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INTRODUCTION 

Aging of populations in developed countries requires effective strategies to extend healthspan. 

A promising solution could be to yield insights into genetic predisposition to diseases, their precursors 

(called endophenotypes [EP]), and mortality. Genome-wide association studies (GWAS) have been 

thought as a major breakthrough in this endeavor. The optimism is, however, tempered because 

GWAS face difficulties reflecting important limitations in currently prevailing GWAS strategies [2, 3]. 

A fundamental source of difficulties in genetics of complex traits characteristic for modern societies is 

the lack of direct evolutionary selection against or in favor of such traits [4]. For example, chronic 

diseases in late (post reproductive) life cannot be major direct evolutionary force in principle because 

they do not affect reproductive fitness in the same individuals.  

At a first glance, refocusing from genetics of traits in late life to EPs could be a promising 

solution. However, the same evolutionary constraints still hold because: (i) genes regulating EPs have 

not been selected against or in favor of pathological EPs causing diseases and (ii) genes regulating 

normal function of EPs were selected in principally different conditions than those in modern societies. 

Evolutionary constraints imply that unconditional connections of genes with traits in late life 

are unlikely. Rather, genes should be linked to such traits in a complex fashion through different 

mechanisms specific for a given period of life. Accordingly, the linkage between genes and these traits 

should be strongly modulated by age-related processes in a changing environment, i.e., by the 

individuals’ life course. Inherent sensitivity of genetic mechanisms of complex health traits to the life 

course is a key concern as long as genetic discoveries are aimed to improve human health.  

Currently prevailing GWAS strategies heavily rely on studies gathering large samples. Basic 

hypothesis behind such strategy is that phenotypic variance can be explained by alleles with modest 

effects which gain statistical significance only in large samples. This logic implicitly assumes that 

genetic effects in different samples should be relatively homogeneous. Conversely, it is also argued 

that increasing the size of human disease cohorts merely increases the heterogeneity making it even 

harder to detect true risk alleles [5]. 

In this paper we re-analyze the associations of SNPs discovered as correlates of body mass 

index (BMI) in a large-scale meta-analysis [1]. The goal is to better understand advantages and 

disadvantages of standard GWAS strategy in studying complex traits using, as an example, three 

successive generations participating in the Framingham Heart Study (FHS), --a study which was a part 

of meta-analysis in [1]--, and two generations of the participants of the Long Life Family Study 

(LLFS), --the generations which match those in the FHS.  

DATA AND METHODS 

The FHS design has been previously described [6]. Briefly, the FHS original cohort was launched in 

1948 (N=5,209; 28–62 years of age at baseline). This cohort has been biennially examined during 60 

years. The FHS Offspring (FHSO) cohort was launched 22 years later and included respondents 

(N=5,124) aged 5–70 years at baseline who were mostly biological descendants and their spouses of 

the FHS participants. The FHSO respondents have been examined about every four years at eight 
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examinations. The 3
rd

 Generation (3
rd

 Gen) cohort was launched in 2001 and mostly included 

biological descendants (N=4,095) of the FHSO participants (one baseline examination is available via 

dbGaP). Measurements of weight and height are available at multiple examinations in FHS/FHSO and 

one measurement is available in 3
rd

 Gen cohort. Biospecimens were mostly collected in the late 1980s 

and through 1990s from surviving participants, i.e., after some survival selection for participants of the 

FHS original and FHSO cohorts. Genotyping of 9,167 FHS participants available for this study was 

conducted using Affymetrix Gene-Chip Human Mapping 500K array. 

The LLFS collected data in about equal proportions at four field centers in Boston, New York, 

Pittsburg, and Denmark on families showing exceptional longevity. The study eligibility criteria were 

described in [7]. Virtually all study participants were whites. Briefly, in the U.S., the families eligible 

for the LLFS must have two living siblings aged 80+ years, two living offspring of one or more of the 

siblings, and a living spouse of one of the offspring. In addition, the family must demonstrate 

exceptional longevity based on a Family Longevity Selection Score [8]. In Denmark, individuals who 

would be aged 90+ years during the study recruitment period were identified in the Danish National 

Register of Persons. They were contacted to assess the family's eligibility for participation in the LLFS 

using criteria parallel to that used in the U.S. Information on weight and height from the 4,954 LLFS 

participants was collected at baseline from 2006 to 2009. Biospecimens were collected at baseline. 

