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Abstract

We aim to determine the extent to which variables commonly used
to describe health, wellbeing, and disability in old-age vary primarily as
a function of years lived (chronological age), years left (thanatological
age), or as a function of both. We analyze data from the US Health
and Retirement Study to estimate chronological age and time-to-death
patterns in 78 such variables. We describe results from the birth cohort
born 1915-1919 in the final 12 years of life. Our results show that most
markers used to study well-being in old-age vary along both the age and
time-to-death dimensions, but some markers are exclusively a function
of either time to death or chronological age, and others display different
patterns between the sexes.

Background

For an individual, age across the life course consists of two components: time
since birth and time to death, the chronological and thanatalogical dimen-
sions of age, respectively. In the aggregate, thanatological age is determined
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by the mortality rate schedule to which a birth cohort is subject until its
extinction. Individuals do not know their thanatological age with certainty.
To guess this quantity one projects an expectation of lifespan based on sce-
narios or extrapolations of how mortality rates might change over time.
Data classified by chronological age, like census population counts, can be
reclassified into thanatological age in this way.1

Prospectively, decreasing mortality has the effect of moving population
into higher thanatological ages, thereby increasing remaining life expectancy
(Sanderson and Scherbov 2005). In this case, the notion and measure of fu-
ture remaining lifespan is elastic, subject to uncertainty. In retrospect (after
the death of a cohort), the thanatological age structure of a population is
a fixed characteristic. Furthermore, since a closed birth cohort is akin to
a stationary population,2 the chronological and thanatological age profiles
are identical (Brouard 1989, Vaupel 2009, Rao and Carey 2014). Yet, even
in the case of stationary populations, the age profiles of other demographic
characteristics in the population are decidedly different when viewed chrono-
logically versus thanatologically. Distinct patterns emerge in the aggregate
due to an interaction between lifespan variation and the age profile(s) of de-
mographic characteristics.3 In the Results section, we provide an example of
a deceptive pattern over chronological age that is due to such an interaction
with lifespan.

Some life transitions, states, and changes in state intensities are almost
exclusively a function of time to death. There are other instances where
chronological age captures almost all pertinent variation. In cases where a
characteristic strongly varies as a function of time to death, the common
practice of aggregation over chronological age may misrepresent time trends
and misguide analyses about change over time and expectations for the
future. Measurement of the end-of-life trajectories of characteristics is useful
in such cases as a way of separating mortality patterns from patterns in
characteristics themselves. Characteristic measurements are taken while the
respondent is alive, but thanatological age at each interview is unknown until

1A paper on this topic is currently under review (Riffe et al. 2014). Brouard (1986;
1989) had already done the same thing some 30 years earlier, and we understand that S.
Scherbov also unwittingly produced the same result over a decade ago.

2The age structure of a birth cohort over time is proportional to the l(x) column of
the lifetable that describes its mortality, which is proportional to the stable age structure
determined by the Lotka-Euler renewal model when the intrinsic growth rate is equal to
zero.

3When we state that a characteristic is a function of either age perspective we do not
imply that age causes the given characteristic to vary, but rather that a characteristic
varies in some smooth, regular, or parsimonious way over age.
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the date of death is known, and is therefore retrospectively assigned. This
final analytical step lends clarity to the understanding of how characteristics
vary within and between lifespans.

Incorporating a time-to-death perspective in demographic studies is es-
pecially important when assessing the impact of “population ageing”. To
the extent that the health, welfare, and social care demands of a population
are functions of thanatological rather than chronological age structure, fore-
casts of the social and economic “costs” of ageing that are based only on
chronological age profiles are prone to misinterpretation. In our concluding
discussion we return to this point.

Research exploring time-to-death patterns has been done in other do-
mains, and topics examined can be roughly categorized into two types: 1)
things that are a function of apparent or perceived time to death (Hamer-
mesh 1985, Hurd and McGarry 1995, Carstensen 2006, Gan et al. 2004, B́ıró
2010, Salm 2010, Van Solinge and Henkens 2010, Cocco and Gomes 2012,
Payne et al. 2013, Balia 2013), and 2) things that are a function of actual
time to death (Miller 2001, Seshamani and Gray 2004, Werblow et al. 2007).
The first kind are mostly studies on cognitive transitions and economic or
health behaviors, while the second kind are mostly studies on health expen-
diture. Another branch of research relates perceived and actual remaining
lifetime (Perozek 2008, Delavande and Rohwedder 2011, Post and Hanewald
2012, Kutlu-Koc and Kalwij 2013). In this paper we will expand the second
group, focusing on a broad range of questions from ten waves of the US
Health and Retirement Study (HRS 2013).

