eigenvalues of   XT X ,     ℓ1,…,ℓm  and    QLQT = XT X . To 

accommodate the singular design,   L0 in Eq. (9) is defined as the  m× m  diagonal matrix 

with values
   
ℓ1,…,ℓm−1,0  on the diagonal. Therefore, in this specification, the intrinsic 

estimator is obtained by eliminating eigenvalue 0 via principle components, yielding a 
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principal components regression model.  The intrinsic estimator has been shown to be a 

limiting form of the ridge estimator (Fu, 2000), with a vanishingly small shrinkage 

penalty  λ → 0+ , where  0+  is a value close to, but not equal to, 0.  When  λ > 0 , the 

variance of the ridge estimator is smaller than that of the intrinsic estimator. Thus, if λ  

is set to be a very small positive number, the ridge estimator will produce results nearly 

equal to those of the intrinsic estimator. Therefore, as noted by Knupper and Janis 

(1980) and Fu (2000), researchers might choose to use the ridge estimator rather than 

the intrinsic estimator for APC analysis. However, a difficulty of the ridge estimator lies 

in determining the optimal value of λ  for a given dataset, i.e.,  a value that produces 

optimal shrinkage of the APC coefficient vector for that data. 

Although the ridge estimator is an accessible approach to deal with the 

identification problem of the APC model, a suitable method to find the optimal λ  for a 

given dataset presents an added step in modeling. Fu (2000) suggested using a 

generalized cross-validation (GCV) approach to select an optimal ridge penalty.  As 

noted earlier, this approach requires a series of ridge regressions carried out over a grid 

of λ  values in search of the value yielding the smallest GCV.  While this is a 

straightforward procedure, an alternative approach to determine the optimal shrinkage 

parameter would be to determine it jointly along with other APC parameters using 

Bayesian methods. A general Bayesian interpretation of the ridge estimator has been 

recognized since the 1970s (Hsiang, 1975; Marquardt, 1970). Congdon (2006) explicated 

the use of Bayesian ridge priors as a possible solution to multicollinearity. However, as 
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far as we know, a Bayesian ridge approach has not been applied to the APC multiple 

classification model, which is subject to perfect linear dependence. In this paper, we 

utilize Bayesian ridge priors to deal with the identification problem of APC model using 

data on cervical cancer incidence rates among Ontario women from 1960 to 1994.
1
 We 

then compare the results to those obtained using the intrinsic estimator and using a 

conventional ridge estimator.  

 

Methods 

Before introducing the Bayesian ridge approach, we will briefly review Bayesian 

statistical methods. Unlike the frequentist statistical paradigm that treats a parameter 

θ  as an unknown fixed parameter, Bayesian statistical method views θ  as a random 

quantity and uses a prior probability distribution to describe its variation. This prior 

distribution of θ  is updated by taking account of information from the data to obtain 

the posterior distribution of θ  According to Bayes’ theorem, the posterior distribution 

of θ  is summarized as 

  
p(θ | y) = p( y |θ ) p(θ )

p( y)
,      (11) 

where   p( y |θ )  is the likelihood function,   p(θ )  is the prior distribution of θ  before 

seeing the data, and   p( y)  is the marginal distribution of the data defined as 

                                     
1 Identification may be less an issue using a Bayesian approach where inference is carried out using 
simulation, as opposed to the traditional numerical methods using least squares. 
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p( y) = p∫ ( y |θ ) p(θ )dθ .  This integral can be complicated and is often analytically 

intractable. However, since θ  is integrated out,   p( y)  is a normalizing constant that 

guarantees that  p(θ | y)  is a proper density. Therefore, Bayes’ theorem is usually 

expressed as   p(θ | y) ∝ p( y |θ ) p(θ ) . One commonly used Bayes estimator is the mean of 

the posterior distribution of  p(θ | y)  given by  

 
  
θ̂ = p∫ (θ | y)dθ  (12) 

