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Abstract

Traditionally health statistics are derived from civil and/or vital registration. Civil registration in low- to
middle-income countries varies from partial coverage to essentially nothing at all. Consequently the state of
the art for public health information in low- to middle-income countries is efforts to combine or triangulate
data from different sources to produce a more complete picture across both time and space – what we term
data melding. Data sources amendable to this approach include sample surveys, sample registration systems,
health and demographic surveillance systems, administrative records, census records, health facility records
and others. There are very few useful demonstrations of ‘data melding’, and the two of which we are aware
both relate to HIV prevalence.

We propose a new statistical framework for gathering health and population data – Hyak – that leverages
the benefits of sampling and longitudinal, prospective surveillance to create a cheap, accurate, sustainable
monitoring platform. Hyak has three fundamental components:

• Data Melding: a sampling and surveillance component that organizes two data collection systems to
work together: (1) data from HDSS with frequent, intense, linked, prospective follow-up and (2) data
from sample surveys conducted in large areas surrounding the HDSS sites using informed sampling so
as to capture as many events as possible;

• Cause of Death: verbal autopsy to characterize the distribution of deaths by cause at the population
level; and

• SES: measurement of socioeconomic status in order to characterize poverty and wealth.

We conduct a simulation study of the informed sampling component of Hyak based on the Agincourt health
and demographic surveillance system site in South Africa. Compared to traditionally cluster sampling,
Hyak’s informed sampling captures more deaths, and when combined with an estimation model that includes
spatial smoothing, produces estimates of both mortality counts and mortality rates that have lower variance
and small bias.

We compare the relative cost and precision of Hyak to traditional repeated cluster samples to measure
mortality. We find that in as short as two years Hyak is substantially more cost-effective and accurate than
current systems.
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1 New Directions for Health and Population Statistics in Low- to
Middle-Income Countries

1.1 Background

In most of the developed world the traditional source of basic public health information is civil
registration. Civil registration is a system that records births and deaths within a government
jurisdiction. The purpose is two-fold: (1) to create a legal record for each person, and (2) to
provide vital statistics. Optimally a civil register includes everyone in the jurisdiction, provides the
basis to ensure their civil rights and creates a steady stream of vital statistics.

The vital statistics obtained from many well-functioning civil registration systems include birth
rates by age of mother, mortality rates by sex, age and other characteristics, and causes of death
for each death. These basic indicators are the foundation of public health information systems, and
when they are taken from a near-full-coverage civil registration system, they relate to the whole
population.

Although the idea is inherently simple, implementing full-coverage civil registration is not, and only
the world’s richest countries are able to maintain ongoing civil registration systems that cover a
majority of the population. Civil registration in the rest of the world varies from partial coverage to
essentially nothing at all (Mathers et al., 2005). A recent four-article series titled “Who Counts?”
in the Lancet reviews the current state of civil registration (AbouZahr et al., 2007; Boerma and
Stansfield, 2007; Hill et al., 2007; Horton, 2007; Mahapatra et al., 2007; Setel et al., 2007). The
authors lament that there has been a half a century of neglect in civil registration in low- to middle-
income countries, and critically, that it is not possible to obtain useful vital statistics from those
countries (Mahapatra et al., 2007; Setel et al., 2007). The Lancet authors argue that in the long term
all countries need complete civil registration to ensure the civil rights of each one of their citizens
and to provide useful, timely public health information (AbouZahr et al., 2007), and they explore
a number of interim options that would allow countries to move from where they are today to full
civil registration (Hill et al., 2007). Echoing the Lancet special series are addition urgent pleas for
better health statistics in low- and middle-income countries (for example: Abouzahr et al., 2010;
Bchir et al., 2006; Mathers et al., 2009, 2005; Rudan et al., 2000). These authors clearly identify
a need for representative data describing sex-, age-, and cause-specific mortality through time in
small enough areas to be meaningful for local governance and health institutions. These critiques
are for the most part discussed in the framework of civil registration as the ‘primary’ source of
data.

We agree that in order to ensure civil rights and provide each unique citizen with a legal identity,
full-coverage civil registration is the long-term goal. Acknowledging that, we believe that the joint
discussion of civil registration and vital statistics is not helpful. The conflation of these two topics
is an accident of history; the fact that historically civil registration came first and vital registration
and vital statistics followed naturally from civil registration.

In recent decades the field of statistics has matured to provide effective and very efficient methods for
sampling and using sample data to make inferences about whole populations. From an information
point of view it is no longer necessary to have data describing every vital event and each unique
citizen; in fact, it is wasteful and fiscally irresponsible to argue that full coverage information
systems are necessary to produce vital statistics and other public health indicators.

