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Abstract 

 

 

Background: The evidence base on the relationship between food environment and body mass 

index (BMI) has not converged due to measurement and methodological limitations.  

Purpose: This study assessed the within-individual association between changes in food 

environment and changes in BMI among adults with diabetes from 2006-2011.  

Methods: The relationship between changes in food environment and 1-year lagged BMI was 

estimated using year and individual fixed effects. Food environment was measured using the 

kernel density of food venues hypothesized to have a positive influence on weight. Separate 

models were estimated for individuals who moved and those who stayed.    

Results: There was a clinically negligible, inverse statistically significant effect of changes in 

food environment on BMI among individuals with no change of residence but not among those 

who moved.  

Conclusions: Community-level policies to improve food environment are unlikely to have a 

clinically significant effect on BMI among adult patients with diabetes.  

 

 

 

Keywords: body mass index; diabetes; residence characteristics; neighborhood-effects 
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Introduction 

 

 Over twenty-two million Americans, 7% of the U.S. population, had diabetes in 2012 at a 

total cost of $245 billion, including direct medical and lost productivity costs (Association 2013). 

Obesity is a major risk factor for development of type 2 diabetes; 60 to 90 percent of type 2 

diabetes mellitus is associated with obesity or weight gain (Anderson, Kendall and Jenkins 

2003). Weight management to manage blood glucose levels and reduce risk for cardiovascular 

disease based on a personalized diet and exercise plan is an important goal for diabetic patients 

(Inzucchi et al. 2012). 

 Recently, policymakers have focused on community-level in addition to individual-level 

approaches to reducing obesity (Brownell et al. 2010). A primary driver of the community-level 

approach is based on the notion that the “food environment” contributes to individual weight 

status and chronic conditions. Government interventions such as the Healthy Food Financing 

Initiative have been implemented to increase the number and types of stores carrying healthy 

food (Holzman 2010; Karpyn et al. 2010). Although some observational cross-sectional studies 

have supported this approach, the evidence for improved weight health outcomes is mixed (Feng 

et al. 2010; McKinnon et al. 2009). 

 First, it is unlikely that a supermarket has the same influence on weight for everyone. 

Jones-Smith et al. found that the relationship between healthy food environment and body mass 

index (BMI) among adults with diabetes differed by race and income in direction and magnitude 

(Jones-Smith et al. 2013). Additionally, the contemporaneous relationship between food 

environment and BMI may suffer from selection bias because people are not randomly assigned 

to their neighborhood (Oakes 2004). In other words, an individual’s food environment may 
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reflect diet, health status, and exercise preferences and voluntary or involuntary neighborhood 

selection (Feng et al. 2010). 

 The Moving to Opportunity (MTO) study (Ludwig et al. 2011), which randomly assigned 

housing vouchers to low-income families to move to wealthier neighborhoods, found a 

significantly lower percentage of severe obesity ten-years later among the treatment group. Very 

few observational studies of the effect of the built environment on BMI have addressed the 

impact of endogeneity by using more sophisticated design or analysis techniques (Sturm and 

Datar 2005). One study found that the cross-sectional relationship between neighborhood food 

environment and youth body mass index disappeared when examined longitudinally (Shier, An 

and Sturm 2012). 

 The ambiguity surrounding the relationship between the food environment and obesity 

has also resulted from measurement issues. Despite the growing number of studies and the 

sophistication of spatial analysis techniques used, there has been little convergence in the 

instruments used to measure the food environment (Shier et al. 2012). A measure of good food 

environment was designed for this research to capture the popularly selected instruments of 

density and proximity (Burgoine, Alvanides and Lake 2013). 

 This study tests the longitudinal association of changes in the food environment on 

changes in BMI among diabetic adults over a five-year period. The hypothesis of this study as 

the food environment becomes more health promoting, as measured by the residential proximity 

to healthy food vendors, the BMI of adults with diabetes will decrease. 

 Specifically, this study contributes to advancing knowledge of the role of food 

environment on obesity by exposing two types of bias: 1) omitted variable bias, and 2) 

residential self-selection bias. The individual fixed-effects approach targets the within individual 
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change in BMI and by design controls for time-invariant person-specific variables (i.e., 

preferences for healthy food, tendency to cook, etc.). The variables that are left out in standard 

ordinary least squares (OLS) estimates are expected to induce positive bias on the coefficient on 

food environment. Specifically, the estimate of the effect of food environment on BMI will 

appear larger in OLS estimates if other variables that might be positively correlated with food 

environment are left out. 