Other summary statistics include the posterior median, mode, variance, credible 

interval, and interquartile range. When the posterior distribution   p(θ | y)  is from a 

known density function, such summary statistics can be easily calculated. However, this 

is usually not the case especially when dealing with high-dimensional models. Under 

such circumstances, Bayesian statisticians have resorted to sampling-based estimation 

methods—Markov Chain Monte Carlo (MCMC)—to draw inferences about θ . Sample 

summary statistics calculated based on relatively large samples from the posterior 

distribution using iterative MCMC methods tend to equate to posterior summary 

statistics. One useful Markov chain algorithm is the Gibbs sampler, which samples 

iteratively from the full conditional posterior distribution of each parameter obtained 

from the joint density distribution. Each parameter is updated sequentially and 

conditionally on all the other parameters. When models involve standard distributions, 

the conditional posterior distributions of the parameters are also likely to be standard 

densities and sampling from such conditional posterior distributions is straightforward.  
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A Bayesian Ridge Model Specification 

The ridge estimator proposed for the APC identification problem can be viewed 

from a Bayesian perspective (Congdon, 2006). For the standard regression model 

 Y = Xβ + ε  with ε  distributed normally with mean 0 and variance  σ
2 , the prior on β  

can be assumed to be from a common normal density with mean zero and variance 

 σ
2 / λ . Then the mean of the posterior distribution of β  has the form    (XT X + λI)−1XT Y , 

which is identical to the ridge estimator. Different ridge priors for age, period, and 

cohort coefficients can also be specified. The inclusion of different ridge priors extends 

the model to the form of generalized ridge estimates and the posterior mean of β  then 

becomes    (XT X + ΛI)−1XT Y , whereΛ  represents a vector of λ ’s. Noninformative priors 

are usually adopted so that the inferences are predominantly based on information from 

the data. However, a Bayesian approach has advantages over the other frequentist 

methods (e.g., the conventional ridge estimator) because the specification of priors can 

draw upon information from previous research as well as take into account uncertainties 

associated with estimating the parameters of the present study. Moreover, priors based 

on past research facilitate more meaningful interpretation of inferences.  

The data used here to demonstrate and compare the Bayesian ridge prior model 

with models estimated by the intrinsic estimator and the ridge estimator were originally 

presented by Fu’s (2000). The data document cervical cancer incidence rates of Ontario 

women aged 20 and above from 1960 to 1994. As shown in Table 1, there are 98 

observations (or data cells), with 14 age groups, 7 period groups, and 20 diagonals of 
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birth cohorts. A log transformation is applied to the incidence rates of cervical cancer, 

yielding the following APC model specification 

  
log(Yij ) = µ +α i + β j + γ k + ε ij ,    (13) 

where  
Yij   is the cervical cancer rate for age group i and period j, i = 1,…,14 ,  j = 

1,…,7 , and k = 1,…, 20. ANOVA normalization is used to center the parameters in 

model Eq. (13). And the last age, period, and cohort category is used as reference. 

Therefore, 

    
  
log(Yij ) = µ* +α i

* + β j
* + γ k

* + ε ij ,     (14) 

where  µ
* =α + β + γ ,   α i

* =α i −α , 
  
β j

* = β j − β ;   γ k
* = γ i −γ , and i = 1,…,13,  j = 1,…,6, 

and k = 1,…,19.  For purposes of exposition, let β  denote the complete APC parameter 

vector (i.e., excluding the grand mean). The Bayesian model with a single ridge prior for 

age, period, and cohort coefficients therefore can be summarized as follows: 

Likelihood function for the model:   f (Y |µ*,β ,σ −2 ,λ)2 

Prior distributions:   p(µ*,β ,σ −2 ,λ) = p(µ*) p(β ) p(σ −2 ) p(λ)   

The joint posterior distribution:   p(µ*,β ,σ −2 ,λ) |Y ) ∝ f (Y |µ*,β ,σ −2 ,λ) p(µ*,β ,σ −2 ,λ)  

As sampling directly from the joint posterior distribution is not feasible in this case, a 

Gibbs sampler that works with conditional distributions for each parameter is used. The 

                                     
2 Variance components in Bayesian models are typically parameterized in terms of precision, i.e.,  σ

−2

rather than variance. 
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Gibbs sampler sequentially samples each parameter from the conditional distribution as 

follows: 

1: Begin with a vector of starting values for all the parameters:  (µ0
*,β0 ,σ 0

−2 ,λ0 )  

2: Sample  µ1
*  from   p(µ1

* |β0 ,σ 0
−2 ,λ0 )  

3: Sample  β1  from   p(β1 |µ1
*,σ 0

−2 ,λ0 )  

4: Sample  σ 1
−2  from   p(σ 1

−2 |µ1
*,β1,λ0 )  

5. Sample  λ1  from   p(λ1 |µ1
*,β1,σ 1

−2 )   

6. Repeat steps 2 through 5: e.g., sample  µ2
*  from   p(µ2

* |β1,σ 1
−2 ,λ1)  

Conditionally conjugate priors were used for all the parameters in the APC model. 