Genotyping of the LLFS participants was done using Human Omni 2.5 array. The data include 

information on long-living individuals (N=1,384, probands and siblings), their offspring (N=2,321), 

and 177 spouses of long-living individuals and 777 spouses of offspring. Due to small number of 

spouses of the long-living individuals, they were pooled together with spouses of offspring (N=954). 

Selection of SNPs. We selected SNPs reported as correlates of BMI (kg/m
2
) in [1]. This meta-analysis 

included FHS but not LLFS. We selected SNPs which were explicitly genotyped in FHS and LLFS. 

SNPs were matched between studies using proxy SNPs with strongest linkage disequilibrium (r
2
>0.9) 

available from the 1000 Genomes project. SNPs have been selected after quality control (Hardy 

Weinberg Equilibrium p>0.01, Mendel’s errors <2%, and call rate >90%).  

Analysis. We used longitudinal measurements of BMI in the FHS assessed from: (i) 19 examinations 

in the FHS original cohort and (ii) 8 examinations in the FHSO. These examinations cover the entire 

range of follow up in these cohorts. Because the LLFS and the 3
rd

 Gen cohorts have data available for 

examinations at baselines, only cross-sectional data were used. The associations were evaluated using 

a mixed effects regression model. We used a two-level model to account for potential within-family 

correlation using data from the LLFS and the 3
rd

 Gen cohorts. For evaluation of cumulative effects a 

three-level mixed effects regression model was fitted to account for familial and repeated-

measurements correlations. The effect size beta was evaluated using additive genetic model (following 

[1]) with minor allele as an effect allele for BMI. The models were adjusted: (i) for whether the DNA 

samples had been subject to whole-genome amplification (FHS) and (ii) for field centers (LLFS). All 

models were adjusted for cross-sectional age as well as for sex and cohort differences, when 

applicable. Meta-analysis was conducted using plink [9]. 

RESULTS 

SNP-BMI associations in Nature meta-analysis and in FHS and LLFS 

Table 1 shows the associations for each SNP with BMI reported in [1] as well those evaluated 

in the pooled sample of all cohorts from the FHS, in the pooled sample of all cohorts from the LLFS, 

and the associations from the meta-analysis of the results from these FHS and LLFS samples. 

Table 1 shows that for three SNPs (rs2860323, rs17782313, and rs734597) the effect sizes look 

relatively homogeneous across FHS and LLFS, whereas for the other three SNPs (rs527248, 

rs8055543, and rs28670272) they are not. The effect size for rs527248 is larger in the FHS than in the 

LLFS whereas the effect sizes for rs8055543 and rs28670272 are larger in the LLFS than in the FHS. 

Given that the sample size of the FHS is about two-fold larger than that of the LLFS, these 
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observations show that sample size does not play a pivotal role in the associations of SNPs with such 

complex phenotype as BMI. Rather, understanding specifics of the studied populations may be more 

essential. The latter is particularly critical because without understanding such specifics just non-

informatively increasing the sample sizes following traditional GWAS may not be efficient. 

Table 1. Associations of SNPs with BMI from [1] and those evaluated in the FHS and LLFS 

SNP 
Nature meta-analysis FHS, N=8,624 LLFS, N=4,445 FHS/LLFS meta 

Beta P Np=.05 Beta SE P Beta SE P Beta P 

rs2860323 -0.31 2.8E-49 13,325 -0.32 0.10 1.5E-03 -0.21 0.13 1.0E-01 -0.28 4.5E-04 

rs17782313 0.23 6.4E-42 18,730 0.31 0.09 3.6E-04 0.18 0.12 1.4E-01 0.27 1.6E-04 

rs527248 0.22 3.6E-23 24,266 0.19 0.09 4.6E-02 -0.02 0.14 8.7E-01 0.12 1.2E-01 

rs8055543 -0.17 2.9E-21 55,314 -0.10 0.10 3.2E-01 -0.34 0.15 2.8E-02 -0.17 4.0E-02 

rs734597 0.13 2.9E-20 72,485 0.14 0.10 1.3E-01 0.11 0.13 4.0E-01 0.13 8.7E-02 

rs28670272 -0.13 1.2E-18 62,345 0.02 0.09 8.3E-01 -0.14 0.12 2.3E-01 -0.04 5.8E-01 

Np=.05 denotes sample size which is required to achieve nominal (p=0.05) significance for related individuals given sample 

sizes reported in [1] given population mean for BMI of 25.8 kg/m
2
 (standard deviation is 4.8) observed in the FHS. 