1



The sample-based approach drives the production of population statistics in many other fields –
economics, sociology, political science and many more. Borrowing from these fields public health
workers have developed sample-driven approaches to health statistics that partially substitute for
vital statistics derived from civil registration. India has conducted a sample registration system
(SRS) for several decades (Office of the Registrar General & Census Commissioner, India, 2012)
that has produced good basic vital statistics, and more recently Jha and colleagues (2006) have
added verbal autopsy (Lopez et al., 2011) to this system to create the Indian Million Death Study
(MDS). In a similar vein, USAID’s Sample Vital Registration with Verbal Autopsy (SAVVY) is
a program that combines sample registration with verbal autopsy and provides general-purpose
tools to collect data (MEASURE Evaluation, 2012). USAID’s Demographic and Health Surveys
(DHS) (Measure DHS, 2012) and UNICEF’s Multiple Indicator Cluster Surveys (MICS) (UNICEF
- Statistics and Monitoring, 2012) are good examples of traditional household surveys that describe
a select subset of indicators for national populations at multiple points in time. There are many
more similar sample surveys conducted by smaller organizations and aimed at specific diseases or
the evaluation of specific interventions.

Most of these replicate the study designs – specifically the sample designs – developed in other
fields to provide cross-sectional snap-shots of the current state of the population with respect to an
indicator. With the exception of India’s SRS and SAVVY, they lack the ongoing, prospective, lon-
gitudinal structure of a traditional vital registration system, and consequently they do not measure
changes and trends well. They also often lack the spatial resolution to distinguish differences in
indicator values across short distances. Finally, they often miss or undercount rare events because
they typically take one measurement and rely on recall to fill in recent history.

The current state of the art for public health information in low- to middle-income
countries is efforts to combine or triangulate data from different sources to produce a
more complete picture across both time and space. We will refer to this general strategy
as data melding. The usual sources of data include: non-representative, low-coverage, poor quality
vital registration data; roughly once-per-decade census data; snap-shot or repeated snap-shot data
from (sometimes nationally representative) household surveys; one-off sample surveys conducted
for a variety of specific reasons by a diverse array of organizations; sample registration systems;
and finally, a hodgepodge of miscellaneous data sources that may include health and demographic
surveillance systems (HDSS), sentinel surveillance systems, administrative records, clinic/hospital
records and others.

Alexander Rowe (2009) and Jennifer Bryce (2010) describe a system of ‘integrated, continuous
surveys’ that would produce ongoing, longitudinal monitoring of a variety of outcomes. Data from
such a system could be representative with respect to population, time and space and thereby
substitute for and improve on traditional vital statistics data. The idea is to systematize the
nationally representative household surveys already implemented in a country, conduct them on a
regular schedule with a permanent team and institute rigorous quality controls. The innovation is
to turn traditional cross sectional surveys into something quasi longitudinal and to ensure a level
of consistency and quality. This concept appears to still be in the idea stage without any real
methodological development or real-world testing. More in the spirit of data melding, Bryce and
colleagues (2004) use a variety of data sources to conduct a multi-country evaluation of Integrated
Management of Childhood Illness (IMCI) interventions. This evaluation does develop some ad-hoc
methods for combining and interpreting data from diverse sources.

Victora and colleagues (2011) articulate a similar vision for a national platform for evaluating the
effectiveness of public health interventions, specifically those targeting the Millennium Development
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Goals (MDG). The authors argue that national coverage with district-level granularity is necessary,
and like Rowe and Bryce, that continuous monitoring is required to assess changes and thereby
intervention impacts. This article contains significant discussion of general survey methods, sample
size considerations and other methodological requirements that would be necessary to evaluate
MDG interventions. Again however, there are no methodological details that would allow someone
to design and implement a national, prospective survey system of the type described.

Several authors who work at HDSS sites have described an idea for carefully distributing HDSS
sites throughout a country in way that could lead to a pseudo representative description of health
indicators in the country through time (Ye et al., 2012). Although these authors do not provide
details for how this could be done or evidence that it works, the basic idea is supported by work from
Byass and his colleagues (2011) who examine the national representativeness of health indicators
generated in individual Swedish counties in 1925. Byass and colleagues discover that any of the
not-obviously-unusual counties produced indicator values that were broadly representative of the
national population – the counties being roughly equivalent to an HDSS site, and Sweden in 1925
being roughly equivalent to low- and middle-income countries today.

Prabhat Jha (2012) summarizes all of this in his description of five ideas for improving mortality
monitoring with cause of death. His five ideas include SRS systems with verbal autopsy, improving
the representativeness of HDSS (similar to Ye and colleagues (2012)), coordinating, representative
retrospective surveys (similar to Rowe and Bryce) and finally using whatever decent-quality civil
registration data might be available.