 To understand residential selection bias, separate models were run for the 83% of the 

sample who did not move during the observation period, and the 17% who relocated. Among 

those who remained in a single location (non-movers), the individual fixed effect model 

estimates the effect of changes in the residential neighborhood changes such as store openings 

and closings, which are presumably unexpected and thus can be assumed to be largely 

exogenous to residential decisions.   

 Estimating effects among movers is potentially more problematic due to possible 

endogenous migration related to either neighborhood change or other unobserved life changes 

with potential direct effects on BMI.  To better understand the extent to which such processes 

may bias estimates, two approaches were taken that exploit different portions of neighborhood 

variation. First, we use an approach analogous to an “intent-to-treat (ITT)” model, examining 

only the variation over time in the movers’ original neighborhood, and ignoring the 

characteristics of the new (endogenously chosen) neighborhood. We can think of moving to a 

new address as making an individual “non-compliant” with the treatment. While this ITT 

interpretation abstracts from the more endogenous portions of the neighborhood, it may attenuate 

estimates relative to models that examine characteristics of individuals’ actual neighborhood at 

any given time. 
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 Second, models were estimated for the movers that examine the association with the 

characteristics of the actual neighborhood in which the individual lived in the past year. This 

more accurately captures the actual neighborhood characteristics experienced, but introduces 

more chances of selection bias from unobserved determinants of neighborhood choice.  If this 

latter model is significantly different from the model among non-movers, this would suggest 

selection bias in models that include movers, which would also raise the possibility of similar 

concerns in standard cross-sectional estimates that ignore neighborhood choice.    

 

Methods 

Study Design and Subjects 

 Individual-level data came from the Kaiser Permanente Northern California (KPNC) 

Diabetes Registry; a prospective cohort of insured patients established in 1993 to measure 

prevalence and incidence of diabetes and to understand factors associated with disease 

progression. KPNC is an integrated healthcare system with more than 3 million members. 

Clinical data used in this study was collected from 2007 to 2011 from all patient visits to KPNC 

medical centers. Patients with type 1 (3,616) or unknown type (11,085) diabetes, pregnancy 

within the study period and 1-year prior (2,327), cancer within the study period and 1-year prior 

(23,871), and histories of lower extremity amputation were excluded (3,922). 

 Patient residence was geocoded to the centroid of the census block according to the 

patient address data from February of each year. Patients with at least one valid geocodable 

address record from 2006 to 2010 were retained for analysis. Of patients with a census block 

identifier, 75% had at least one measure of BMI in all 5 years and 18% had at least one measure 



    

 

 

7 

in 4 of 5 years. Patients lived in 19 counties that contained or had KPNC facilities near county 

borders. 

 

Main Outcome 

 The main outcome, body mass index (BMI, kg/m
2
), was calculated at each patient visit 

and was grand mean centered.(Kromrey and Foster-Johnson 1998) Over the five-year period, the 

interquartile range (IQR) for number of BMI measurements was 10-27 (median of 17) and within 

a given year, the IQR was 2-8 (median of 4). We created two variables to account for BMI 

measurement timing and quality. First, to adjust for seasonal variation in BMI, 12 indicator 

variables captured the month of measurement. Second, an indicator for higher measurement 

precision (1= precise, 0 = midpoint of range-based BMI).  

 

Measurement of the local food environment 

 A measure of the neighborhood food environment was constructed to capture both 

density and proximity dimensions. The software, ArcGIS (ArcGIS, version 10, Redlands, CA, 

Environmental Systems Research Institute), and the business database InfoUSA, as acquired 

from Environmental Systems Research Institute, were used to geocode food vendor addresses 

and identify initial categories (supermarkets, produce vendors,) for the measures of the food 

environment. Standardized industrial codes (SIC) were used to refine vendor classifications 

based on store name and sales volume ≥$2 million in sales, and ≥2,500 square feet for 

supermarkets.  