First, a normal density with   N (0,σ 2 / λ)  is used as the common prior distribution for all 

the age, period, and cohort coefficients. A noninformative prior distribution of  µ
*  is 

  N (0,104 )  and a vague gamma prior is used for the precision of the error term (Gelman, 

et al., 2013): 

  σ
−2 ~ gamma(0.001,0.001).         (15) 

The Bayesian ridge penalty may be assigned a noninformative prior  

  λ ~ gamma(1,1)         (16) 

since the posterior means of the age, period, and cohort effects are very similar to those 

using the noninformative gamma prior. Key aspects of the distribution of model 

parameters can be gained once the Markov chain has been run for a large number of 
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iterations. For instance, the posterior mean and standard error of β  based on M draws 

of  (µ
*,β ,σ −2 ,λ)  can be obtained as summary statistics: 

 
  
β̂ = 1

M
βi

i=1

M

∑  (17) 

 
  
SE(β̂ ) = 1

M
(βi − β̂ )2

i=1

M

∑  (18) 

APC-Specific Ridge Priors 

An idea that fits substantively better with the APC theory is to define three 

different priors for age, period, and cohort effects rather than using a common Bayesian 

ridge prior. Suppose that  λA ,  λP , and  λC correspond to the ratio of the error variance 

to the variances of the age, period, cohort coefficients. For example, let   λA =σ
2 /σ A

2 ,  

with a similar expression applying to the period and cohort effect shrinkage parameters.   

In other words, the age, period, cohort coefficients are permitted to have distinct 

variances   σ A
2 ,   σ P

2 , and   σ C
2 . The exchangeable ridge priors for the age, period, cohort 

coefficients are then specified as 

  α i
* ~ N (0,σ 2 / λA),       (19) 

  
β j

* ~ N (0,σ 2 / λP ),       (20) 

  γ k
* ~ N (0,σ 2 / λC ),       (21) 

and the priors used for  λA ,  λP , and  λC  are 

  
λ j ~ gamma(1,1),             j ∈ {A, P}    (22) 
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and 

λC ~ gamma(1,100).      (23) 

The prior distributions of  µ
*  and the precision of the error term remain 

unchanged. To test the influence of priors on model performance, the priors used for 

APC-specific shrinkage parameters in model (b) are defined as: 

       
λ j ~ gamma(1,1),             j ∈{A, P,C}    (24) 

In the present study, all analyses were conducted using the statistical software R 

(R Core Team, 2013) and Bayesian inferences using Gibbs sampler were conducted 

using JAGS (Plummer, 2003) via the rjags package (Plummer, 2014). The first 10,000 

iterations were used as burn-in and all parameter estimation was based on 50,000 

posterior draws.  

 

Results 

Table 2 presents estimates of the APC model parameters using the intrinsic 

estimator, the ridge estimator, and the Bayesian model with a common prior for age, 

period, and cohort effects. The three approaches generate very similar patterns for the 

age, period, and cohort trends as shown by the estimates and levels of significance. The 

95% credible interval indicates that the significance of age, period, and cohort effects 

from the Bayesian ridge prior model is consistent with results from the intrinsic and 

ridge estimators. For instance, the 95% credible interval for the age effect of the group 

aged 30 to 34 is (-0.096, 0.187). The inclusion of zero in this interval  
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implies that the age effect of the group aged 30 to 34 is 0. The results from the intrinsic 

or ridge estimator also indicate that the risk of cervical cancer among women aged 30 to 

34 is insignificant given that the ratio of the age coefficient to its standard error is less 

than 1.96. Generalized cross-validation (GCV) was used for selection of the optimal  

for the conventional ridge estimator and the GCV plot is shown in Figure 1, which 

illustrates that the minimum value of GCV is about 0.017 corresponding to  = 0.050. 