We aim to understand the end-of-life age patterns of various dimensions
of morbidity, as measured by a set of 78 characteristics and indices. To
do this, we score the degree to which these characteristics vary in terms of
thanatological age, chronological age, or both. In all, we define four differ-
ent age and lifespan axes, which we use to classify the end-of-life patterns
of each characteristic tested. The axis along which a given characteristic
varies ought to determine how we measure, understand, and respond to
the characteristic. We show that often chronological age ought to be used
in conjunction with thanatological age in order to classify patterns, but in
many cases chronological age provides no information at all, and it even
obfuscates true temporal patterns.

Our analytical approach is retrospective rather than prospective, mean-
ing that no lifetable assumptions are made in the measurement of thana-
tological age, and no censoring adjustments are necessary. Although more
data are available for adjacent cohorts, we report results only for the cohort
born from 1915 to 1919, which contains the most extensive set of observa-
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tions in the dataset used. In the following section we describe the methods
in greater detail. We then demonstrate the four age axes by way of example,
and summarize all characteristics tested in terms of these four axes. Finally,
we discuss some implications and applications of this work.

Data & Method

All findings reported in this paper are based on data from the US Health
and Retirement Study (HRS). We use the Rand edition of the data, which is
conveniently merged across all ten waves. This data is free to download, and
all details of data processing and methods are made freely available in an
open code repository.4 We restrict the sample to only those individuals born
between 1900 and 1930 that died between 1992 and 2011, which narrows
the dataset down to 37051 observations of 9238 individuals. 8137 of these
observations are from the 1919 individuals that died from the 1915-1919
cohort. Adjacent cohorts are kept for the sake of a smoother loess fit to the
data, which we describe in the following paragraphs.

Underpinning this investigation are a series of demographic surfaces in-
dicating the average intensity of a given marker along the chronological and
thanatological time dimensions within a series of quinquennial birth cohorts,
from which we focus only on the central 1915-1919 birth cohort. This vi-
sual tool is similar to but orthogonal to the familiar Lexis surface. Figure 1
orients the reader with the temporal coordinates we use. This diagram rep-
resents the various possible lifespans within a given birth cohort, with an
arbitrary final age, ω, of 110. One’s thanatological age at birth is equal
to one’s chronological age at death, such that both axes close out with ω.
Members of the birth cohort are born on the left side of the diagram, at
chronological age zero and with an unknown y coordinate (remaining life-
time) at the time of birth. Lifelines advance downward and to the right,
where the downward direction indicates the approach to death, and the
rightward direction represents both the progression of calendar years and
chronological age. The blue arrow (B) indicates a hypothetical lifeline that
will eventually expire at age 99, although this property is unknown until
death. The present study contains only complete lifelines, such as that de-
picted in the color red (A) in Figure 1, which completes its lifespan at age
71. In this diagram, diagonal lines represent death cohorts, rather than the
birth cohorts found in the standard Lexis diagram.

4This repository includes R code used to process data, as well as generate results and
figures: https://github.com/timriffe/ThanoEmpirical
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Figure 1: Years lived and years left over the lifespan of a birth cohort
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We limit the current study to the 1915-1919 cohort due to the character-
istics of the data source. Using the HRS, enough observations are available
such that we can measure the patterns of within the area outlined in green
(C) in Figure 1. The left bound of this area is chronological age 72, and
the diagonal right bound belongs to the completed lifespan of 95. While
there are some observations at thanatological ages greater than 12, there
are too few to produce reliable estimates.5 Future waves will expand the
area applicable to all but the oldest birth cohorts that are already extinct
in the data.

The 1915-1919 birth cohort was exposed to the 1918 Spanish influenza

5Since the HRS spans 20 calendar years (1992-2011), the theoretical upper bound of
observation for thanatological age is 20.
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epidemic as toddlers (1915-1917 cohorts), as infants (1917-1918) cohort and
in-utero (1919 cohort). There is some evidence that this exposure mani-
fested in various ways in late life (e.g., Almond 2006), and so the reader
may rightly question whether the results presented here are in some way
anomalous. While more precise methods may detect effects, the methods
we expound here are not precise. Specifically, the smoothing procedure we
apply borrows information from adjacent birth cohorts, which itself may
erase whatever otherwise detectable health artifacts this cohort may have
carried into late life. At these ages, we assume that other risk factors, some
of them cumulative over the life course, senescence itself and other forces
likely drive patterns to a much greater extent. Our justification is here spec-
ulative, but we report that the results for this cohort do not appear visually
distinct from those present in other cohorts. More importantly, our goal
here is not to describe the end-of-life experience of this birth cohort, but to
add resolution to the measurement and description of ageing and morbidity
indicators, and contribute to the practice of demography in general.