 The primary exposure of interest, kernel density surface of “good” food (goodfood), was 

developed for each patient geocodable address from 2006-2010. As in previous studies(Jones-
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Smith et al. 2013; Rundle et al. 2009; Spence et al. 2009) we included supermarkets and produce 

vendors in a single measure to avoid multicollinearity among multiple measures of stores selling 

nutritious items such fruits and vegetables. The kernel density score of good food can be 

theoretically considered a composite food environment measure of the density and proximity of 

vendors selling healthy foods. A fixed-bandwidth quartic kernel density estimation was used to 

create a smooth, continuous surface where each supermarket and produce vendor was assigned a 

density value without respect to administrative boundaries. The surface is highest above the 

vendor location and diminishes as distance increases, reaching zero one mile in any direction 

from the vendor location (Silverman 1998). 

 

Covariates 

 Individual time-varying covariates were collected from 2007 to 2011. Demographic 

variables included age (age years, mean centered). An indicator for Medicaid (1= Medicaid, 

0=not on Medicaid) was constructed. As all members of this cohort have health insurance, 

Medicaid was included to control for shocks in individual income that might influence an 

individual’s interaction with the food environment and also body mass index. Health variables 

were included to control for variation in health status and healthcare. Covariates include a 

continuous Charlson comorbidity index score(Charlson et al. 1987), a weighted index taking into 

account the number and the seriousness of comorbid conditions. Medication indicators for use of 

insulin, oral diabetes medications and certain psychiatric medications that are clinically 

associated with weight change. 

 Time-varying census block group covariates from the American Community Survey 

(ACS) 2006-2010 were included as additional control variables. Three year pooled data provided 
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estimates at the block group level, which is the smallest geographic unit for which the Census 

Bureau publishes sample data. The ACS variables included continuous variables: population 

density (population per square mile), proportion of White (the number of white people divided 

by total population per block group), proportion of Black (the number of black people divided by 

total population per block group), and proportion of population under the federal poverty line 

(FPL, the number of people living under the federal poverty line divided by total population per 

block group).   

 The only individual time-invariant covariate was an indicator for movers. Movers 

(1=movers, 0=non-movers) are those who reported at least two valid different addresses between 

2006-2010.  

 

Statistical Methods 

 In order to understand how change in BMI is related to the change in food environment, 

we used modeled the within-person relationship between changes in food environment and 1-

year lagged BMI using year and individual fixed effects as follows: 

        = βoi + β1Envirit-1 + β2    + β3Xit + β4Zit-1 + β5yearDt + εit  

where        is a measure of the BMI of individual i in occasion s nested in year t;  βoi is 

the individual intercept that is swept out in the fixed effects model; Envirit-1  is a measure 

of the food environment (goodfood) for individual i in year t-1;      is a vector of 

measurement characteristics of BMI of individual i in occasion s nested in year t (quality, 

month); Xit is a vector of individual characteristics in year t (age, medicaid, charlson, 

insulin, oral, gain, loss); Zit-1 is a vector of lagged area level controls of individual i in 

year t-1 (population density, proportion white, proportion black, proportion poor); yearD 

includes indicators for year t; and εit is the time and individual specific error term with a 

mean 0 and variance θ.   

 

 Several approaches were employed to better understand whether the association between 

changes in food environment and BMI was affected by selection bias. First, an intent-to-treat 
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(ITT) approach was estimated using the 2006 address for all cohort members to model the 

association between 1-year lagged BMI and the local food environment score as the 

neighborhood changed around members between 2006 and 2010. The same models were also fit 

using the actual address (non-ITT) at which the person lived each year prior to the BMI 

measurements.  

 For people who moved, the non-ITT approach captures the relationship between prior 

year’s food environment and BMI along with residential self-selection bias, while the ITT 

approach estimates the effect of the food environment “offered” to individuals Those who moved 

can be considered to refuse the “offer”. Individuals who moved into a neighborhood with a 

similarly dynamic food environment as their 2006 neighborhood are expected to have similar 

estimates for the ITT and non-ITT approach, in the absence of selection bias. Those who move 

into a better food environment are hypothesized to have a decrease in BMI. The process of 

moving is expected to offset this relationship through an increase in stress or a decline in time for 

self-care.  

 All models were weighted using the inverse of the number of BMI measurements over 

the entire period so as to generalize back to the individuals in this population. Due to the 

theoretically ambiguous prediction of appropriate lag length in which food environment can 

change BMI, alternate lag periods were considered. As results might be sensitive to timing, the 

models were re-estimated using a lag of 2-years (i.e. good food environment kernel density two 

years prior to BMI measures) and a contemporaneous specification.  

