# Health Insurance Coverage and Its Impact on Maternal Health Care Utilization in Low- and Middle-Income Countries

## **Extended Abstract**

With health insurance on the rise in low- and middle-income countries (LMICs), a growing body of research literature documents the impact of health insurance on access and use of general health care. However, there is limited empirical evidence on whether health insurance coverage has contributed to the improved use of maternal health services. Using nationally representative data from the Demographic and Health Surveys (DHS), this report assessed levels of health insurance coverage in 30 LMICs and examined the impact of health insurance status on use of maternal health care use in eight countries spanning sub-Saharan Africa (Burundi, Gabon, Ghana, Namibia, and Rwanda), West Asia (Albania), and South and Southeast Asia (Cambodia and Indonesia).

#### **Data and Methods**

The data used in this study come from Demographic and Health Surveys (DHS). We use data from DHS surveys that collected information on health insurance coverage of women and men. We focus on countries in Africa and Asia due to the lack of empirical data demonstrating the effects of health insurance on the use of healthcare services in these regions.

The study uses data on all interviewed women age 15-49 and men age 15-59<sup>1</sup> to describe levels of health insurance coverage for 30 countries based on the most recent survey. To ensure adequate sample size, only countries in which levels of health insurance coverage among women exceed 10 percent are analyzed for the effects of health insurance on use of maternal health care. Eight countries are included in the evaluation of the effects of health insurance, with surveys conducted between 2008 and 2012. Our target population for assessing the effects of health insurance is women who reported a live birth in the five years preceding the survey.

Use of maternal health services was measured by four indicators: making at least one antenatal care visit; making four or more antenatal care visits; initiating antenatal care within the first trimester; and giving birth in a health facility. The main independent variable of interest was a dichotomous measure of health insurance coverage.

We controlled for a host of background characteristics of women and their households that can have a confounding effect on the use of pregnancy-related care seeking behavior (Acharya et al. 2013; Mensah et al. 2010). These variables include maternal age at the most recent birth, marital status, and employment status; mother's education, education of household head, and household wealth; mother's exposure to mass media; child's birth order; and region and urban/rural residence

We applied a propensity scoring matching (PSM) approach to evaluate the effect of health insurance coverage on women's use of antenatal and delivery care. The propensity to seek health services is likely

<sup>&</sup>lt;sup>1</sup> In Albania, Cambodia, and Namibia, men age 15-49 were interviewed; in Indonesia, men age 15-54 were interviewed.

to be correlated with factors that influence the propensity to enroll in health insurance, thereby introducing bias both due to observed and unobserved heterogeneity. PSM methods address selection bias due to observed heterogeneity by matching a pool of treatment cases to control cases that are identical in their propensity to receive treatment whereby the set of observable characteristics X are independent of assignment to treatment.

In estimating propensity scores, our selection of variables was guided by theory and consensus within the literature (Caliendo and Kopeinig 2008; Rubin and Thomas 1996), as well as data available in the DHS. A variable was dropped only if it was not simultaneously correlated with both the treatment and outcome. Because the analytical sample differed by outcome, for every country the propensity score was estimated for two samples: all women who had a live birth in the last five years (ANC1 and FACBIRTH) and women who had at least one antenatal care visit (ANC4 and ANCMONTH). Propensity scores were generated using STATA's *pscore* command. We imposed the common support as it may improve the quality of the match (Heckman et al. 1997). Imposing the common support condition ensures that each treated unit (women with health insurance) is matched with a corresponding control unit (women with no health insurance).

Various methods of matching are available to create a comparison group that can be used to construct counterfactual outcomes for estimating treatment effects. No method is superior but each has a different tradeoff between quantity and quality of results (Becker and Ichino 2002) because of the different ways in which the method defines the neighborhood for matching and assigns weights (Caliendo and Kopeinig 2008). We used STATA's *teffects psmatch* command to estimate ATT using several different algorithms and selected the one that yielded the best match and reported its outcomes as well as the standardized bias, pseudo- $R^2$ , likelihood ratio test for joint insignificance, and two-sample t-test. The following matching algorithms were tested: nearest neighbor with and without replacement and radius matching within various calipers. The estimation of the variance of treatment effects includes variation due to the estimation of the propensity score and imputation of the common support (Aggarwal 2010).

#### **Results**

#### Levels of health insurance coverage

Figure 1 presents the percentage of interviewed women and men with any type of health insurance in 25 African countries. Most countries had fairly low levels of coverage. Women in 14 countries and men in 10 countries reported a coverage rate below 5 percent. In three countries—Rwanda, Gabon, and Ghana—over 30 percent of women and men had health insurance at the time of the survey. The highest level of coverage was found in Rwanda, at 71percent for women and 67 percent for men.

Figure 2 shows levels of coverage in five Asian countries for which the most recent DHS collected data on health insurance. Indonesia had the highest levels of health insurance coverage, at 37 percent for women and 41 percent for men in 2012. The Albania 2008-09 DHS showed a coverage rate of 22 percent for women and 29 percent for men. In Armenia and Azerbaijan the level of health insurance coverage was very low, especially among women.

[Figure 1 and 2 about here]

<sup>2</sup> Kernel matching is not available in STATA's teffects psmatch package.

## Types of health insurance coverage

Table 1 presents the percentage of women and men with specific types of health insurance in seven countries with relatively high levels of coverage. Gabon is not included in this table because the 2012 Gabon DHS did not collect data on types of insurance. Respondents could report more than one type of health insurance. Several major types of insurance schemes were observed in these countries. Social health insurance was the primary type of coverage in five countries (Albania, Cambodia, Ghana, Indonesia, and Namibia). Almost all Ghanaian women and men with health insurance were enrolled in the National Health Insurance Scheme (NHIS). In Indonesia about a fourth (26 percent) of women and men were covered by social security.