Age Thanatological age is calculated for each individual as the lag between
interview and death dates expressed as decimal years. Chronological age is
calculated as the lag between birth and interview date in decimal years.
Each individual is therefore assigned a chronological and thanatological age
at each interview, along with measures of our variables of interest. Since
we are interested in viewing characteristics over both chronological age and
thanatological age simultaneously, we require observations spread over a
wide range of combinations of thanatological and chronological age.

The current HRS dataset runs from 1992 to 2011, which means that each
birth cohort is observed over a different range of ages. For example, the
1925-1929 cohort enters observation in 1992 at age 62 (at the youngest) and
acheives a maximum completed age of 85 by the end of 2011. On the other
end, the 1905-1909 enters the HRS in 1992 at age 72 at the youngest and has
a maximum completed lifespan of 105 by the last wave in 2011, albeit with
few observations at the upper extreme. Results from these and other birth
cohorts are also valid, but portions of these surfaces are based on fewer data
points (lifespans > 100) or ages in which labor market exits appear to drive
patterns at least as much as senescence (ages < 67, approximately). We
selected the 1915-1919 cohort because its observation window is centered
on the chronological ages in which most deaths occur and in which most
recent mortality improvements in low-mortality countries have occurred ,6

6Own calculations based on UN data (United Nations, Department of Economic and

6



and because the HRS provides a good density and spread of data points over
this window. The lower and upper age bounds may vary if questions were
not available in the first, second or final waves.

Characteristics We aim for a broad overview of the age variation across
different dimensions of old-age disability and wellbeing. For this reason
we select a wide variety of questions from the HRS data. These include
questions grouped roughly into the following categories:

1. Activities of Daily Living (ADL): six items, and two composite indices.

2. Instrumental Activities of Daily Living (IADL): seven items and two
composite indices.

3. Health Behaviors: five items.

4. Functional Limitations: six items.

5. Chronic Conditions: eight items and one composite index.

6. Cognitive Function: 15 items and two composite indices.

7. Psychological Wellbeing: nine items and one composite index.

8. Healthcare Utilization: 14 items.

The the specific variables included in our survey are found in the ap-
pendix tables following the same numbering scheme as above. In all, we
summarize results from 78 individual and composite items. We excluded
variables that were not asked continuously from at least wave 3 through 9.
Variables not available in the first or second wave have left age bounds at
higher ages than 72, whereas items not asked in wave ten have upper lifespan
bounds that are below 95.

Each survey question must be in a format suitable for numeric opera-
tions. This requires some compromises in data quality, since some coded
responses are less directly quantifiable, and our translation of categorical
or ordinal responses to numeric values was at times improvised. In most
cases, responses are easy to imagine as “good” and “bad”, in which case we
assigned higher values to “bad” and lower values to “good” outcomes. For

Social Affairs, Population Division 2013). The modal ages at death for the 1915-1919
cohort are 80-81 for males and around 87 for females. These calculations are based on
partially observed cohort mortality rates, M(x) (Human Mortality Database).
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example, respondents were asked if they felt depressed. We assigned 0 to
answers of “no” and 1 to answers of “yes”. Rather than divide all questions
into binary responses, we assigned intermediate values on a case by case
basis. For example, self-reported health had possible responses of “excel-
lent”, “very good”, “good”, “fair”, and “poor”, which we assigned values in
equal intervals from 0 to 1, respectively. Some response sets for particular
questionnaire items changed between waves. In these cases, we attempted
to assign numerical codes that were consistent over the transition. These
recodes are imprecise, but they are good enough to meet the goals of this
study. In other words, the surfaces we present are not exact measurements,
but are meant to provide impressions about how characteristics change over
age.7

Variables with compact or bounded numeric responses were rescaled to
range from 0 to 1. Variables with no clear bounds or very large upper
bounds, such as medical expenditure, body mass index, or number of hos-
pital visits were not rescaled. These rescalings are intended to simplify
the visual interpretation of surfaces, and they do not alter the quantitative
summary measures we use later.

Some questionnaire items in the HRS are only asked every second in-
terview. In these cases, we impute within-individual trajectories assuming
a linear trend. For example one item asks respondents whether they ex-
perience back pain. If in wave 3 an individual responded “no”, wave 4 is
skipped, and in wave 5 the respondent answered “yes”, then we assign 0 to
wave 3, 0.5 to wave 4 and 1 to wave 5 for this question. If a response is
missing in a given wave, but available in the previous wave, we carry it over
as a constant, but we do not impute backwards in time. We also do not
impute questions that were not part of the questionnaire for a given wave.
These within-individual procedures reduce missing cases for within valid in-
terviews by 30-40%, which in some cases provides our statistical procedures
with a better fit, but does not skew results.