Indeed, meta-analysis (Table 1) of the FHS and LLFS results shows that increasing the sample 

size by pooling the results from these studies improves significance for half SNPs with relatively 

homogeneous effects, i.e., rs2860323, rs17782313, and rs734597. For the other half (rs527248, 

rs8055543, and rs28670272), increasing the sample size in non-informative way makes the estimates 

of p-values worse even in the most favorable case when heterogeneity between studies is disregarded 

(if not disregarded, the estimates are even 

worse). This meta-analysis implies that 

traditional GWAS strategy is at most only 50% 

effective in these populations.  

Cohort-specific associations in the 

FHS and LLFS 

Figure 1 shows the associations of the 

selected SNPs with BMI in the parental (1
st
), 

offspring (2
nd

), and 3
rd

 Gen (3
rd

) cohorts of the 

FHS and the LLFS cohorts of the long-living 

individuals (1
st
), their offspring (2

nd
), and 

spouses of the long-living individuals and 

offspring (3
rd

). The choice of the LLFS cohorts 

reflects specifics of the LLFS population 

selected according to chances to live long lives 

(see Methods). Figure 1 shows dissimilar 

effects for all SNPs (but rs527248 in the FHS) 

across the studied cohorts. Notably, larger 

effect sizes tend to cluster in the 2
nd

 and 3
rd

 

cohorts of each study.  

Because dissimilarity in the effect sizes 

implies differences in sample sizes which are 

required to gain statistical significance, it is 

desirable to better understand the nature of the 

observed heterogeneity to improve efficiency 

of the analyses. One origin of dissimilarity is 

that it may be the result of stochastic noise. 

This origin is pursued in most GWAS with arguments that large samples are needed to get robust 

estimates. The results in the above section suggest, however, that non-informative increase of the 

 
Fig. 1. Associations of SNPs with BMI across FHS and 

LLFS cohorts. Dots show the effect size beta for the minor 

allele. Solid horizontal green line depicts the effect size beta in 

[1]. Bars show standard errors. Asterisk and number symbol 

show significant (p≤0.05) and suggestive-effect (0.05<p≤0.1) 

associations, respectively.  
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sample size succeeds for half SNPs whereas it does not succeed for the other half. Further, the 

estimates of the required samples to gain even nominal (p=0.05) significance given effect sizes 

reported in [1] are far from those in the FHS and LLFS for which significant associations at that level 

are observed. These observations imply that stochasticity may not be plausible explanation of 

heterogeneous origin of such a complex trait as BMI.  

Another explanation is that the observed dissimilarities in genetic effects are the result of real 

processes of bio-demographic origin which include demographic processes and biological changes 

with age. These processes are embedded in specifics of FHS and LLFS cohorts. Cohort 1 in both 

studies includes largely overlapping birth cohorts. These birth cohorts, however, were subject to 

different selection processes (see Methods). The FHS cohorts 2 (FHSO) and 3 (3
rd

 Gen) represent two 

subsequent generations of the parental cohort with the 3
rd

 Gen being the youngest. The LLFS 2
nd

 and 

3
rd

 cohorts represent offspring of long living parents and spouses, respectively. They are from about 

the same birth cohorts which overlap with the FHSO and 3
rd

 Gen cohorts. Analysis of these specifics 

requires further efforts which are currently underway.  

 

CONCLUSIONS 

GWAS often claim the benefits of the large sample sizes achievable through collaboration for 

detecting risk alleles of complex traits. Implicitly, such strategy relies on existence of unconditional 

genetic risks that is, generally, questionable. As a consequence, this strategy ignores possible 

complexity of genetic effects that results in non-informativeness in increasing samples [5]. To better 

understand pros and cons of traditional GWAS strategy in the analysis of complex traits, we re-

examined the associations of SNPs which were identified as correlates of BMI in a recent Nature meta-

analysis [1]. Our results suggest that simplistic strategies on increasing sample sizes in large-scale 

GWAS are at least not efficient. They suggest that gaining insights into bio-demographic specifics of 

the studied populations may be crucial.  

Ethic statement. This study uses de-identified data from the FHS and LLFS, which are available 

through dbGaP http://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000007.v22.p8, and http://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000397.v1.p1). No new data were collected in this work.  
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