## [Table 1 about here]

Community-based health insurance was reported in a few countries. In Rwanda the vast majority of people who reported health insurance coverage were covered by Mutual Health Insurance, a community-based health insurance scheme. Community-based health insurance was also reported in Burundi and Namibia, although at much lower levels compared with Rwanda.

Employer-based health insurance was rarely reported except in Namibia, where it was the most common type of insurance, reported by 9 percent of women and 11 percent of men in 2009. Private or commercially purchased health insurance was uncommon in the study countries. The highest level of private insurance coverage was observed in Namibia, at less than 5 percent for both women and men

## Differentials in health insurance coverage

Table 2 and Table 3 report the percentage of women and men with any health insurance coverage at the time of the interview by background characteristics including respondents' age, marital status, education, employment status, household wealth status, and urban-rural residence.

Most study countries had fairly low levels of coverage—below 5 percent. In a few countries (Rwanda, Gabon, Ghana, and Indonesia), more than one-third of interviewed women and men reported coverage of health insurance, with the highest rate found in Rwanda, at 71 percent for women and 67 percent for men. In all 30 countries the gender gap in health insurance coverage favored men, with the exceptions of Cambodia, Gabon, Ghana, and Rwanda. The gender gap was small in magnitude given low coverage rates among both women and men.

#### [Table 2 and 3 about here]

In most countries educational attainment was associated with a greater likelihood of participating in health insurance even after adjusting for other covariates. Our results also indicated that the education of the head of the household matters, in addition to the individual's level of education. Household wealth status was another important determinant of participating in health insurance. Disparities in health insurance coverage that favor the rich were evident in five countries. In Cambodia and Gabon, however, poor women were more likely to be covered by health insurance than the rich, suggesting that policies targeting the poor have been effective.

# Effects of health insurance on use of maternal health care

As discussed previously, we experimented with various propensity score matching algorithms. The final approach was chosen according to the quality of matching, which was assessed based on several model parameters including the mean and median of absolute biases of covariates, pseudo- $R^2$ , and standard

Likelihood ratio test  $X^2$ . The pre- and post-matching comparisons on means and percent of absolute bias reduced for individual covariates were also taken into consideration in assessing the quality of matching.

Table 4 presents the results of the best quality matching method as well as quality measurements before and after matching for full and sub-samples in each country. Radius matching generally resulted in the best quality of matching in most countries with caliper width ranging from 0.01 to 0.05. It is expected that smaller calipers result in better quality of matching but also entail a greater possibility of losing treated cases that do not have a matched control (Grilli and Rampichini 2011). Therefore, to achieve a good-quality matching and maximize the use of data from treated cases, the choice of caliper was determined by two criteria: the quality of matching and the least number of unmatched treated cases. The nearest neighbor matching was chosen for both samples in Burundi for its best quality of matching over other algorithm.

#### [Table 4 about here]

Overall, in all countries matching substantially reduced the mean and median biases between the insured and the uninsured with respect to the observed covariates included in the models. The mean absolute bias was less than 5 percent in the majority of models—the threshold for decent quality matches (Rosenbaum and Rubin 1983). In 9 of the 16 models, mean absolute bias was 2 percent or less. Despite a significant reduction in bias after matching, mean absolute bias was the highest in the models for Albania (approximately 7 percent), but statistically non-significant. Due to imposing the common support, some women (mostly from the uninsured group) were excluded from the analysis after the matching process.

Table 5 presents the differences in outcomes between the insured and uninsured before matching as well as the effects of health insurance (ATT) estimated based on the matched samples. After propensity score matching, health insurance status was significantly associated with an increased likelihood of making at least one antenatal care visit in Indonesia and Rwanda. Among women who reported at least one antenatal visit, the raw differences between insured and uninsured women in the prevalence of four or more antenatal care visits ranged from 4 to 21 percentage points and were statistically significant in all countries. However, after matching on covariates that could potentially introduce bias, the positive effect of health insurance coverage only remained in Ghana and Indonesia. Health insurance coverage contributed to an increase of 8 percentage points in access to four or more antenatal care visits in Ghana and an increase of 3 percentage points in Indonesia.

#### [Table 5 about here]

Concerning the timing of the first antenatal care visit, in the adjusted effect health insurance coverage was found to increase the use of antenatal care within the first trimester of pregnancy in Namibia, Burundi, and Indonesia by 15, 8, and 2 percentage points, respectively.

In all study countries at least one-half of women delivered their most recent birth in a healthcare facility. After matching, the effect of health insurance on delivery in a healthcare facility was positive and statistically significant in four of the eight countries—Cambodia, Ghana, Indonesia, and Rwanda. In these countries, health insurance coverage contributed to an increase of 5-11 percentage points in the receipt of facility-based delivery care. In Gabon, however, health insurance status had a significant negative effect on the use of facility-based delivery care.

In summary, our impact evaluation found statistically significant positive effects of health insurance coverage on at least one measure of maternal health care use in seven of the eight countries evaluated. Indonesia stands out for the most systematic effect of health insurance across all measures, followed by

Cambodia, Rwanda, and Ghana. The positive impact of health insurance appeared more consistent on the use of facility-based delivery than on antenatal care services.