Weighting The population universe of the HRS and this study is the res-
ident population of the United States. Therefore person weights are needed
in order to estimate population-level means. One difficulty with the HRS
is that the institutionalized population is treated as a second target popu-
lation. In all waves but 5 and 6, there are no person weights assigned to

7The pre-processing of variables is full of details that would clutter this paper. Rather
than a lengthy and detailed appendix describing the case by case treatment of variables,
we make the full code base used in the generation of results available in an open repository.
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institutionalized individuals. We try to impute missing person-weights ac-
cording to some simple assumptions. If the individual was assigned a weight
in a previous wave, we carry this weight over as a constant, unless there was
also a non-zero weight in a future interview, in which case we assign the
weight according to the within-individual linear pattern. Individuals and
interviews that still have missing person-weights after this procedure are
discarded from our study. Person weights compensate for minor detectable
attrition in the HRS (Kapteyn et al. 2006), which for our purposes may be
considered unbiased 8.

Loess smoothing Direct tabulations of the weighted data are legible if
all birth cohorts are combined, but doing this distorts results due to cohort
composition bias. To overcome birth cohort heterogeneity within surfaces,
we use birth cohorts as a third time dimension. Tabulations within this three
dimensional space are noisy, and so we enhance surface legibility by using a
non-parametric local smoother. We specify a loess model of the given char-
acteristic over chronological age, thanatological age, and quinquennial birth
cohorts, using all observations of since-deceased individuals from the 1900
through the 1934 birth cohorts. We fit the model using the loess() func-
tion in base R (Cleveland et al. 1992, R Core Team 2013)9 to the weighted
individual-level data for each sex separately, and then predict a surface for
the 1915-1919 birth cohort within the study area outlined in green (C) in
Figure 1. Weighting is therefore explicit by person-weights, and implicit by
point density within the three temporal dimensions.10

8Small biases in the survey only appear with respect to baseline characteristics that
we do not consider. Attrition due to health conditions, e.g., mental impairment, is mostly
mitigated due to the use of proxy respondents in such situations (Weir et al. 2011).

9Using the fitted model, surfaces are produced using the related loess prediction func-
tion, predict.loess(). The smoothing parameter, spar, is set to 0.7 for the results we
present in the paper. All results were also produced using smoothing parameters of .5,
and .9, and we concluded that the specific choice of smoothness does not drive results.
The three predictor dimensions are not normalized, in order to preserve year units.

10Note that smoothing over these three particular time dimensions is not an overiden-
tification. Within a cohort, to smooth over thanatological age, chronological age and
completed lifespan would be an overidentification, similar to the familiar APC problem.
The full set of lifespan indices the demographer has to choose from are: birth cohort, death
cohort, chronological age, thanatological age, complete lifespan, and period. Within this
set of six lifespan dimensions, some combinations invoke overidentification and others do
not. For instance, it would be possible to smooth over years lived, years left, and period
in this case, but birth cohorts are the more meaningful category for this study.
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Results

We first present examples of four surfaces that exemplify the major ways in
which characteristics tend to vary temporally over the lifespan within a birth
cohort. These four major patterns of variation provide a way to categorize
and understand markers of ageing. We summarize the results of our set of
78 characteristics by calculating Pearson correlation coefficients for each of
these four axes and display results graphically, as well as in an appendix
table.

Four major surface axes In most situations it is obvious to the eye
whether a variable operates over thanatological age or over chronological
age, but there are many instances where both are at play, or where the
relationship is complex. We first present surfaces representing psychological
problems for males (Figure 3a) and back pain for females (Figure 3b). These
two surfaces are examples of thanatological and chronological characteristics,
respectively.

From the direction of the contours on the surface in Figure 3a, we con-
clude that the chances of ever having been diagnosed with psychological
problems increases with the approach to death and not with the advancing
of chronological age, at least in the window of observation studied here. How-
ever, since the risk of death itself also increases according to an exponential
pattern in these same ages, aggregating individual results by chronological
age produces an increasing pattern over age for this same characteristic (see
Figure 2). In this case, the apparent chronological age pattern is due to
an interaction between the thanatological pattern seen in Figure 3a and the
age pattern of mortality itself. We argue that it is imprecise to consider
chronological age a risk factor for characteristics that display such strong
thanatological patterns, as an apparent chronological age pattern along said
margin is a deceptive artifact. Instead, such characteristics appear to more
closely operate as effects of the body shutting down or possibly as a signal on
average that death is not far off, a demographic corroboration of substantive
findings in the psychology literature (Carstensen 2006). Many characteris-
tics studied here display patterns that are strongly thanatological.