The posterior mean of from the Bayesian implementation is similar in magnitude, 

with = 0.078. The 95% credible interval indicates the true mean of  is within the 

interval (0.041, 0.132) with 95% probability. In this case, the conventional ridge 

parameter (  = 0.050) is within the 95% credible interval.  

Figure 2 presents the graphical convergence diagnosis of the MCMC algorithm 

for selected parameters. For each selected parameter, the trace plot shows the posterior 

sample values of that parameter during the runtime of the chain.  The marginal density 

plot is the smooth histogram of the parameter values from the trace plot. The first three 

parameters represent the effects of the first age group (20-24), the first period (1960-

1964), the first cohort group ( -1879). The trace plots provide evidence of satisfactory 

convergence of the MCMC algorithms for these three parameters. The last three 

parameters represent the error variance, ridge parameter, and the variance of the APC 

effects. The trace plots indicate that each chain is mixing well. The Gelman-Rubin (GR) 

convergence diagnostic is used as a formal test for convergence that assesses whether 

parallel chains with dispersed initial values converge to the same target distribution. 

λ

λ

λ

λ λ

λ
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The GR diagnostic shows that the scale reduction factor (SRF) for each parameter is 

equal to one indicating no difference between the chains for a particular parameter. The 

multivariate potential SRF is also one, suggesting the joint convergence of the chains 

over all the parameters. Figure 3 shows the GR diagnostic plots for selected parameters. 

For each parameter, the GR plot shows the development of Gelman and Rubin’s shrink 

factor as the number of iterations increases and the shrink factor of each parameter 

eventually stabilized around one.  

Results from Bayesian model (a) with different ridge priors for age, period, and 

cohort effects are shown in Table 3. The estimated posterior means of the age, period, 

cohort effects are similar to those from the model with a common prior for the APC 

effects. However, we see that each coefficient’s vector is now subject to differential 

shrinkage toward zero, with the period effects being most affected. To better illustrate 

the APC trends, Figure 4 shows the age, period, and cohort trends from the Bayesian 

models with distinct specifications for the ridge priors. The solid line represents the 

model with a common prior for the ridge parameter, which is distributed as gamma (1, 

1). The dashed line represents Bayesian model (a) specifying different priors for the 

ridge penalties with  λA  and  λP  distributed as gamma(1,1) while  λC  is distributed as 

gamma(1,100). The dotted line represents Bayesian model (b) using a gamma(1,1) prior 

for  λA ,  λP  and  λC . Figure 4 clearly shows that the patterns of age, period, and cohort 

trends from model (a) resemble those from the Bayesian model with a common prior. 

For Bayesian model (b), the age and period patterns are similar to those from model 
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(a), whereas the cohort trend differs from that of model (a). In particular, there are 

significant differences in incidence rates of cervical cancer between the early cohorts 

(born in the late 19th century) and latter cohorts (born in late 20th century) based on 

results from model (a). However, the incidence rates of cervical cancer for the early 

cohorts do not significantly differ from those of the latter cohorts from model (b) due to 

greater shrinkage of the cohort parameter vector towards 0. 

 

Discussion 
The age-period-cohort accounting model serves as a critical framework to study 

temporal change in phenomena such as mortality, fertility, and disease rates. The 

importance of separating age, period, and cohort effects for time-specific phenomena 

poses a challenge in estimating unique estimates of age, period, and cohort effects 

simultaneously due to the perfect linear relationship between age, period and cohort. 

The last few decades have witnessed a proliferation of methods proposed to deal with 

the identification problem caused by this particular form of multicollinearity, e.g., the 

intrinsic estimator, the ridge estimator, the partial least squares approach of Tu et al. 

(2011;2013), the maximum-entropy approach of Browning et al. (2013). These 

approaches tend to agree on solutions more often than not. This paper builds upon the 

traditional ridge estimator but approaches the identification problem from the Bayesian 

interpretation of ridge estimation. In so doing, it avoids the inherent limitations related 

to solving systems of linear equations in favor of iterated conditional sampling.  
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In this paper, a Bayesian ridge prior model was used to estimate the age, period, 

and cohort effects. Results from the Bayesian model with one common ridge prior for 

age, period, and cohort effects are almost identical to those from a traditional ridge 

estimator and the intrinsic estimator, suggesting that Bayesian ridge prior model is a 

useful alternative method to solve the identification problem in APC models. The 

downside of using the conventional ridge estimator is that one has to specify an optimal 