#### **Conclusions**

Health insurance programs in LMICs are still in the early stages. Despite countries' efforts in targeting the poor by reducing or removing premiums of health insurance, disparities that favor the more affluent are evident in most countries studied. Health insurance schemes in Cambodia and Gabon are effective in increasing coverage among the poor. Overall, our results point to a significant increase in the uptake of recommended standards of adequate maternal health care attributable to health insurance coverage. The results contribute to the body of evidence available for health insurance policymaking, by using rigorous methods to demonstrate the impact of health insurance. By revealing the positive impact of health insurance on the use of antenatal care and facility-based delivery care, our findings suggest that in some contexts enrollment in health insurance can reduce inequality in access to maternal health care. Additional research is needed to identify what particular aspects of health insurance design can improve these impacts.

#### **BIBLIOGRAPHY**

Acharya, A., S. Vellakkal, F. Taylor, E. Masset, A. Satija, M. Burke, and S. Ebrahim. 2013. *The Impact of Health Insurance Schemes for the Informal Sector in Low- and Middle-Income Countries: A Systematic Review. Policy research working paper 6324*. Washington DC, USA: The Word Bank, Development Economics Vice Presidency, Partnership, Capacity Building Unit.

Aggarwal, A. 2010. "Impact Evaluation of India's 'Yeshasvini' Community-Based Health Insurance Programme." *Health Economics* 19: 5-35.

Becker, S.O., and A. Ichino. 2002. "Estimation of Average Treatment Effects Based on Propensity Scores." *The Stata Journal* 2: 358-77.

Caliendo, M., and S. Kopeinig. 2008. "Some Practical Guidance for the Implementation of Propensity Score Matching." *Journal of Economic Surveys* 22(1): 31-72.

Grilli, L., and C. Rampichini. 2011. "Propensity Scores for the Estimation of Average Treatment Effects in Observational Studies." In *Training Sessions on Causal Inference*. Bristol, United Kingdom: Universit di Firenze.

Heckman, J., H. Ichimura, and P. Todd. 1997. "Matching as an Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme." *Review of Economic Studies* 64: 605–54.

Mensah, J., J.R. Oppong, and C.M. Schmidt. 2010. "Ghana's National Health Insurance Scheme in the Context of the Health Mdgs: An Empirical Evaluation Using Propensity Score Matching." *Health Economics* 19(S1): 95-106.

Rosenbaum, P.R., and D.B. Rubin. 1983. "The Central Role of the Propensity Score in Observational Studies for Causal Effects." *Biometrika* 70: 41-55.

Rubin, D.B., and N. Thomas. 1996. "Matching Using Estimated Propensity Scores: Relating Theory to Practice." *Biometrics* 52(1): 249-64.

Figure 1. Percentage of women and men covered by health insurance in Africa

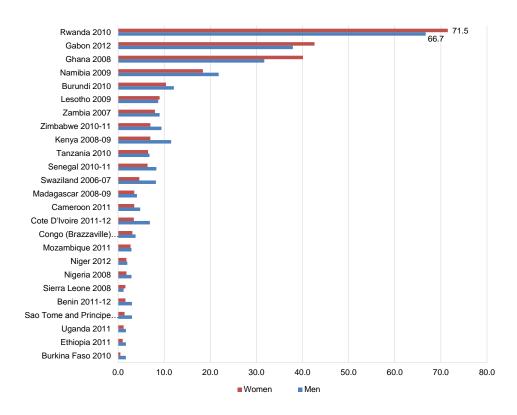



Figure 2. Percentage of women and men covered by health insurance in Asia

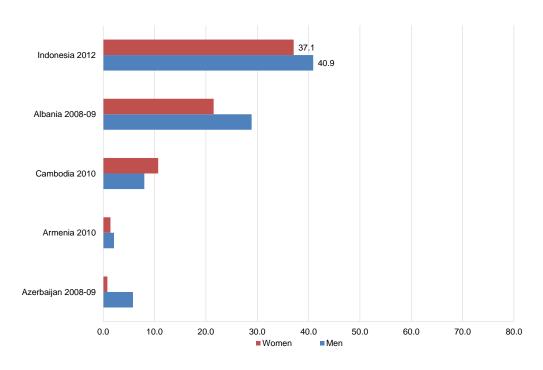



Table 1. Percentage of women and men covered by specific types of health insurance in selected countries

| Country   | Type of insurance                       | Women | Men  |
|-----------|-----------------------------------------|-------|------|
| Albania   | State health insurance                  | 15.0  | 21.3 |
|           | State social insurance                  | 10.9  | 12.6 |
|           | Private/commercial purchased            | 2.2   | 1.7  |
|           | Other                                   | 2.5   | 4.5  |
|           | Total                                   | 21.5  | 28.9 |
| Burundi   | Mutual/community organization           | 4.8   | 4.7  |
|           | Provided by employer                    | 4.4   | 5.5  |
|           | Private/commercially purchased          | 0.9   | 0.0  |
|           | Other                                   | 0.4   | 2.0  |
|           | Total                                   | 10.4  | 12.1 |
| Cambodia  | Health equity fund                      | 8.5   | 6.4  |
|           | Provided by employer                    | 0.2   | 0.4  |
|           | Private                                 | 0.1   | 0.2  |
|           | Other                                   | 1.9   | 1.0  |
|           | Total                                   | 10.7  | 8.0  |
| Ghana     | National/ district (nhis)               | 38.8  | 29.7 |
|           | Provided by employer                    | 0.1   | 0.2  |
|           | Private/commercially purchased          | 0.1   | 0.0  |
|           | Other                                   | 1.1   | 1.2  |
|           | Total                                   | 40.1  | 31.0 |
| Indonesia | Social security                         | 25.7  | 25.9 |
|           | Provided by employer                    | 6.9   | 10.5 |
|           | Private/commercially purchased          | 2.9   | 3.9  |
|           | Other                                   | 2.6   | 2.5  |
|           | Total                                   | 37.1  | 40.9 |
| Namibia   | Provided by employer                    | 8.9   | 11.4 |
|           | Social security                         | 4.5   | 5.7  |
|           | Mutual/community organization           | 3.6   | 4.5  |
|           | Private                                 | 2.5   | 4.6  |
|           | Other                                   | 0.6   | 0.3  |
|           | Total                                   | 18.4  | 21.8 |
| Rwanda    | Mutual/community based health insurance | 68.0  | 63.9 |
|           | Rama                                    | 2.1   | 1.8  |
|           | Privately purchased/commercial health   | 0.3   | 0.3  |
|           | other                                   | 0.9   | 0.7  |
|           | Total                                   | 71.4  | 66.7 |

Note: In all the countries except Rwanda, respondents were allowed to report multiple types of insurance; so the sum of the percentages may exceed the total prevalence.