Figure 3b tells just the opposite story about back pain for females. Back
pain is a function of chronological age, at least at the population level until
around chronological age 90. This is the dominant way of thinking about
most aspects of the ageing process. In these ages, back problems provide no
information about remaining years of life. Of the characteristics included in
this study, only current smoking, arthritis, and self reports of current versus
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former memory exhibit such clear chronological patterns (both for males
and females).

Figure 2: Psychological problems (ever) by chronological age only. Males,
1915-1919 birth cohort. With 95% confidence bands from loess fit.
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Figure 3: Examples of characteristics that vary along the thanatological and
chronological age axes.

(a) Psychological problems (ever) by years lived (x axis) and years left (y axis).
Males, 1915-1919 birth cohort.
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(b) Back Problems by years lived (x axis) and years left (y axis). Females, 1915-1919
birth cohort.
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Other informative patterns also exist among the set of characteristics
studied. These include characteristics that vary by lifespan. Characteristics
that vary by lifespan appear constant within lifespans. These are often char-
acteristics that determine lifespan. Ever smoking displays such a pattern,
as seen in Figure 4a for females of the 1915-1919 cohort. This pattern is
also a corroboration of science and common sense: smoking kills (at least
in this range of lifespans). Other variables that display similar patterns in
this window of the lifespan include lung disease among males (this is largely
redundant with the former), dental visits in the previous year (both sexes),
and diabetes among females. Sometimes such patterns combine in complex
ways worthy of further study.

The fourth major axis of contour variation runs perpendicular to life-
lines. One characteristic that clearly displays this pattern is ever having
been diagnosed with high blood pressure among males. This character-
istic varies by lifespan, and thanatological age within lifespan within the
window of study. In other words, longer lifespans display later onset but
greater eventual odds of having been diagnosed with high blood pressure.
Arithmetically, years lived− years left is the operative predictor of blood
pressure. For example, for such characteristics, the condition of a 70-year
old with five remaining years of life may resemble that of an 80-year old with
15 remaining years of life. Such characteristics are not very useful alone for
predicting eventual lifespan.11 Contours such as this imply that variation
for a characteristic

11We do not have expertise to comment further on blood pressure, but instead only
provide an interpretation of the surface presented.

13



Figure 4: Examples of characteristics that vary by lifespan only or by thana-
tological age within lifespan.

(a) Smoking (ever) by years lived (x axis) and years left (y axis). Females, 1915-1919
birth cohort.
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(b) Blood Pressure by years lived (x axis) and years left (y axis). Males, 1915-1919
birth cohort.
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Summary of results for all characteristics Surfaces such as those
in Figures 3 and 4 were produced for all 78 variables and each sex. We
distill these surfaces into four Pearson correlation coefficients, each designed
to capture the variation along one of the axes explained above. We call
the four axes thanatological, chronological, lifespan (chrono + thano), and
mixed (chrono − thano). For a given surface, we calculate the correlation
coefficient of the matrix elements against the four margin indices one at
a time (rather than using the survey microdata). Most characteristics are
summarized nicely by either one or two of these axes. We display these
correlation coefficients by juxtaposing perpendicular axes in scatter plots
separately for males and females.

Figure 5: Thanatological versus chronological correlation, with selected
characteristics labeled. 1915-1919 birth cohort, chronological ages 72-95.
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(b) Females
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Figure 5 displays the simple correlation coefficients that belong to the
chronological and thanatological axes. For males, 45 variables display thana-
tological correlations of greater than 0.8, versus nine chronological correla-
tions above the same threshold. For females, the figures are 32 and 29, re-
spectively, a different picture overall. Both point clouds are in high thanato-
logical ages, but females lean further towards chronological variation within
this cohort. That thanatological patterns are somewhat less accentuated for
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females may corroborate aspects of the existing literature on sex differences
in morbidity and mortality (Case and Paxson 2005).

Figure 6: Lifespan versus mixed correlation, with selected characteristics
labeled. 1915-1919 birth cohort, chronological ages 72-95.
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(b) Females
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Figure 6 displays correlation coefficients that belong to the lifespan and
“mixed” axes. Among males, four variables display lifespan correlations
of greater than 0.8, versus 49 mixed correlations above the same thresh-
old. For females, the respective figures are three and 55. The mixed axis
(chronoage−thanoage) is the winner among the set of characteristics tested.
The appendix provides detailed results.