We find only two fully implemented and demonstrated examples of data melding in the public
health sphere. Alkema and colleagues (2008; 2007) working with the UNAIDS Reference Group on
Estimates, Modelling and Projections develop a Bayesian statistical method that simultaneously
estimates the parameters of an epidemiological model that represents the time-evolving dynamics
of HIV epidemics and calibrates the results of that model to match population-wide estimates
of HIV prevalence. The epidemiological model is fit to sentinel surveillance data describing HIV
prevalence among pregnant women who attend antenatal clinics, and the population-wide measures
of prevalence come from DHS surveys. Interestingly the second example relates to a similar problem.
Lanjouw and Ivaschenko at the World Bank (2010) describe a method to meld population-level
data from DHS surveys and HIV prevalence data from a sentinel surveillance system. The DHS
contains representative information on a variety of items but not HIV prevalence, and the sentinel
surveillance system describes the HIV prevalence of a select (non-representative) subgroup, again
pregnant women who attend antenatal clinics. Building on ideas in small-area estimation, they
develop and demonstrate a method to adjust the sentinel surveillance data and then predict the
HIV prevalence of the whole population.

Although these are two specific applications of data melding, it is this level of conceptual and
methodological detail that are necessary in order to meld data from different sources to produce
representative, probabilistically meaningful results. The population, public health and evaluation
literatures are full of urgent requests for better data and more useful methods to meld data from
different sources to answer questions about cause and effect and change at national and subnational
levels, but there is very little in any of those literatures that actually develops the new concepts
and methods that are necessary to deliver the required new capabilities.
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1.2 A New Statistical Platform

Taking account of the situation described in the literature and firmly in the spirit of ‘data meld-
ing’, we aim to develop a system that provides high quality, continuously generated, representative
vital statistics and other population and health indicators using a system that is cheap and logisti-
cally tractable. We are confident that such a system can provide highly useful health information
at all important geographical (and other) scales: nation, province, district, and perphaps even
subdistrict.

As we argue above, we strongly believe that a sample-based approach is both appropriate and
sufficient to produce meaningful, useful public health information, and we do not believe it is
fiscally responsible to attempt to cover the entire population with a public health information
system. That argument must be made on the basis of guaranteeing human rights alone.

1.3 Design Criteria

What we want is a cheap, sustainable, continuously operated monitoring system that combines
the benefits of both sample surveys (representativity, sparse sampling, logistically tractable) and
surveillance systems (detailed, linked, longitudinal, prospective with potentially intense monitoring
– e.g. of pregnancy outcomes and neonatal deaths) to provide useful indicators for large popula-
tions over prolonged periods of time, so that we can monitor change and relate changes to possible
determinants, including interventions. More specifically, ‘useful’ in this context means an informa-
tive balance of accuracy (bias) and precision (variance) – i.e. minimal but probably not zero bias
accompanied by moderate variance. We want indicators that are close to the truth most of the
time, and we want an ability to study causality properly. Critically, we want the whole system to
be cheaper and more sustainable than existing systems, and perhaps offer addition advantages as
well.

1.4 Hyak

We propose an integrated data collection and statistical analysis framework for improved population
and public health monitoring in areas without comprehensive civil registration and/or vital statistics
systems. We call this platform Hyak – a word meaning ‘fast’ in the Chinook Jargon of the
Northwestern United States.

Hyak is conceived as three having three fundamental components:

• Data Melding: a sampling and surveillance component that organizes two data collection
systems to work together to provide the desired functionality: (1) data from HDSS with
frequent, intense, linked, prospective follow-up and (2) data from sample surveys conducted
in large areas around the HDSS sites using informed sampling so as to capture as many events
as possible.

• Verbal Autopsy (Lopez et al., 2011) to estimate the distribution of deaths by cause at the
population level, and

• SES: measurement of socioeconomic status (SES) at household, and perhaps other levels, in
order to characterize poverty and wealth.
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Hyak uses relatively small, intensive, longitudinal HDSS sites to understand what types of individ-
uals (or households) are likely to be the most informative if they were to be included in a sample.
With this knowledge the areas around the HDSS sites are sampled with preference given to the
more informative individuals (households), thus increasing the efficiency of sampling and ensuring
that sufficient data are collected to describe rare populations and/or rare events. This fully utilizes
the information generated on an on-going basis by the HDSS and produces indicator values that
are representative of a potentially very large area around the HDSS site(s). Further, the informa-
tion collected from the sample around the HDSS site can be used to calibrate the more detailed
data from the HDSS, effectively allowing the detail in the HDSS data to be extrapolated to the
larger population. For an example of how this has been done in the context of antenatal clinic
HIV prevalence surveillance and DHS surveys, see Alkema et al. (2008). Another way to do this
is to build a hierarchical Bayesian model of the indicator of interest, say mortality, with the HDSS
being the first (informative) level and the surrounding areas being at the second level. Thus the
surrounding area can borrow information from the HDSS but is not required to match or mirror
the HDSS.