Gabon is not included in this table due to unavailability of data on types of insurance.

Table 2. Percentage of women with health insurance coverage, according to background characteristics

|                        | Albania |       | Bur  | undi  | Cam  | bodia  | Gabon |       | Ghana |       | Indonesia |        | Namibia |       | Rwanda |        |
|------------------------|---------|-------|------|-------|------|--------|-------|-------|-------|-------|-----------|--------|---------|-------|--------|--------|
|                        | %       | N     | %    | N     | %    | N      | %     | N     | %     | N     | %         | N      | %       | N     | %      | N      |
| Age                    |         |       |      |       |      |        |       |       |       |       |           |        |         |       |        |        |
| 15-19                  | 11.6    | 1,478 | 7.5  | 2,359 | 10.0 | 3,734  | 35.9  | 1,784 | 38.5  | 1,025 | 32.8      | 6,927  | 10.4    | 2,245 | 64.4   | 2,945  |
| 20-24                  | 12.6    | 976   | 8.9  | 1,832 | 10.2 | 3,155  | 37.1  | 1,637 | 34.7  | 878   | 34.5      | 6,305  | 11.6    | 1,854 | 73.1   | 2,683  |
| 25-29                  | 26.0    | 848   | 11.8 | 1,608 | 11.1 | 3,262  | 37.4  | 1,485 | 41.6  | 832   | 33.9      | 6,959  | 18.7    | 1,622 | 75.3   | 2,494  |
| 30-34                  | 22.3    | 866   | 14.1 | 1,064 | 10.7 | 2,167  | 47.2  | 1,211 | 43.0  | 644   | 36.8      | 6,876  | 22.1    | 1,416 | 75.0   | 1,822  |
| 35-39                  | 25.3    | 1,097 | 11.5 | 1,067 | 10.3 | 2,044  | 46.9  | 986   | 42.5  | 638   | 42.1      | 6,882  | 24.1    | 1,045 | 73.2   | 1,447  |
| 40-44                  | 27.5    | 1,232 | 13.2 | 745   | 12.2 | 2,300  | 56.8  | 746   | 45.0  | 470   | 39.3      | 6,252  | 29.9    | 928   | 70.2   | 1,168  |
| 45-49                  | 28.3    | 1,088 | 10.6 | 714   | 10.6 | 2,093  | 57.8  | 574   | 39.4  | 429   | 41.4      | 5,407  | 29.6    | 688   | 70.2   | 1,112  |
| Marital status         |         |       |      |       |      |        |       |       |       |       |           |        |         |       |        |        |
| Never married          | 17.2    | 2,357 | 8.2  | 3,121 | 8.6  | 5,783  | 39.5  | 3,047 | 37.3  | 1,593 | 36.3      | 9,919  | 14.0    | 5,671 | 68.1   | 5,285  |
| Currently married      | 23.1    | 4,910 | 14.9 | 3,760 | 10.8 | 11,515 | 41.2  | 1,597 | 44.4  | 2,232 | 37.4      | 33,291 | 37.8    | 1,949 | 80.3   | 4,799  |
| Living together        | 26.1    | 91    | 5.2  | 1,661 | 32.7 | 112    | 45.4  | 2,878 | 36.5  | 644   | 39.7      | 174    | 10.1    | 1,500 | 65.6   | 2,098  |
| Widowed                | 34.2    | 116   | 11.6 | 411   | 20.6 | 564    | 46.3  | 131   | 30.3  | 101   | 42.5      | 935    | 15.2    | 250   | 66.5   | 743    |