Discussion

The distribution of tested characteristics with respect to the four axis orien-
tations described here is striking. However, these findings must be tempered
by noting that 1) the summary measure (correlation coefficient) used here
blends out some information, 2) these results may not necessarily extrapo-
late to the set of all testable questions in the HRS, and 3) this relationship
does not necessarily hold in other windows of the lifespan or other birth
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cohorts. Further, the patterns presented here are valid for the whole popu-
lation (of a given sex) taken together, but were the target population split by
causes of death (for instance), the patterns may change. For example, imag-
ine hypothetically that the strong thanatological pattern shown in Figure 3
(psychological problems) were driven by strong patterns within individuals
that eventually die of suicide, but that other causes of death displayed en-
tirely different patterns with respect to psychological problems. Such cases
are easily imaginable for other characteristics and causes of death. At the
time of this research, we did not have access to cause of death information
from the HRS mortality followup. For detailed investigations of particular
characteristics, cause-conditioning surfaces would clearly aid in disentan-
gling morbidity processes.

Research to better document the multidimensional age variation of par-
ticular characteristics would benefit from more careful measurement than
that conducted here. Despite such shortcomings, the principle aim of this
study has been satisfied: this survey of characteristics highlights the com-
plex variety of age and lifespan dimensions over which some key aspects of
the aging process unfold. All of the indicators we tested are commonly used
to describe population ageing, and very few of them are exclusively a func-
tion of chronological age. If this finding is sustained in other cohorts and
populations, and if other indicators here untested also display similar tem-
poral complexity, we submit that the common discourse and debate on the
nature and impacts of ageing ought to be better informed by more judicious
measurement and description in terms of thanatological and chronological
age.

We hope that the conceptual model of the lifespan presented here, which
complements the Lexis diagram, will be of use to demographers. Other com-
binations of lifespan time dimensions are also possible, and these would high-
light different patterns in data. The variety and availability of such options,
perhaps now placed in starker relief, demands a more nuanced understand-
ing of the temporal accounting that relates demographic time perspectives.
Further exploration and experimentation with these formal demographic
concepts will lead to a more judicious toolkit for demographic measurement
and the practice of demography, and ultimately a wiser contribution to the
discourse on population ageing. A series of direct applications and implica-
tions derive from the concepts and results presented in this paper.

First, if compared between two timepoints, demographic work such as
this will provide a more precise answer to the question or morbidity com-
pression. Given the chronological age ruse exemplified in the case of psy-
chological problems (see Figures 2 versus 3a), it is safe to say that unless
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retrospective thanatological measurements of morbidity dimensions are un-
dertaken, we do not have direct information about whether compression is
(or has been) happening or not. Using the techniques shown here, the re-
searcher may directly estimate the varieties of end-of-life profiles often seen
in the literature on morbidity compression (e.g., Fries et al. 2011). That is,
changing chronological age patterns may be coincidental.

Second, large scale panel studies may be motivated to implement, in-
crease, or improve mortality follow-up modules. Information on the full
age dimensions of health outcomes will be valuable. The good news is that
many unlinked panel studies may be linked to death registers in retrospect.
A few populations with long-running and fully linked population registers
already preside over such information, and we encourage a more thorough
exploration of the temporal richness in population change and population
characteristics. Underused as it is, the Lexis surface does not tell the whole
story!

Third, health care providers and the public may better situate the asso-
ciation of certain health outcomes with stages of the ageing process. This
is both a question of allocating resources and a question of how individuals
conceive of themselves with respect to age. In this regard, we add to the
chorus of researchers working to change the measurement of age to reflect
the changing experience of age (see e.g., Sanderson and Scherbov 2013).

Fourth, this material highlights important sex differences in the onset
and trajectory of some aspects of morbidity. Some of these differences may
corroborate extant findings, and others may provide new understanding
to sexual dimorphism in morbidity. In general, these methods and mea-
surements are applicable to describe any between-group disparity in demo-
graphic or social outcomes, most of which directly or indirectly relate to
remaining years of life.

We do not, at this time, attempt to thoroughly cluster characteristics
based on the scores of the four different correlation coefficients, but this may
be a fruitful exercise for further work. It is our hope that these results are
strongly suggestive and orient future investigation.
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A Variables and correlations

For tables displayed in this appendix we use a shorthand to identify axis
types. T indicates the correlation coefficient along the thanatological age
axis. C indicates the chronological age axis. C + T indicates the lifespan
axis (right-downward slanting isolines). C −T indicates the mixed axis, the
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most common type in this data. Results are available on request as machine
readable data, and the code used to generate these and all other results is
available freely in a repository:

https://github.com/timriffe/ThanoEmpirical

Results are grouped by several major morbidity categories.
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Table 1: Activities of Daily Living (ADL)