In the remainder of this work we focus on the informed sampling component of Hyak. Informed
sampling seeks to capture as many events as possible. This is critical for the measurement of
mortality, and especially for the measurement of cause-specific mortality fractions (CSMF) at the
population level. In order to adequately characterize the epidemiology of a population, it is nec-
essary to measure the CSMF with some precision, and to do this a large number of death events
with verbal autopsy are required, especially for rare causes. Informed sampling aims to make the
measurement of mortality rates and CSMFs as efficient as possible.

Below we present a detailed example of the informed sampling idea and a pilot study based on
information from the Agincourt HDSS site in South Africa (Kahn et al., 2012, 2007). We generate
virtual populations based on information from the Agincourt site, and then we simulate applications
of traditional one-stage cluster and Hyak sampling designs. We estimate sex-age-specific mortality
rates for children ages 0− 4 years (last birthday) and compare and discuss the results.

In the Conclusions Section we describe how verbal autopsy methods can be integrated into the
Hyak system and the ‘demographic feasibility’ of Hyak.

We are thinking about existing data collection methods and these objectives in a unified framework,
and we are starting by experimenting with sampling and analysis frameworks that work together to
provide the basis for a measurement system that is representative, accurate and efficient in terms of
information gained per dollar spent (not the same as cheap in an absolute sense because estimation
of a binary outcome like death is still bound by the fundamental constraints of the binomial model;
i.e. relatively large numbers of deaths are needed for useful measurements). To start we are focusing
on mortality as our example indicator.

A measurement system like this would be the among the cheapest and most informative ways
to monitor the mortality of children affected by interventions that cover large areas and exist
for prolonged periods of time, such as the planned Africa Health Markets for Equity (AHME)
intervention sponsored by the Gates Foundation and DFID. With this in mind, the pilot project
we present below focuses on childhood ages 0− 4.
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2 Pilot Study of Hyak Informed-Sampling via Simulation

2.1 Methodological Approach

In this section we describe our approach to sampling and analysis. To be concrete, we suppose that
the outcome of interest is alive or dead for children age 0 − 4. There are two novel aspects to our
approach:

• Informed Sampling: Using existing information from a HDSS site we construct a mortality
model based on village-level characteristics. On the basis of this model we subsequently
predict the number of outcomes of interest in each village of the study region. We then set
sample sizes in each village in proportion to these predictions.

• Analysis: We model the sampled deaths as a function of known demographic factors and
village-level characteristics, and then we employ spatial smoothing to tune the model to each
village and exploit similarities of risk in neighboring villages.

2.1.1 Notation

Given our interest in the binary status alive or dead, our modeling framework is logistic regression
with random effects. Specifically, let i = 1, ..., I represent villages, j = 1, ..., 4 index the four levels
of sex (F, M) and age categories (< 1 years, 1−4 years last birthday). Then the quantity of interest
is Yij , the unobserved true number of deaths in village i and in sex/age stratum j. We assume that
the populations Nij are known. Also assumed known are village-specific covariates Xi. Examples
may include the average SES in village i, measures of water quality, and proximity to health care
facilities.

The probability of dying in village i and stratum j is denoted pijk. We stress that we are carrying
out a small-area estimation problem so the target of interest is Yij and the probability is just an
intermediary which allows us to set up a model. If the full data were observed we would take the
probability to be Yij/Nij .

The survey sample corresponds to choosing nij , the number of children in stratum j that we sample
in village i. Of these yij are recorded as dying.

2.1.2 Models

In this section we describe models that may be fit to the sampled data. Once we have estimated
probabilities p̂ij we have the estimate:

Ŷi = yi +
4∑
j=1

(Nij − nij)× p̂ij , (1)

where yi is the observed number of deaths and (Nij − nij) is the number of unsampled individuals
in village i and stratum j.

I Naive Model: The baseline model simply estimates p̂ = y/n, i.e. estimates a single prob-
ability as the overall empirical risk. The predicted number of deaths in each village is then
(1) with p̂ij = p̂.
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II Age & Sex Model: This model estimates p̂j = yj/nj , i.e. estimates four probabilities as
the empirical risks. The predicted number of deaths in each village is then (1) with p̂ij = p̂j .

III Logistic Regression Covariate Model: This model fits a model to all villages sampled
and estimates stratum effects and in addition the association with village-level covariates xi:

logit pij = xiβ + γj , (2)

where j = 1, ..., 4. Hence, we have a model with a separate baseline for each stratum and with
the covariates having a common effect across stratum (i.e., no interation between covariates
and stratum). Once we have estimates γ̂j and β̂ we can obtain fitted probabilities:

p̂ij =
exp(xiβ̂ + γ̂j)

1 + exp(xiβ̂ + γ̂j)
,

which may be used in (1). The model can be fit via maximum likelihood.