value for the ridge parameter in advance based on a-priori criteria based on cross-

validation. Although the optimal ridge estimator enables the model to be identified, it 

does not have any meaningful interpretation. For the Bayesian ridge model, there is no 

need to assign a single value to the ridge parameter because it is considered a random 

variable and is able to incorporate uncertainties about the age, period, and cohort 

effects for a specific study and simultaneously take advantage of information from 

existing research. We can obtain a series of summary statistics from the posterior 

samples of the ridge parameter. Further, the random property of the ridge parameter in 

the Bayesian model makes the interpretation of the 95% credible interval more 

straightforward than the 95% confidence interval from traditional statistics.  

A natural extension of the Bayesian model with a common prior for the ridge 

parameter is to define disparate priors for the corresponding ridge parameters for age, 

period, and cohort effects. This approach accords with the theory of APC modeling in 

essence and is of considerable advantage if prior information on the age, period, and 

cohort effects is available from meta-analysis based on previous findings. Under this 
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circumstance information from the relevant literature can be incorporated into model 

estimation by specifying informative priors for age, period, and cohort ridge parameters 

and the posterior estimation of age, period, cohort effects will be more accurate and 

close to the true values. Given the relative small sample size, the current study 

demonstrates that the choice of appropriate prior distributions for the ridge parameters 

is very important as it will affect the posterior means of the age, period, and cohort 

effects, especially with respect to the pattern of the cohort trend in this case.  

Although this study touches upon the sensitivity issue associated with choices of 

prior distributions, it is beyond the scope of this study to thoroughly examine the 

influences of different prior distributions on the APC model performance. However, one 

should be cautious when choosing prior distributions for the ridge parameters, as the 

choices of informative priors will impose large influence on the posterior estimation, 

especially when sample size is small. If no prior information is available, the use of 

noninformative or diffuse prior distributions is recommended because noninformative 

priors are more objective compared to subjective elicited priors and often leads to 

Bayesian posterior means close to the maximum likelihood estimates (Congdon, 2006).    

To conclude, the Bayesian ridge model provides an effective way to cope with the 

identification problem inherent in the classical age-period-cohort accounting model. 

Although noninformative priors can be used to obtain Bayesian estimates of age, period, 

and cohort effects, informative priors based on the APC theory or previous empirical 

findings may render posterior estimation more meaningful.  
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Table 1 Cervical cancer Incidence rates in Ontario women 1960-1994 (per 105 person-
years) 

Age/Year 60-64 65-69 70-74 75-79 80-84 85-89 90-94 
20-24 3.89 3.24 2.90 2.05 2.19 1.76 1.73 
25-29 16.01 11.18 8.92 9.74 8.48 7.43 7.54 
30-34 26.02 21.14 16.23 15.84 14.54 13.67 12.71 
35-39 38.84 25.09 21.07 18.74 18.80 18.04 18.18 
40-44 47.65 32.50 22.71 20.01 18.78 16.19 18.12 
45-49 51.48 36.69 22.15 19.20 17.74 17.29 18.31 
50-54 49.12 37.26 25.51 18.41 16.66 15.41 14.07 
55-59 51.48 40.87 34.70 21.83 16.97 17.69 13.73 
60-64 47.68 42.80 29.76 22.71 20.16 17.69 16.94 
65-69 40.44 39.17 31.44 28.79 23.35 19.26 19.16 
70-74 42.4 35.32 27.78 24.31 20.27 20.19 14.95 
75-79 42.44 36.68 28.75 25.22 21.17 21.08 19.43 
80-84 41.50 29.74 31.54 22.31 20.04 15.25 21.28 
85+ 30.79 32.43 37.10 19.81 16.42 14.87 12.06 
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Table 2: Alternative Estimates of Age, Period, and Cohort Effects  
 

 