Variable Males Females

Short Long T C C + T C − T T C C + T C − T

adl3 ADL 3-point 0.83 0.67 0.10 0.89 0.80 0.76 0.21 0.94
adl5 ADL 5-point 0.83 0.63 0.06 0.86 0.81 0.75 0.19 0.94

adl walk
Diff. walking
across room

0.86 0.54 0.06 0.81 0.83 0.72 0.15 0.93

adl dress Diff. dressing 0.82 0.71 0.15 0.92 0.82 0.75 0.19 0.94

adl bath
Diff. bathing or
showering

0.84 0.62 0.04 0.86 0.82 0.75 0.19 0.94

adl eat Diff. eating 0.80 0.67 0.12 0.88 0.76 0.77 0.25 0.92

adl bed
Diff. getting in/out
bed

0.82 0.58 0.02 0.82 0.83 0.72 0.15 0.93

adl toilet Diff. using toilet 0.84 0.56 0.02 0.81 0.73 0.81 0.31 0.94

Table 2: Instrumental Activities of Daily Living (IADL)

Variable Males Females

Short Long T C C + T C − T T C C + T C − T

iadl3 IADL 3-point 0.89 0.60 0.00 0.87 0.77 0.80 0.27 0.96
iadl5 IADL 5-point 0.90 0.57 0.05 0.85 0.83 0.75 0.18 0.94
lim work Health limits work 0.93 0.51 0.08 0.82 0.97 0.34 0.27 0.71
iadl map Diff. using map 0.73 0.82 0.32 0.95 0.79 0.83 0.29 0.98

iadl tel
Diff. using
telephone

0.80 0.78 0.23 0.95 0.70 0.85 0.37 0.96

iadl money
Diff. managing
money

0.91 0.56 0.06 0.85 0.81 0.78 0.22 0.96

iadl meds
Diff. taking meds 0.92 0.46 0.17 0.78 0.79 0.77 0.23 0.94

iadl shop
Diff. shopping for
groceries

0.92 0.58 0.05 0.87 0.90 0.68 0.06 0.93

iadl meals
Diff. preparing hot
meals

0.92 0.57 0.06 0.86 0.82 0.77 0.21 0.96
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Table 3: Health behaviors

Variable Males Females

Short Long T C C + T C − T T C C + T C − T

alc ev Alcohol, ever 0.78 0.41 0.08 0.68 0.62 0.79 0.40 0.89

alc days
Alcohol nr of days
/ week

0.82 0.17 0.44 0.54 0.80 0.34 0.26 0.64

alc drinks
Alcohol nr drinks
per drinking day

0.89 0.49 0.18 0.80 0.75 0.84 0.27 0.96

smoke ev
Ever Smoker 0.30 0.68 0.87 0.37 0.27 0.81 0.98 0.48

smoke cur
Current Smoker 0.09 0.88 0.93 0.61 0.15 0.93 0.83 0.77

Table 4: Functional limitations

Variable Males Females

Short Long T C C + T C − T T C C + T C − T

bmi BMI 0.92 0.53 0.05 0.83 0.74 0.76 0.29 0.91
back Back problems 0.18 0.92 0.81 0.78 0.21 0.87 0.74 0.74

mob
Mobility difficulty
index

0.91 0.61 0.01 0.89 0.88 0.73 0.12 0.95

lg mus
Large muscle
difficulty index

0.86 0.74 0.15 0.95 0.81 0.81 0.25 0.98

gross mot
Gross motor
difficulty index

0.91 0.56 0.06 0.85 0.86 0.72 0.13 0.94

fine mot
Fine motor
difficulty index

0.80 0.73 0.18 0.92 0.79 0.78 0.23 0.94
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Table 5: Chronic conditions

Variable Males Females

Short Long T C C + T C − T T C C + T C − T

bp
High blood
pressure, ever

0.75 0.84 0.36 0.98 0.87 0.63 0.09 0.88

diab Diabetes, ever 0.65 0.28 0.69 0.09 0.80 0.22 0.72 0.21
cancer Cancer, ever 0.93 0.41 0.18 0.74 0.96 0.31 0.29 0.68
lung Lung disease 0.64 0.50 0.90 0.07 0.88 0.07 0.62 0.36

heart
Heart problems,
ever

0.96 0.36 0.24 0.72 0.83 0.77 0.25 0.96

stroke Stroke, ever 0.95 0.50 0.10 0.82 0.69 0.90 0.47 0.99

psych
Psych problems ,
ever

0.96 0.36 0.24 0.72 0.61 0.78 0.40 0.87

arth Arthritis, ever 0.34 0.92 0.71 0.84 0.28 0.92 0.75 0.82

cc
Nr chronic
conditions

0.91 0.61 0.03 0.88 0.76 0.83 0.35 0.97
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Table 6: Cognitive function