IV Logistic Regression Random Effects Covariate Model: This model requires all vil-
lages to have sampled data and estimates stratum effects and village-level effects as in (2)
and in addition introduces random effects to account for unmeasured village-level covariates.
Specifically, we assume the model:

logit pij = xiβ + γj + εi + Si, (3)

where j = 1, ..., 4. We have two random effects in this model. The unstructured error terms
εi ∼iid N(0, σ2ε ) are independent and allow for excess-binomial variability. The second set of
error terms Si are spatial random effects that allow the smoothing of rates across space. An
obvious way of modeling the spatial random effects is using an intrinsic CAR model (Besag
et al., 1991) in which:

Si|Sj , j ∈ ne(i) ∼ N(Si, σ
2
s/ni),

where ne(i) is the set of neighbors of village i and ni is the number of such neighbors. To use
this model we need a definition of neighbor. Once again we can obtain fitted probabilities:

p̂ij =
exp(xiβ̂ + γ̂j ε̂i + Ŝi)

1 + exp(xiβ̂ + γ̂j ε̂i + Ŝi)
,

which may be used in (1). Until recently fitting this model was computationally challenging.
However, Rue et al. (2009) have recently described a clever combination of Laplace approxi-
mations and numerical integration that can be used to carry out Bayesian inference for this
this model. The inla R package implements the methods. A Bayesian implementation re-
quires specification of priors for all of the unkown parameters, which for model (3) consist of
β, γ, σ2ε and σ2s . We choose flat priors for β, γ, and Gamma(a, b) priors for both σ−2

ε and
σ−2
s .

2.1.3 The Simulation Study Region

We describe the study region that we create for the simulation study, in order to provide a context
within which the different sampling strategies can be described. The study region is based on the
Agincourt demographic surveillance system (DSS) site in South Africa (Kahn et al., 2007). The
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Figure 1: The 20 villages of the Agincourt region with Voronoi tesselations defining neighborhood
structure.

total population size is N = 28, 000 and these individuals reside in one of 20 villages so that there
are Ni = 1, 400 children in each village, of which 700 are girls and 700 boys, with 350 of each age
< 1 years, and the other 350 age 1− 4 years. For the purpose of this investigation, we treat three
of theses villages as Demographic Surveillance System (DSS) sites for which we have extensive
and complete information, and the remaining 17 as the ‘surrounding area’ for which we have only
rudimentary information such as would come from a basic census.

We form a Dirichilet tessellation of the village boundaries based on the 20 coordinate pairs that
describe the centroids of the villages. This operation forms a set of tiles, each associated with a
centroid and is the set of points nearest to that point. This is a standard operation in spatial
statstics (e.g. Denison and Holmes, 2001). We can then define neighbors (for the spatial model)
as those villages whose tiles share an edge. Figure 1 shows the study region along with village
centroids and associated village polygons (as defined by the Voronoi tesselations).

2.1.4 Sampling Strategies

In this section we describe the sampling strategies that we compare. In each strategy the total
number of children sampled is 5,200.

• One-stage Cluster Sampling: Randomly select 5 villages and sample 1,040 children from
each of these villages, 520 girls and 520 boys. This is an example of a one-stage cluster
sampling plan, a common design.
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• Hyak – HDSS with Informative Sampling: We select all children from the 3 HDSS
villages and a total of 1,000 from the remaining 17 villages. The numbers of boys and girls
from the remaining villages are sampled proportionately to the predicted number of deaths
based on the HDSS data. Specifically we fit model (2), and on the basis of that fit (particular
the β,γ) we obtain predicted counts of deaths for all villages. Let β?,γ? be the estimated
parameters based on the HDSS data only and p?ij be the associated village and stratum-
specific parameters. Then the predicted number of deaths in the remaining 17 villages are
Ỹij = Nij × p̂?ij . We then select sample sizes nij ∝ Ỹij so that villages/stratum with more
predicted deaths are sampled more heavily. Specifically, if n++ is the total sample size we
take nij = n++× Ŷij/Ŷ++ where Ŷ++ is the total predicted number of deaths (in the non-DSS
villages). The observed number of deaths from nij is yij .

2.1.5 Measures of Predictive Accuracy

There are different simulation scenarios that may be envisaged. Given the N total children, equally
broken into the four stratum, we can set risks pij for each village/stratum and then simulate counts
Yij . We can then subsample from these counts, under each of the four designs and repeat s = 1, .., S
times. Taking this one step further we might wish to average over the possible realizations of counts
Yij .

The estimated number of deaths in survey villages in simulation s is

Ŷ
(s)
ij = y

(s)
ij + (Nij − nij)× p̂(s)ij

where the p̂
(s)
ij are obtained from one of the models we described in Section 2.1.2.