 Intrinsic 
Estimator 

Ridge Estimator Bayesian Posterior 
Mean 

95% Credible 
Interval 

Intercept 2.945  (0.014)  2.939 (0.014)  2.941 (0.014)   (2.913, 2.968)  
Age 20-24 -1.879 (0.042)  -1.858 (0.116)  -1.850 (0.101)   (-2.045, -1.660)  
Age 25-29 -0.509 (0.039)  -0.503 (0.099)  -0.501 (0.087)   (-0.665, -0.337)  
Age 30-34 0.047 (0.039)  0.047 (0.084)  0.046 (0.075)   (-0.096, 0.187)  
Age 35-39 0.316 (0.039)  0.312 (0.070)  0.310 (0.063)   (0.189, 0.431)  
Age 40-44 0.368 (0.039)  0.362 (0.057)  0.360 (0.053)   (0.257, 0.462)  
Age 45-49 0.354 (0.040)  0.347 (0.047)  0.345 (0.045)   (0.256, 0.433)  
Age 50-54 0.244 (0.040)  0.237 (0.041)  0.236 (0.041)   (0.155, 0.316)  
Age 55-59 0.298 (0.040)  0.292 (0.041)  0.290 (0.041)   (0.209, 0.371)  
Age 60-64 0.273 (0.040)  0.268 (0.047)  0.267 (0.046)   (0.178, 0.355)  
Age 65-69 0.278 (0.039)  0.274 (0.057)  0.273 (0.053)   (0.170, 0.375)  
Age 70-74 0.122 (0.039)  0.120 (0.070)  0.121 (0.063)   (0.001, 0.241)  
Age 75-79 0.138 (0.039)  0.138 (0.084)  0.139 (0.075)   (-0.003, 0.281)  
Age 80-84 0.036 (0.039)  0.040 (0.099)  0.042 (0.087)   (-0.121, 0.207)  
Period 60-64 0.476 (0.026)  0.476 (0.056)  0.475 (0.050)   (0.381, 0.570)  
Period 65-69 0.270 (0.026)  0.269 (0.042)  0.269 (0.039)   (0.195, 0.344)  
Period 70-74 0.081 (0.026)  0.080 (0.031)  0.081 (0.030)   (0.022, 0.139)  
Period 75-79 -0.103 (0.026)  -0.104 (0.026)  -0.103 (0.026)   (-0.155, -0.052)   
Period 80-84 -0.190 (0.026)  -0.190 (0.031)  -0.190 (0.030)   (-0.248, -0.132)  
Period 85-89 -0.263 (0.026)  -0.262 (0.042)  -0.262 (0.039)   (-0.336, -0.188)  
Cohort    -1879 0.090 (0.098)  0.079 (0.184)  0.082 (0.164)   (-0.236, 0.398)  
Cohort 1876-1884 0.309 (0.070)  0.298 (0.157)  0.296 (0.139)   (0.031, 0.560)  
Cohort 1881-1889 0.334 (0.058)  0.329 (0.137)  0.326 (0.121)   (0.094, 0.554)  
Cohort 1886-1894 0.268 (0.052)  0.266 (0.119)  0.264 (0.105)   (0.064, 0.463)  
Cohort 1891-1899 0.156 (0.047)  0.158 (0.103)  0.156 (0.091)   (-0.017, 0.327)  
Cohort 1896-1904 0.180 (0.044)  0.183 (0.086)  0.182 (0.077)   (0.035, 0.328)  
Cohort 1901-1909 0.133 (0.041)  0.137 (0.071)  0.136 (0.064)   (0.013, 0.259)  
Cohort 1906-1914 0.210 (0.042)  0.216 (0.059)  0.215 (0.055)   (0.109, 0.321)  
Cohort 1911-1919 0.148 (0.043)  0.155 (0.049)  0.155 (0.048)   (0.061, 0.249)  
Cohort 1916-1924 -0.013 (0.043)  -0.004 (0.044)  -0.003 (0.044)   (-0.089, 0.086)  
Cohort 1921-1929 -0.133 (0.043)  -0.123 (0.044)  -0.121 (0.044)   (-0.208, -0.034)  
Cohort 1926-1934 -0.205 (0.042)  -0.195 (0.049)  -0.193 (0.048)   (-0.286, -0.099)  
Cohort 1931-1939 -0.233 (0.041)  -0.224 (0.058)  -0.222 (0.055)   (-0.327, -0.116)  
Cohort 1936-1944 -0.234 (0.040)  -0.228 (0.070)  -0.228 (0.063)   (-0.350, -0.105)  
Cohort 1941-1949 -0.189 (0.042)  -0.186 (0.086)  -0.185 (0.076)   (-0.330, -0.039)  
Cohort 1946-1954 -0.102 (0.045)  -0.101 (0.102)  -0.102 (0.090)   (-0.273, 0.070)  
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(Table 2 Continued)     
     