 Finally, standard models using ordinary least squares (OLS) and individual random-

effects were estimated to compare with the a priori preferred fixed effects specifications. A 

Hausman test (Hausman 1978) was used to compare model specifications. It was hypothesized 
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that the fixed-effects models would attenuate the relationship between food environment and 

BMI observed in the OLS and random-effect models if omitted variable bias was reduced.  

 All analyses were conducted using STATA version 12. 

 

Results 

 There were 194,652 individuals in this study that meet the inclusion criteria above and 

had at least one measure of BMI from 2007 to 2011. 3.7% (N = 7,218) had at least one missing 

time-varying parameter. 17.3% of the individuals moved at least once during the study period 

and on average, 7.2% of individuals moved each year. 

 Table 1 reports means and standard deviations for the time-varying variables. The mean 

BMI was 31.83, the within-person standard deviation was 1.69, and the between-person standard 

deviation was 7.04. The measure of food environment kernel density ranged from 0 to 5.70 with 

a mean of 0.34, a within-person standard deviation of 0.01, and between-person standard 

deviation of 0.45.  

 Results from the intent-to-treat (ITT) models 1-6 are shown in Table 2. These models 

assumed no relocation from the 2006 address and represent the effect on BMI of the food 

environment “offered” to individuals. In Model 1, the unadjusted association between kernel 

density of good food environment (goodfood) was inversely related to BMI. For each one 

standard deviation increase in goodfood (0.46) in the prior year, BMI decreased by 0.116 

(p<0.001). Based on the average person in this sample with a BMI of 31, a height of 5’9” and 

weight of 210 lbs, this change is roughly equivalent to losing one pound. Model 2, adjusted for 

BMI measurement type, month, and year indicators, shows an attenuated association of good 
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food environment with BMI of -0.091. The addition of individual time-varying covariates in 

Model 3 and block-group covariates in Model 4 resulted in only small changes to the estimates.  

 Model 5 was restricted to non-movers and Model 6 restricted to movers, adjusting for the 

same covariates as Model 4. Among the non-movers, each one-unit increase in good food 

environment was associated with a decrease of 0.094 (p<0.05) BMI, translating into a loss of 

approximately one pound for an average cohort member, a small but statistically significant 

association in the anticipated direction. For those who moved at least once during the five-year 

study period, we found no statistically significant effect on BMI of change in the good food 

environment in the ITT model.   

 Results from the non-ITT models 7-12 using the actual observed food environment as the 

exposure of interest are shown in Table 3. Results of Model 7 show that, as in the equivalent ITT 

model, the unadjusted association of kernel density of good food environment was inversely 

related to BMI. Each one-unit increase in kernel density of good food environment in the prior 

year resulted in a decrease in BMI of 0.076 (p<0.001). In Model 8, which included BMI 

measurement type, and month and year indicators, the association between kernel density of 

good food environment and BMI became insignificant, and remained so in Models 9 and 10, 

when the individual time-varying covariates and the block-group controls were included, 

respectively.  

 Model 11 restricted the analysis to non-movers and Model 12 to movers only, and both 

included the same covariates as Model 10. Estimates from Model 11 can be thought of as 

representing the effect of the opening and closing of supermarkets and produce vendors in a 

residential area. For every one-unit increase in kernel density of good food environment there 

was a decrease of 0.084 (p<0.05) in BMI. These results were similar to the results of Model 5 in  
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a slightly smaller cohort. For movers, there was no relationship between kernel density of good 

food environment in year prior and change in BMI (Model 12).   

 We found no evidence for different effects of food environment on BMI using alternate 

lag structures (2 year lag or contemporaneous.  

 Results from the OLS and random-effect models with full sets of covariates had larger 

magnitudes of association; the coefficient on goodfood was -0.208 in the OLS model and -0.120 

in the random-effects model (not shown), while there was no evidence of a statistically 

significant relationship of goodfood and BMI in the fully adjusted fixed effects model. The 

Hausman test indicated that the coefficient estimates from the random effects model are biased 

and inconsistent and thus that the fixed effects model is preferred.  