| Divorced/separated     | 27.1    | 109   | 5.8  | 436   | 14.3 | 781    | 47.1  | 769   | 35.2  | 345   | 31.4      | 1,288  | 18.5    | 425   | 58.7   | 746    |
| Education              |         |       |      |       |      |        |       |       |       |       |           |        |         |       |        |        |
| None                   | 0.0     | 26    | 5.4  | 4,211 | 17.4 | 2,973  | 19.0  | 373   | 32.6  | 1,042 | 31.6      | 1,500  | 3.7     | 650   | 66.2   | 2,119  |
| Primary                | 9.2     | 3,813 | 10.8 | 4,042 | 12.6 | 9,265  | 47.0  | 1,786 | 31.2  | 988   | 31.8      | 15,125 | 6.1     | 2,433 | 70.5   | 9,337  |
| Secondary and higher   | 34.2    | 3,745 | 27.5 | 1,136 | 4.9  | 6,516  | 42.8  | 6,263 | 45.9  | 2,886 | 40.2      | 28,982 | 24.2    | 6,716 | 80.1   | 2,216  |
| Employment status      |         |       |      |       |      |        |       |       |       |       |           |        |         |       |        |        |
| Not currently employed | 9.2     | 5,308 | 9.4  | 2,494 | 9.5  | 5,592  | 39.7  | 4,742 | 39.2  | 1,240 | 35.0      | 20,348 | 8.4     | 5,445 | 73.4   | 3,761  |
| Currently employed     | 50.3    | 2,276 | 10.7 | 6,895 | 11.2 | 13,162 | 46.4  | 3,680 | 40.4  | 3,676 | 38.8      | 25,259 | 30.8    | 4,354 | 70.6   | 9,910  |
| Wealth quintile        |         |       |      |       |      |        |       |       |       |       |           |        |         |       |        |        |
| Lowest                 | 8.0     | 1,513 | 4.8  | 1,898 | 24.4 | 3,388  | 61.6  | 1,222 | 29.9  | 783   | 38.4      | 7,767  | 2.0     | 1,621 | 59.8   | 2,622  |
| Second                 | 11.6    | 1,486 | 4.8  | 1,910 | 15.0 | 3,516  | 39.0  | 1,621 | 32.4  | 900   | 34.6      | 8,784  | 3.9     | 1,667 | 68.8   | 2,661  |
| Middle                 | 16.0    | 1,533 | 6.3  | 1,854 | 8.9  | 3,594  | 35.9  | 1,784 | 38.5  | 979   | 31.7      | 9,243  | 8.9     | 1,882 | 73.4   | 2,736  |
| Fourth                 | 25.9    | 1,480 | 9.4  | 1,811 | 5.9  | 3,827  | 35.2  | 1,879 | 45.7  | 1,119 | 34.0      | 9,743  | 18.4    | 2,291 | 77.6   | 2,677  |
| Highest                | 45.2    | 1,573 | 26.4 | 1,916 | 2.4  | 4,428  | 47.2  | 1,915 | 49.4  | 1,135 | 46.3      | 10,071 | 47.6    | 2,338 | 76.6   | 2,976  |
| Residence              |         |       |      |       |      |        |       |       |       |       |           |        |         |       |        |        |
| Rural                  | 11.5    | 4,204 | 8.3  | 8,387 | 12.2 | 14,818 | 59.7  | 957   | 36.9  | 2,533 | 32.3      | 21,802 | 8.3     | 5,028 | 71.4   | 11,614 |
| Urban                  | 34.0    | 3,380 | 27.7 | 1,002 | 5.2  | 3,936  | 40.4  | 7,465 | 43.6  | 2,383 | 41.5      | 23,805 | 29.0    | 4,771 | 71.4   | 2,057  |
| Total                  | 21.5    | 7,584 | 10.4 | 9,389 | 10.7 | 18,754 | 42.6  | 8,422 | 40.1  | 4,916 | 37.1      | 45,607 | 18.4    | 9,799 | 71.4   | 13,671 |