Cohort 1951-1959 -0.138 (0.050)  -0.140 (0.119)  -0.140 (0.104)   (-0.340, 0.059)  
Cohort 1956-1964 -0.145 (0.057)  -0.150 (0.137)  -0.150 (0.120)   (-0.379, 0.079)  
Cohort 1961-1969 -0.190 (0.069)  -0.199 (0.157)  -0.198 (0.138)   (-0.460, 0.067)  
     
     
λ - 0.05 0.078 (0.023)   (0.041, 0.132)  
Posterior variance of 
error 

- - 0.011 (0.002)   (0.008, 0.018)  

Posterior variance of 
APC coefficients 

- - 0.150 (0.036)   (0.095, 0.235)  
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Table 3: Estimates from Bayesian Model (a) with Different Ridge Priors for the APC 
Effects. 

 Bayesian 
Posterior 
Mean 

2.50% 
Credible 
Interval 

97.50% 
Credible 
Interval 

Intercept 2.943 2.918 2.968 
Age 20-24 -1.912 -2.131 -1.613 
Age 25-29 -0.544 -0.730 -0.291 
Age 30-34 0.016 -0.142 0.225 
Age 35-39 0.289 0.158 0.457 
Age 40-44 0.347 0.241 0.476 
Age 45-49 0.339 0.253 0.434 
Age 50-54 0.237 0.163 0.312 
Age 55-59 0.298 0.223 0.372 
Age 60-64 0.281 0.185 0.368 
Age 65-69 0.293 0.164 0.401 
Age 70-74 0.146 -0.024 0.277 
Age 75-79 0.170 -0.040 0.328 
Age 80-84 0.077 -0.176 0.263 
Period 60-64 0.492 0.349 0.598 
Period 65-69 0.281 0.182 0.361 
Period 70-74 0.088 0.024 0.145 
Period 75-79 -0.102 -0.149 -0.055 
Period 80-84 -0.194 -0.252 -0.130 
Period 85-89 -0.273 -0.352 -0.173 
Cohort    -1879 0.030 -0.306 0.470 
Cohort 1876-1884 0.245 -0.048 0.639 
Cohort 1881-1889 0.278 0.022 0.627 
Cohort 1886-1894 0.221 -0.002 0.522 
Cohort 1891-1899 0.118 -0.073 0.375 
Cohort 1896-1904 0.149 -0.013 0.361 
Cohort 1901-1909 0.110 -0.024 0.280 
Cohort 1906-1914 0.194 0.083 0.327 
Cohort 1911-1919 0.139 0.047 0.240 
Cohort 1916-1924 -0.012 -0.092 0.069 
Cohort 1921-1929 -0.124 -0.204 -0.045 
Cohort 1926-1934 -0.189 -0.288 -0.098 
Cohort 1931-1939 -0.210 -0.340 -0.102 
Cohort 1936-1944 -0.206 -0.375 -0.075 
Cohort 1941-1949 -0.157 -0.368 0.003 
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(Table 3 Continued) 
 

   

Cohort 1946-1954 -0.066 -0.320 0.124 
Cohort 1951-1959 -0.096 -0.398 0.125 
Cohort 1956-1964 -0.098 -0.442 0.158 
Cohort 1961-1969 -0.136 -0.527 0.155 
λA 0.029 0.011 0.062 
λP 0.164 0.037 0.443 
λC 0.078 0.032 0.142 
    
Posterior variance of age 
coefficients   

0.365 0.162 0.778 

Posterior variance of period 
coefficients   

0.080 0.022 0.231 

Posterior variance of cohort 
coefficients   

0.135 0.058 0.309 

Posterior variance of error 0.009 0.007 0.013 
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Figure 1: Selection of Lambda for Ridge Estimator via GCV 



33 
 

   

    

     

Figure 2: Trace Plots and Density Plots for the Posterior Samples for Selected 
Parameters. 
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Figure 3: Plots of Gelman-Rubin's Diagnostic for Selected Parameters. 
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Figure 4 Bayesian Models for Age, Period, and Cohort Trends on Cervical Cancer 
Incidence Rates in Ontario Women. 
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(Figure 4 Continued) 
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