 

Discussion 

 A clinically modest yet statistically significant association was found between 

improvements in the food environment and weight loss among adults with diabetes whose 

residential address remained unchanged over five years. Using data from the Coronary Artery 

Risk Development in Young Adults (CARDIA) study, researchers (Boone-Heinonen et al. 2013) 

found similarly modest reductions in BMI with a large increase supermarkets density, however 

the differential association of residential mobility was not tested in that study. Our finding is 

arguably clinically insubstantial given that opening a supermarket is only expected to lead to a 

one-pound weight loss in a representative individual from the cohort. Given the scale of the 

obesity epidemic, policymakers should consider the cost-effectiveness of initiatives to 

incentivize the opening of supermarkets and produce vendors. 
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 There was no evidence to support that there was an association between improvement in 

the food environment and weight status among adults who moved at least once over the five-year 

observation period.  This could be explained by a selection bias due to healthier individuals 

moving to neighborhoods that reflect their tastes for healthier environments. Additionally, 

opening supermarkets and produce vendors might change proximate housing prices and 

inconsequentially lead to an attrition of lower socio-economic individuals. Pope found that 

opening a Wal-Mart store increased local housing prices (Pope and Pope 2012). More research is 

needed to understand the factors causing residential mobility and the downstream relationship 

with obesity. 

 Among the limitations of this study, the study findings may only be generalizable to 

insured adults with diabetes who live in Northern California. Further research should be 

conducted to determine if this relationship holds in other geographic areas. As this study only 

includes adults with Type 2 diabetes, the effect might be different for children or those without 

diabetes. Also, there was no data on those who moved outside the Kaiser Permanente Northern 

California catchment area. The physical distance of supermarkets and produce vendors was taken 

into account in this study, although other relational factors such as quality and prices, which are 

expected to play a role in a consumer’s decision to switch stores, were not captured. More 

research is needed to understand how these influence purchasing decisions.  

 The results of this study call for the re-examination of food policies that encourage 

opening of supermarkets in “food deserts” as a means to reduce obesity in the neighboring 

communities. More thoughtful interventions that consider the cost per unit of effectiveness are 

needed in containing the obesity epidemic.  
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Tables 

 

Table 1: Mean and standard deviation of within and between individual 

Variable   Mean SD 

Body Mass Index (BMI) Overall 31.832 7.257 

 
Between 

 
7.041 

 
Within 

 
1.687 

Good food environment, kernel density Overall 0.341 0.460 

 

Between 

 

0.450 

  Within   0.010 

Age, years Overall 63.434 13.070 

 
Between 

 
13.230 

 
Within 

 
1.472 

Medicaid, yes/no Overall 0.021 0.145 

 

Between 

 

0.123 

  Within   0.044 

Charlson Index,  Overall 2.170 1.918 

 

Between 

 

1.454 

 

Within 

 

0.993 

Insulin, yes/no Overall 0.201 0.401 

 
Between 

 
0.318 

  Within   0.183 

Oral medication, yes/no Overall 0.418 0.493 

 

Between 

 

0.418 

 

Within 

 

0.249 

Medication causing weight gain (yes/no) Overall 0.068 0.252 

 
Between 

 
0.181 

  Within   0.135 

Medication causing weight loss (yes/no) Overall 0.085 0.279 

 

Between 

 

0.209 

  Within   0.147 

Quality of BMI measurement Overall 0.968 0.176 

 

Between 

 

0.114 

  Within   0.160 

Month of BMI measurement Overall 6.411 3.403 

 

Between 

 

1.540 

  Within   3.230 

Population density* Overall 8118.376 8705.752 

 

Between 

 

8588.290 

  Within   1976.850 

Proportion White* Overall 0.585 0.232 

 

Between 

 

0.229 

  Within   0.046 

Proportion Black* Overall 0.075 0.112 

 

Between 

 

0.109 

  Within   0.025 

Proportion below FPL* Overall 0.108 0.106 

 
Between 

 
0.102 

  Within   0.027 

*Measured at the block group level  

  



    

 

 

19 

Table 2 -ITT: Change in body mass index (BMI), individual fixed effects models 

 

(1) (2)
i
 (3) (4) (5) (6) 

Variables         nonmover mover 

       Intercept 31.586 (0.008)*** 31.369 (0.015)*** 36.583 (0.101)*** 36.734 (0.178)*** 36.729 (0.198)*** 36.754 (0.422)*** 

       goodfood (prior 

year) -0.253 (0.031)*** -0.091 (0.032)*** -0.097 (0.032)*** -0.087 (0.031)*** -0.094 (0.035)** -0.062 (0.067) 