Table 3. Percentage of men with health insurance coverage, according to background characteristics

|                        | Albania  | Bui      | rundi | Cam  | bodia | Gal  | oon   | Ghana Indonesia |       |      | nesia | Namibia |       | Rwanda |       |
|------------------------|----------|----------|-------|------|-------|------|-------|-----------------|-------|------|-------|---------|-------|--------|-------|
|                        | % N      | l %      | N     | %    | N     | %    | N     | %               | N     | %    | N     | %       | N     | %      | N     |
| Age                    |          |          |       |      |       |      |       |                 |       |      |       |         |       |        |       |
| 15-19                  | 17.1 6   | 9.3      | 932   | 7.5  | 1,863 | 40.3 | 1,012 | 34.6            | 911   | 41.3 | 28    | 12.4    | 910   | 62.1   | 1,449 |
| 20-24                  | 13.0 3   | 5.9      | 732   | 7.0  | 1,402 | 33.9 | 805   | 23.4            | 704   | 33.3 | 345   | 11.5    | 749   | 61.7   | 1,159 |
| 25-29                  | 29.0 2   | 269 10.4 | 584   | 8.4  | 1,377 | 29.4 | 813   | 20.8            | 624   | 31.9 | 1,127 | 18.5    | 702   | 70.2   | 1038  |
| 30-34                  | 35.5 2   | 273 15.0 | 442   | 8.6  | 1,014 | 35.2 | 776   | 36.0            | 533   | 37.8 | 1,674 | 28.8    | 586   | 73.5   | 710   |
| 35-39                  | 33.4 3   | 372 17.2 | 388   | 9.1  | 835   | 36.1 | 715   | 32.4            | 528   | 42.4 | 1,775 | 32.2    | 398   | 67.3   | 490   |
| 40-44                  | 37.3 5   | 501 15.2 | 349   | 8.0  | 956   | 40.6 | 534   | 31.7            | 394   | 46.8 | 1,693 | 40.1    | 331   | 70.3   | 430   |
| 45-49                  | 41.0 5   | 536 15.0 | 331   | 8.2  | 792   | 44.5 | 453   | 30.0            | 364   | 45.4 | 1,371 | 40.0    | 235   | 67.0   | 412   |
| 50+                    | na       | na 17.2  | 520   | na   | na    | 49.8 | 546   | 41.0            | 510   | 40.4 | 1,292 | na      | na    | 69.7   | 642   |
| Marital status         |          |          |       |      |       |      |       |                 |       |      |       |         |       |        |       |
| Never married          | 19.1 1,2 | 291 9.6  | 1,653 | 6.9  | 3,181 | 34.4 | 2,346 | 29.4            | 1,942 | na   | na    | 15.1    | 2,544 | 62.3   | 2,879 |
| Currently married      | 36.0 1,6 | 671 16.4 | 1,945 | 8.5  | 4,815 | 37.2 | 1,423 | 35.0            | 2,163 | 41.0 | 9,286 | 44.9    | 705   | 76.1   | 2,433 |
| Living together        | 51.2     | 32 5.4   | 604   | 9.0  | 37    | 44.8 | 1,469 | 19.8            | 241   | 15.5 | 20    | 27.4    | 498   | 59.6   | 854   |
| Widowed                | 58.9     | 4 10.4   | 31    | 16.4 | 54    | 25.6 | 29    | 29.4            | 26    | na   | na    | 24.4    | 12    | 43.0   | 54    |
| Divorced/separated     | 38.9     | 15 4.7   | 47    | 10.4 | 152   | 36.3 | 387   | 16.8            | 195   | na   | na    | 7.6     | 151   | 40.0   | 108   |
| Education              |          |          |       |      |       |      |       |                 |       |      |       |         |       |        |       |
| None                   | 15.7     | 18 6.7   | 1,348 | 13.5 | 641   | 9.8  | 378   | 18.7            | 639   | 29.2 | 265   | 6.1     | 360   | 60.2   | 757   |
| Primary                | 16.7 1,2 | 219 10.2 | 2,089 | 9.8  | 3,394 | 32.9 | 864   | 22.3            | 665   | 32.1 | 3,489 | 11.2    | 1,108 | 65.5   | 4,323 |
| Secondary and higher   | 37.5 1,7 | 75 25.4  | 843   | 5.7  | 4,205 | 41.3 | 4,412 | 35.2            | 3,264 | 47.0 | 5,552 | 28.9    | 2,443 | 74.5   | 1,249 |
| Employment status      |          |          |       |      |       |      |       |                 |       |      |       |         |       |        |       |
| Not currently employed | 14.5 1,0 | )26 14.2 | 540   | 7.3  | 1,556 | 41.4 | 1,748 | 33.6            | 928   | 37.2 | 155   | 10.3    | 1,471 | 65.6   | 593   |
| Currently employed     | 36.4 1,9 | 987 11.8 | 3,740 | 8.1  | 6,683 | 36.3 | 3,906 | 30.3            | 3,640 | 41.0 | 9,151 | 28.7    | 2,441 | 66.8   | 5,736 |
| Wealth quintile        |          |          |       |      |       |      |       |                 |       |      |       |         |       |        |       |
| Lowest                 | 14.5 4   | 175 5.0  | 686   | 16.4 | 1,454 | 48.3 | 830   | 17.6            | 809   | 41.3 | 1,596 | 1.8     | 560   | 53.9   | 937   |
| Second                 | 20.6 6   | 6.3      | 789   | 11.8 | 1,544 | 28.1 | 1,183 | 23.0            | 815   | 36.3 | 1,866 | 7.6     | 605   | 64.2   | 1,108 |
| Middle                 | 26.3 6   | 61 7.6   | 818   | 6.6  | 1,637 | 27.0 | 1,246 | 27.9            | 784   | 32.8 | 2,008 | 12.6    | 875   | 66.4   | 1,306 |
| Fourth                 | 32.5 6   | 325 11.8 | 907   | 4.4  | 1,696 | 36.0 | 1,204 | 37.7            | 1,079 | 38.7 | 1,962 | 24.9    | 963   | 73.0   | 1,391 |
| Highest                | 46.3 6   | 352 24.3 | 1,080 | 2.8  | 1,908 | 53.5 | 1,191 | 42.6            | 1,081 | 56.3 | 1,875 | 49.2    | 909   | 70.6   | 1,586 |
| Residence              |          |          |       |      |       |      |       |                 |       |      |       |         |       |        |       |
| Rural                  | 21.0 1,6 | 9.7      | 3,649 | 8.8  | 6,542 | 48.9 | 739   | 26.1            | 2,443 | 34.5 | 4,567 | 10.0    | 1,951 | 66.7   | 5,324 |
| Urban                  | 38.1 1,3 | 391 25.5 | 631   | 4.7  | 1,697 | 36.2 | 4,915 | 36.6            | 2,125 | 47.2 | 4,739 | 33.5    | 1,960 | 66.4   | 1,005 |
| Total                  | 28.9 3,0 | )13 12.1 | 4,280 | 8.0  | 8,239 | 37.9 | 5,654 | 31.0            | 4,568 | 40.9 | 9,306 | 21.8    | 3,911 | 66.7   | 6,329 |

Table 4. Propensity score matching performance: results of the mean and median absolute bias, pseudo- $R^2$  and Likelihood ratio (LR) tests