We now define the accuracy measures that we use. An obvious measure of accuracy is the mean
squared error (MSE) associated with the predicted number of deaths. The MSE, averaged over
villages and strata is

MSE =
1

S

S∑
s=1

20∑
i=1

4∑
j=1

(Yij − Ŷ (s)
ij )2 (4)

=

20∑
i=1

4∑
j=1

(Ŷ ij − Yij)2 +
1

S

S∑
s=1

20∑
i=1

4∑
j=1

(Ŷ
(s)
ij − Ŷ ij)

2 (5)

=
20∑
i=1

4∑
j=1

Bias(Ŷij)
2 +

20∑
i=1

4∑
j=1

Var(Ŷij). (6)

where

Ŷ ij =
1

S

S∑
s=1

Ŷ
(s)
ij

is the average of the predicted counts over simulations in village i and stratum j. The decompo-
sition in terms of bias and variance is useful since it makes apparent the trade-off involved in
modeling.
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Figure 2: The simulated spatial random effects for the Agincourt region.

2.2 Simulation

We assume there are two village-level covariates so that the length of the β vector is 2. Both of
the village-level covariates xi1 and xi2 are generated independently from uniform distributions on
0 to 1. Based loosely on the real values from the Agincourt HDSS in South Africa, the parameter
values we use in the simulation are:

• The risk of death in young girls is expit(γ1) = 0.050.1

• The risk of death in young boys is expit(γ2) = 0.117.

• The risk of death in older girls is expit(γ3) = 0.032.

• The risk of death in older girls is expit(γ4) = 0.071.

• The first village-level covariate has exp(β1) = exp(−1.1) = 0.333 so that a unit increase in x1
leads to the odds of death dropping by a third.

• The second village-level covariate has exp(β2) = exp(0.7) = 2.01 so that a unit increase in x2
leads to the odds of death doubling.

• We set σ2ε = 0.22 to determine the level of unstructured variability. This leads to a 95% range
for the residual unstructured odds being exp(±1.96×

√
0.22) = [0.40, 2.51].

• We set σ2s = 0.48 to determine the level of unstructured variability. This operation requires

1expit() is the inverse of logit()
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some care because the ICAR model does not define a proper probabiity distribution. The
ICAR variance is not directly interpretable and so instead Figure 2 shows a simulated set of
Si, i = 1, ..., 20 values, with darker values indicating higher risk. The spatial dependence is
apparent, with this realization producing high risk to the West of the region and low risk in
the East.
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Figure 3: The predicted probabilities for the Agincourt region: (a) young girls, (b) young boys,
(c) older girls, (d) older boys.

Combining all of the elements of the model, we generate deaths Yij for village i and stratum j
by randomly drawing from a Binomial distribution with probabilities given by (3). This yields
the predicted probabilities for all 20 villages and for each of the four stratum displayed in Figure
3.
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The HDSS villages are selected by taking the villages with both large x1 and large x2, small x1 and
small x2, followed by a randomly sampled third village.

A Ga(5, 1) prior is used for both the spatial and non-spatial random effects in the spatial mod-
els.

2.3 Results

Table 1 summarizes the results of the simulation study. The number of sampled deaths and bias,
variance and MSE from (6) are displayed for each combination of sampling strategy and analytical
model. Table 2 contains the differences for each metric comparing the cluster sample and Hyak
– raw differences and proportional differences with the cluster sample as the base for compari-
son.

Overall regardless of analytical model, it is clear that the Hyak sampling strategy captures more
deaths and is more accurate – the MSE is smaller in general. Further examining the components
of the MSE, what emerges is: (i) Hyak yields far, far lower variance, and (ii) pays for this by
sacrificing some bias, but not much. The overall comparison between the sampling strategies very
clearly favors Hyak. This partly reflects the careful choice of HDSS villages so that they contain
substantial variation in terms of village-level covariates.

Comparing the analytical models also produces and encouraging result. All of the models perform
better overall (smaller MSEs) when using the Hyak sampling strategy, and within Hyak, model
IV logistic regression random effects covariate model or Covariates & Space outperforms the others.
This suggests that accounting for unmeasured factors and taking advantage of the spatial structure
of mortality risk is significantly worthwhile.

Table 1: Deaths, Bias, Variance, MSE for Cluster Sample & Hyak

Sampling Model Deaths Bias Variance MSE

Cluster

I. Näıve 473 40 353 1,918
II. Age & Sex 473 39 349 1,888
III. Covariates 473 39 439 1,981
IV. Covariates & Space 473 -na- -na- -na-

Hyak

I. Näıve 549 42 86 1,855
II. Age & Sex 549 42 85 1,823
III. Covariates 549 42 85 1,820
IV. Covariates & Space 549 41 94 1,780

Results from 100 simulations; 2,578 deaths. ‘Cluster’ is shorthand for
One-stage Cluster Sample; ‘Hyak’ for HDSS with Informative Sampling;
‘Covariates’ for Logistic Regression Covariate Model and ‘Covariates &
Space’ for Logistic Regression Random Effects Covariate Model. It is not
possible to fit the spatial model (IV) to the one-stage sampling plan since
there are data from 5 villages only.
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Table 2: Comparisons: Hyak vs. Cluster Sample