Variable Males Females

Short Long T C C + T C − T T C C + T C − T

srm Self-rated memory 0.20 0.53 0.40 0.49 0.51 0.89 0.56 0.90

pastmem
Memory compared
to past

0.29 0.90 0.71 0.81 0.28 0.87 0.69 0.78

ss Serial 7s 0.76 0.72 0.20 0.89 0.86 0.69 0.10 0.92

c20b
Backwards
counting

0.80 0.71 0.16 0.91 0.71 0.80 0.31 0.92

name mo
Naming month 0.77 0.47 0.06 0.72 0.62 0.88 0.46 0.94

name dmo
Naming day of
month

0.79 0.79 0.24 0.95 0.85 0.70 0.12 0.92

name yr Naming year 0.80 0.74 0.20 0.93 0.64 0.92 0.48 0.97

name dwk
Naming day of
week

0.73 0.68 0.18 0.85 0.74 0.84 0.34 0.97

name sci Naming scissors 0.79 0.41 0.14 0.68 0.55 0.90 0.53 0.92

name cac
Naming cactus 0.54 0.84 0.47 0.87 0.71 0.86 0.38 0.97

name pres
Naming president 0.83 0.00 0.57 0.41 0.85 0.72 0.14 0.94

name vp Naming VP 0.79 0.58 0.04 0.81 0.74 0.52 0.01 0.74
vocab Vocabulary score 0.79 0.61 0.02 0.83 0.73 0.57 0.02 0.77

tm
Mental status
summary

0.81 0.69 0.13 0.90 0.83 0.79 0.22 0.97

dwr Delayed word recall 0.83 0.66 0.14 0.88 0.80 0.78 0.27 0.96
twr Total word recall 0.77 0.72 0.23 0.90 0.78 0.81 0.33 0.97

iwr
Immediate word
recall

0.71 0.78 0.33 0.92 0.75 0.85 0.38 0.99
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Table 7: Psychological wellbeing

Variable Males Females

Short Long T C C + T C − T T C C + T C − T

cesd Depression score 0.96 0.42 0.24 0.77 0.89 0.32 0.28 0.67

srh
Self-reported
health

0.98 0.25 0.36 0.65 0.94 0.19 0.41 0.59

cesd depr Felt Depressed 0.92 0.07 0.51 0.49 0.69 0.23 0.21 0.49

cesd eff
Everything an
effort

0.81 0.03 0.48 0.40 0.91 0.18 0.39 0.56

cesd sleep
Sleep restless 0.87 0.03 0.52 0.43 0.45 0.29 0.57 0.01

cesd happy
Was happy 0.72 0.62 0.17 0.80 0.91 0.36 0.21 0.70

cesd lone Felt lonely 0.87 0.69 0.14 0.92 0.57 0.83 0.47 0.89
cesd sad Felt sad 0.91 0.48 0.10 0.79 0.56 0.21 0.56 0.11

cesd going
Could not get
going

0.90 0.24 0.33 0.60 0.90 0.07 0.50 0.47

cesd enjoy
Enjoyed life 0.63 0.86 0.47 0.94 0.87 0.62 0.07 0.87
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Table 8: Healthcare utilization

Variable Males Females
Short Long T C C + T C − T T C C + T C − T

hosp
Overnight hospital:
24 mo

0.78 0.59 0.10 0.81 0.75 0.74 0.26 0.90

hosp stays
Nr hospital stays:
24 mo

0.86 0.50 0.04 0.78 0.80 0.63 0.12 0.85

hosp nights
Number nights in
hospital: 24 mo

0.88 0.05 0.60 0.38 0.77 0.58 0.10 0.79

nh
Overnight stay
nursing home: 24
mo

0.64 0.70 0.30 0.82 0.62 0.85 0.46 0.93

nh stays
Nr nursing home
stays: 24 mo

0.67 0.66 0.24 0.81 0.60 0.86 0.48 0.93

nh nights
Nr nights nursing
home: 24 mo

0.58 0.71 0.34 0.80 0.60 0.83 0.45 0.90

nh now
Nursing home at
interview

0.78 0.64 0.05 0.84 0.72 0.82 0.28 0.94

doc Dr visit: 24 mo 0.52 0.85 0.53 0.88 0.40 0.88 0.62 0.85

doc visits
Number Dr visits:
24 mo

0.55 0.74 0.39 0.81 0.58 0.91 0.54 0.95

hhc
Home health care:
24 mo

0.91 0.57 0.01 0.86 0.86 0.72 0.18 0.94

meds
Prescription drugs
regularly: 24 mo

0.92 0.43 0.20 0.76 0.90 0.41 0.21 0.74

surg
Outpatient
surgery: 24 mo

0.19 0.16 0.29 0.02 0.31 0.12 0.33 0.07

dent Dental visit: 24 mo 0.55 0.09 0.28 0.33 0.77 0.30 0.83 0.16

shf
Special health fac
visit: 24 mo

0.86 0.73 0.14 0.94 0.77 0.85 0.32 0.99
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