| Country   | Matching ap                                     | proach                              | Sample    | Mean | Median | Std. dev. | Pseudo-R <sup>2</sup> | $LR \chi^2$ | <i>p</i> > χ <sup>2</sup> |
|-----------|-------------------------------------------------|-------------------------------------|-----------|------|--------|-----------|-----------------------|-------------|---------------------------|
| Albania   | Full sample                                     | Radius matching                     | Unmatched | 36.9 | 22.1   | 34.6      | 0.312                 | 420.24      | 0.000                     |
|           |                                                 | (caliper=0.025)                     | Matched   | 7.0  | 4.9    | 7.4       | 0.022                 | 16.01       | 0.523                     |
|           |                                                 | Radius matching                     | Unmatched | 42.4 | 22.4   | 36.3      | 0.305                 | 411.28      | 0.000                     |
|           |                                                 | (caliper=0.025)                     | Matched   | 6.6  | 5.0    | 5.8       | 0.016                 | 11.04       | 0.683                     |
| Burundi   | Full sample                                     | Nearest neighbor                    | Unmatched | 33.3 | 17.1   | 32.2      | 0.271                 | 1,080.66    | 0.000                     |
|           |                                                 |                                     | Matched   | 5.3  | 4.2    | 3.9       | 0.016                 | 30.52       | 0.106                     |
|           | Subsample                                       | Nearest neighbor                    | Unmatched | 37.8 | 33.6   | 34.9      | 0.255                 | 1,016.15    | 0.000                     |
|           |                                                 |                                     | Matched   | 3.8  | 1.7    | 4.6       | 0.013                 | 24.78       | 0.100                     |
| Cambodia  | Full sample                                     | Radius matching                     | Unmatched | 20.5 | 13.7   | 19.0      | 0.111                 | 626.33      | 0.000                     |
|           |                                                 | (caliper=0.01)                      | Matched   | 1.2  | 1.1    | 0.6       | 0.001                 | 2.39        | 1.000                     |
|           | Subsample                                       | mple Radius matching (caliper=0.01) | Unmatched | 20.5 | 13.7   | 19.0      | 0.111                 | 626.33      | 0.000                     |
|           |                                                 |                                     | Matched   | 1.6  | 1.4    | 1.1       | 0.001                 | 3.15        | 1.000                     |
| Gabon     | abon Full sample Radius matching (caliper=0.01) | Radius matching                     | Unmatched | 20.0 | 18.6   | 12.1      | 0.137                 | 736.87      | 0.000                     |
|           |                                                 | (caliper=0.01)                      | Matched   | 2.1  | 1.4    | 1.8       | 0.003                 | 16.13       | 0.950                     |
|           | Subsample                                       | Radius matching                     | Unmatched | 21.4 | 20.4   | 12.0      | 0.135                 | 727.22      | 0.000                     |
|           |                                                 | (caliper=0.05)                      | Matched   | 2.0  | 1.5    | 1.9       | 0.002                 | 11.57       | 0.984                     |
| Ghana     | Full sample                                     | Radius matching                     | Unmatched | 16.4 | 14.6   | 12.0      | 0.158                 | 403.83      | 0.000                     |
|           |                                                 | (caliper=0.012)                     | Matched   | 1.8  | 1.7    | 1.2       | 0.002                 | 4.47        | 1.000                     |
|           | Subsample                                       | Radius matching                     | Unmatched | 17.0 | 16.4   | 11.9      | 0.158                 | 403.64      | 0.000                     |
|           |                                                 | (caliper=0.011)                     | Matched   | 2.0  | 1.7    | 1.2       | 0.002                 | 4.33        | 1.000                     |
| Indonesia | Full sample                                     | Radius matching                     | Unmatched | 8.4  | 7.3    | 5.7       | 0.038                 | 756.85      | 0.000                     |
|           |                                                 | (caliper=0.020)                     | Matched   | 0.6  | 0.5    | 0.5       | 0.000                 | 4.96        | 1.000                     |
|           | Subsample                                       | Radius matching                     | Unmatched | 8.9  | 8.1    | 5.7       | 0.038                 | 756.66      | 0.000                     |
|           | •                                               | (caliper=0.01)                      | Matched   | 0.5  | 0.4    | 0.4       | 0.000                 | 2.83        | 1.000                     |
| Namibia   | Full sample                                     | Radius matching                     | Unmatched | 36.0 | 28.1   | 32.9      | 0.383                 | 1,082.65    | 0.000                     |
|           | •                                               | (caliper=0.05)                      | Matched   | 3.2  | 2.8    | 2.1       | 0.008                 | 8.75        | 1.000                     |
|           | Subsample                                       | Radius matching                     | Unmatched | 36.8 | 28.1   | 33.5      | 0.366                 | 1,033.89    | 0.000                     |
|           | r -                                             | (caliper=0.02)                      | Matched   | 3.6  | 3.9    | 2.6       | 0.009                 | 9.57        | 0.999                     |

(Continued...)

Table 4. - Continued

| Country | Matching ap    | proach          | Sample    | Mean | Median | Std. dev. | Pseudo-R <sup>2</sup> | $LR \chi^2$ | <i>p</i> > χ <sup>2</sup> |
|---------|----------------|-----------------|-----------|------|--------|-----------|-----------------------|-------------|---------------------------|
| Rwanda  | Full sample    | Radius matching | Unmatched | 11.1 | 9.2    | 8.9       | 0.066                 | 472.45      | 0.000                     |
|         | (caliper=0.01) |                 | Matched   | 3.1  | 2.3    | 2.4       | 0.006                 | 75.87       | 0.000                     |
|         | Subsample      | Radius matching | Unmatched | 11.1 | 9.2    | 8.9       | 0.066                 | 472.45      | 0.000                     |
|         | (caliper=0.01) | Matched         | 1.1       | 1.0  | 1.0    | 0.001     | 14.08                 | 0.899       |                           |

Table 5. The average treatment effect on the treated (ATT) of health insurance on utilization of selected maternal health services