Comparison Model Deaths Bias Variance MSE

Differences

I. Näıve 76 3 -268 -63
II. Age & Sex 76 3 -264 -65
III. Covariates 76 2 -354 -162
IV. Covariates & Space 76 -na- -na- -na-

I. Näıve 16% 6% -76% -3%
Proportional II. Age & Sex 16% 6% -76% -3%
Differences III. Covariates 16% 6% -81% -8%

IV. Covariates & Space 16% -na- -na- -na-

Differences are: Hyak− Cluster
Proportional Differences are: Hyak−Cluster

Cluster

The trade-off between bias and variance is clearly revealed by a closer look at the distributions of
the estimated probability of dying produced by each model. Figure 4 displays these distributions
for models I, III & IV – Näıve, Covariates and Covariates & Space under the Hyak sampling
strategy. The Näıve model estimates are very spread out, always include the truth and have some
bias; estimates from the Covariates model have very little spread, almost always miss the truth
and have clear bias; and finally, estimates from the Covariates & Space model have spread that
is intermediate between the other two models, distributions that always include the truth, and
about the same bias. Clearly the Covariates & Space model displays the balance we are seeking:
manageable bias, small spread, and importantly, distributions that always include the truth. This
combination of sampling strategy and analytical approach provides our key objective: an indicator
that is close to (and around) the truth most of the time.

3 Costing Hyak: Relative Precision & Expenditures

In this section we present the estimated financial commitment required to establish and maintain
Hyak. We also compare the relative cost and precision of Hyak to other mortality monitoring
systems currently in use. We find that in as short as two years, Hyak is substantially more cost-
effective and accurate than current systems.

3.1 Estimated Commitment for Hyak

Data collection using Hyak involves two parts: a central surveillance unit (similar to a HDSS site)
and statistically informed sampling outside the central site. Developing the initial infrastructure
for Hyak is similar to establishing a lightweight HDSS site, which we approximate at between
$250,000 and $500,000, depending on local circumstances. This cost covers hiring personnel (a
relatively modest permanent staff and part-time enumerators), equipment, and permanent physical
space. Some permanent locations will likely be within existing facilities (in a hospital or clinic, for
example) which may reduce up-front costs. The infrastructure developed through the initial costs
produces significant savings in subsequent per-respondent costs. We estimate that the cost to visit
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Figure 4: Example of Bias / Variance Trade-Off.

a respondent in the central site will be about one-third of the cost to survey a respondent on a
typical platform, such as the DHS (Tollman and Ezeh, 2012).

Data collection at centralized HDSS-like sites would then be supplemented by surveys outside the
central site. These surveys would require a basic census of the entire region to establish a sampling
frame. Respondents would then be selected with probabilities determined using the statistically
informed sampling techniques described in Section 2.1.4. Statistically informed sampling increases
the propensity of selecting individuals in populations of interest, which increases efficiency and
reduces uncertainty.

3.2 Cost Comparison

Using approximate cost figures from the Agincourt HDSS site in South Africa and the APHRC
HDSS in Kenya (Tollman and Ezeh, 2012), we estimate the financial commitment to establish
and maintain a Hyak system compared to other data collection platforms. We estimate that
data collection within the central site would cost about ∼$7.50 per individual in each round of
data collection and year. Respondents selected using statistically informed sampling would cost
about ∼$40 per individual (Ezeh, 2012) (the APHRC HDSS in Nairobi, Kenya has conducted
survey samples similar to what is necessary for Hyak for a cost of ∼$40 per subject). The initial
lightweight census to determine a sampling frame would be ∼$20 per individual.

In computing cost estimates, we use population sizes from the simulations in Section 2.1.3 (N=28,000
individuals in 20 villages). We keep the total sample size for both Hyak and a DHS-like method
the same. We assume that the DHS-like method does an initial census to establish a sampling-
frame at a cost of $20 per population member and samples each respondent at a cost of $40 per
individual. For comparison, we use the simulation design which uses 260 children in each village,
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which approximates the geographically clustered sampling design used by the DHS. For Hyak, we
take all individuals in three villages as the central surveillance site with a start-up cost of $325,000
and survey cost of $7.50. Additionally, we do statistically informed sampling for 1000 individuals
in different villages. The cost for these individuals is the same as that of the DHS-like method. We
assume data collection proceeds for five years with two rounds per year.

Figure 5 displays the cumulative cost for Hyak and a DHS-like system for five years. The statisti-
cally informed sampling used by Hyak produces lower MSE than a cluster-based sampling design,
as demonstrated in Section 2.3. Hyak is also less expensive after the initial investment period
to establish the central surveillance site. In Figure 5 the cumulative investment is approximately
equal in year two. Establishing more central surveillance sites would, of course, increase the re-
quired initial investment and, thus, increase the time needed for the costs of the two approaches to
be comparable. Using the figures we have provided, however, we anticipate that the costs would
likely still be comparable within a reasonable time period (using three central sites in our set-up
would increase the time to only seven years, for example).