Age (centered) 

  

-0.124 (0.002)*** -0.124 (0.004)*** -0.124 (0.004)*** -0.126 (0.011)*** 

Medicaid 

  

0.164 (0.080)** 0.075 (0.120) 0.013 (0.124) 0.159 (0.227) 

Charlson index 

  

-0.032 (0.003)*** -0.040 (0.004)*** -0.041 (0.004) *** -0.037 (0.010)*** 

On insulin 

  

0.468 (0.018)*** 0.278 (0.024)*** 0.272 (0.027)*** 0.301 (0.052)*** 

On oral 

  

0.321 (0.012)*** 0.250 (0.016)*** 0.260 (0.018)*** 0.218 (0.035)*** 

On weight gain 

  

-0.038 (0.025) -0.044 (0.033) -0.028 (0.036) -0.090 (0.078) 

On weight loss 

  

-0.096 (0.022)*** -0.092 (0.027)*** -0.087 (0.030)*** -0.111 (0.067)* 

Population 

density 

   

0.00001 (0.0001) 0.00001 (0.0001)* 0.00001 (0.0001) 

Proportion 

white 

   

-0.010 (0.066) 0.083 (0.084) -0.146 (0.107) 

Proportion 

black 

   

0.026 (0.040) 0.052 (0.053) -0.013 (0.061) 

Proportion 

under FPL 

   

0.076 (0.081) 0.090 (0.106) 0.065 (0.124) 

       Individuals  179,378   179,378   177,244   171,120   139,784   31,336  

Observations  2,380,290   2,380,290   2,344,061   1,438,136   1,172,446   265,690  

***p<0.01, 

**p<0.05, *p < 

0.1 

      ¥Robust Standard errors are in parenthesis 

    (i) Models 2-6 adjusted for month and year indicators and measurement method (not shown) 
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Table 3 - Non-ITT: Change in body mass index (BMI), individual fixed effects models 

 

(7) (8)
i
 (9) (10) (11) (12) 

Variables         nonmover mover 

       Intercept 31.530 (0.021)*** 31.369 (0.015)*** 36.583 (0.101)*** 36.344 (0.132)*** 36.342 (0.305)*** 35.811 (0.292)*** 

       goodfood* (prior year) -0.076 (0.021)*** -0.014 (0.021) -0.016 (0.022) -0.015 (0.016) -0.084 (0.034)** 0.008 (0.028) 

Age (centered) 

  

-0.122 (0.002)*** -0.117 (0.003)*** -0.120 (0.002)*** -0.105 (0.007)*** 

Medicad 

  

0.223 (0.076)*** 0.174 (0.094)* 0.120 (0.104) 0.252 (0.175) 

Charlson index 

  

-0.031 (0.003)*** -0.037 (0.003)*** -0.039 (0.004) *** -0.033 (0.008)*** 

On insulin 

  

0.455 (0.018)*** 0.354 (0.206)*** 0.350 (0.024)*** 0.365 (0.043)*** 

On oral 

  

0.323 (0.012)*** 0.284 (0.013)*** 0.299 (0.015)*** 0.233 (0.028)*** 

On weight gain 

  

-0.050 (0.024)** -0.060 (0.028)** -0.049 (0.031) -0.097 (0.065) 

On weight loss 

  

-0.086 (0.021)*** -0.091 (0.020)*** -0.092 (0.025)*** -0.087 (0.055) 

Population density 

   

0.00001 (0.0001) 0.00001 (0.0001) 0.00001 (0.0001) 

Proportion white 

   

0.093 (0.064) 0.281 (0.417) 0.084 (0.065) 

Proportion black 

   

0.014 (0.124) 0.858 (0.695) -0.018 (0.125) 

Proportion under FPL 

   

0.046 (0.108) -0.060 (0.617) 0.050 (0.110) 

       Individuals  194,652   194,652   191,621   187,144   152,036   35,108  

Observations  2,474,790   2,474,790   2,429,800   1,909,969   1,555,353   354,616  

***p<0.01, **p<0.05, *p < 0.1 

      ¥Robust Standard errors are in parenthesis 

    (i) Not shown: Models 8-12 adjusted for month and year dummies, and measurement method. 

   

 