3.3 Overall Cost Assessment

Overall these results demonstrate that a system with permanent infrastructure such as Hyak is
financially more well-suited for sustainable, long-term monitoring than a cluster-based sampling
design. Further, statistically informed sampling produces greater accuracy than a cluster-based
sampling scheme by increasing the propensity for selecting members of the population of inter-
est.
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Figure 5: Cumulative cost for Hyak and a DHS-like system for five years.
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4 Discussion

4.1 Key Conclusions

The key conclusion of this pilot study is that the statistical sampling and analysis ideas supporting
the Hyak monitoring system are sound: a combination of highly informative data such as are
produced by a HDSS site can be used to judiciously inform sampling of a large surrounding area to
yield estimated counts of deaths that are far more useful than those produced by a traditional cluster
sample design. Further, Hyak combined with an analytical model that includes unstructured
random effects and spatial smoothing produces the most accurate and well-behaved estimates. The
improvements are dramatic and clearly justify additional work on these ideas.

Another crucial idea underlying Hyak is the notion that very detailed information generated by
a HDSS site can be extrapolated to the much larger surrounding population by calibrating that
information with carefully chosen and much less detailed data from the surrounding population.
This idea has already been demonstrated convincingly by Alkema et al. [2008] and is currently
being applied by UNAIDS to produce global estimates of HIV prevalence.

A key advantage of Hyak sampling strategy is that it captures significantly more deaths. Verbal
autopsy methods (Lopez et al., 2011) can be applied to all or a fraction of these deaths to as-
sign causes (immediate, contributing, etc.). This cause of death information can then be used to
construct distributions of deaths by cause – CSMFs – which illuminate the epidemiological regime
affecting the population, and if this is monitored through time, how the epidemiology of the pop-
ulation is changing. Critically, this provides a means of measuring the impact of interventions
on specific causes of death and the distribution of deaths over time. The increased number of
deaths captured with informed sampling increases the accuracy and precision of measurements of
CSMFs.

A final benefit of the Hyak system is that it provides two types of infrastructure: the HDSS and
the sample survey. In addition to providing information with which to sample, the HDSS provides
a platform on which a wide variety of longitudinal studies can be undertaken – linked observational
studies; randomized, controlled trials, all kinds of combinations of these, etc. Moreover, the per-
manent HDSS infrastructure also provides a training platform that can support a wide variety of
health and behavioral science training, mentoring and apprenticing/interning and experience for
young scientists of health professionals. Having the sample survey infrastructure provides a means
of quickly validating/calibrating studies conducted by the HDSS and provides another learning
dimension for the educational and training activities that the system can support.

A potential limitation of any mortality monitoring system is ‘demographic feasibility’, that is the
ability to capture enough deaths in a given population to measure levels and/or changes in mortality,
potentially by cause, through time. Death is a binomial process defined by a probability of dying,
and as such, is governed by the relatively simple characteristics of the binomial model. That model
specifies in simple terms the number of deaths necessary to estimate the probability of dying within
a given margin of error with a given level of confidence. No amount of sophistication will release
us from that basic set of facts. The Hyak system addresses this challenge by providing a means
through which to choose the best possible sample given what we know about the population, and
this in turn maximizes our ability to capture deaths. The fundamentals of the binomial model
require that one must observe relatively large numbers of deaths to measure mortality precisely
and especially to measure changes in mortality with both precision and confidence. So in light
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of those inescapable realities, the Hyak system produces the most information per dollar spent,
because it captures more deaths per dollar spent.

Finally and perhaps most importantly, the Hyak monitoring system is cheaper to run over a period
of years compared to traditional cluster sample-based survey methods. Combined with the fact
that Hyak also produces more useful information, this makes Hyak highly cost effective – more
bang for less buck.

4.2 Future Work

Bringing the Hyak idea to fruition will require a lot of additional work, likely:

• More simulation studies that incrementally approximate a wider variety (high and low mor-
tality, various covariates and spatial relationships, etc.) of real situations more faithfully.
These can be informed by historical data sets at the national level (e.g. Sweden) and HDSS
sites in low- to middle-income countries.

• A small ‘real-world’ pilot study that aims to implement all of the logistics necessary for Hyak
and work out the kinks so that we know how to run a Hyak system efficiently and effectively.

• A full scale pilot implementation that establishes a Hyak system for a population that is
large enough to be meaningful, i.e. ∼1 million people. It will likely be advantageous to do
this in partnership with an existing HDSS site in order to save the cost of setting up a new
HDSS site.
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