|                          |         | Means befor | e matching | Aver<br>effect | Number  |         |             |                           |
|--------------------------|---------|-------------|------------|----------------|---------|---------|-------------|---------------------------|
| Outcomes                 | Insured | Uninsured   | Difference | p-<br>value    | ATT     | SE      | p-<br>value | of cases<br>on<br>support |
| Albania                  |         |             |            |                |         |         |             | • • •                     |
| ANC 1 <sup>1</sup>       | 0.964   | 0.964       | 0.000      | 0.989          |         |         |             |                           |
| ANC 4                    | 0.830   | 0.624       | 0.207      | 0.000          | 0.064   | 0.056   | 0.247       | 1,265                     |
| First ANC visit in first | 0.000   | 0.021       | 0.207      | 0.000          | 0.001   | 0.000   | 0.217       | 1,200                     |
| 3 months                 | 0.894   | 0.746       | 0.148      | 0.000          | 0.092   | 0.053   | 0.084       | 1,265                     |
| Facility delivery        | 0.985   | 0.956       | 0.029      | 0.023          | 0.014   | 0.022   | 0.519       | 1,317                     |
| Burundi                  |         |             |            |                |         |         |             | ,                         |
| ANC 1 <sup>1</sup>       | 0.990   | 0.990       | 0.000      | 0.967          |         |         |             |                           |
| ANC 4                    | 0.402   | 0.332       | 0.070      | 0.000          | -0.019  | 0.039   | 0.622       | 4,771                     |
| First ANC visit in first |         |             |            |                |         |         |             | ,                         |
| 3 months                 | 0.348   | 0.196       | 0.153      | 0.000          | 0.075   | 0.036   | 0.039       | 4,771                     |
| Facility delivery        | 0.827   | 0.624       | 0.203      | 0.000          | 0.014   | 0.030   | 0.642       | 4,806                     |
| Cambodia                 |         |             |            |                |         |         |             |                           |
| ANC 1                    | 0.824   | 0.884       | -0.059     | 0.000          | 0.0408  | 0.0176  | 0.020       | 5,978                     |
| ANC 4                    | 0.563   | 0.683       | -0.119     | 0.000          | -0.0104 | 0.0252  | 0.680       | 5,211                     |
| First ANC visit in first |         |             |            |                |         |         |             |                           |
| 3 months                 | 0.595   | 0.686       | -0.091     | 0.000          | -0.0029 | 0.02618 | 0.913       | 5,211                     |
| Facility delivery        | 0.479   | 0.586       | -0.107     | 0.000          | 0.073   | 0.0226  | 0.001       | 5,978                     |
| Gabon                    |         |             |            |                |         |         |             |                           |
| ANC 1                    | 0.909   | 0.938       | -0.030     | 0.000          | -0.023  | 0.014   | 0.105       | 3,932                     |
| ANC 4                    | 0.728   | 0.781       | -0.053     | 0.000          | -0.003  | 0.024   | 0.914       | 3,626                     |
| First ANC visit in first |         |             |            |                |         |         |             |                           |
| 3 months <sup>1</sup>    | 0.574   | 0.602       | -0.028     | 0.086          |         |         |             |                           |
| Facility delivery        | 0.818   | 0.882       | -0.065     | 0.000          | -0.043  | 0.019   | 0.025       | 3,932                     |
| Ghana                    |         |             |            |                |         |         |             |                           |
| ANC 1                    | 0.986   | 0.946       | 0.039      | 0.000          | -0.0036 | 0.0085  | 0.672       | 1,837                     |
| ANC 4                    | 0.895   | 0.770       | 0.126      | 0.000          | 0.0771  | 0.0257  | 0.003       | 1,753                     |
| First ANC visit in first |         |             |            |                |         |         |             |                           |
| 3 months                 | 0.619   | 0.545       | 0.074      | 0.000          | 0.0184  | 0.0365  | 0.614       | 1,753                     |
| Facility delivery        | 0.740   | 0.471       | 0.269      | 0.000          | 0.1058  | 0.0319  | 0.001       | 1,837                     |
| Indonesia                |         |             |            |                |         |         |             |                           |
| ANC 1                    | 0.975   | 0.945       | 0.030      | 0.000          | 0.016   | 0.004   | 0.000       | 14,954                    |
| ANC 4                    | 0.911   | 0.870       | 0.041      | 0.000          | 0.026   | 0.006   | 0.000       | 14,318                    |
| First ANC visit in first |         |             |            |                |         |         |             |                           |
| 3 months                 | 0.810   | 0.775       | 0.036      | 0.000          | 0.017   | 0.008   | 0.033       | 14,318                    |
| Facility delivery        | 0.625   | 0.529       | 0.096      | 0.000          | 0.049   | 0.009   | 0.000       | 14,954                    |

(Continued...)

Table 5. - Continued

|                          |         | Means befor | e matching | Avera effect | Number<br>of cases |        |             |               |
|--------------------------|---------|-------------|------------|--------------|--------------------|--------|-------------|---------------|
| Outcomes                 | Insured | Uninsured   | Difference | p-<br>value  | ATT                | SE     | p-<br>value | on<br>support |
| Namibia                  |         |             |            |              |                    |        |             |               |
| ANC 1                    | 0.986   | 0.957       | 0.029      | 0.000        | -0.0012            | 0.0114 | 0.916       | 2,950         |
| ANC 4                    | 0.909   | 0.800       | 0.110      | 0.000        | 0.0209             | 0.03   | 0.486       | 3,005         |
| First ANC visit in first |         |             |            |              |                    |        |             |               |
| 3 months                 | 0.538   | 0.292       | 0.246      | 0.000        | 0.1585             | 0.0509 | 0.002       | 3,005         |
| Facility delivery        | 0.969   | 0.798       | 0.171      | 0.000        | 0.0325             | 0.0206 | 0.115       | 2,950         |
| Rwanda                   |         |             |            |              |                    |        |             |               |
| ANC 1                    | 0.990   | 0.965       | 0.025      | 0.000        | 0.0154             | 0.0056 | 0.006       | 6,122         |
| ANC 4                    | 0.379   | 0.318       | 0.061      | 0.000        | 0.0195             | 0.0203 | 0.337       | 6,016         |
| First ANC visit in first |         |             |            |              |                    |        |             |               |
| 3 months                 | 0.411   | 0.332       | 0.080      | 0.000        | 0.017              | 0.0206 | 0.410       | 6,016         |
| Facility delivery        | 0.765   | 0.613       | 0.152      | 0.000        | 0.0745             | 0.0186 | 0.000       | 6,122         |

 $<sup>^{1}</sup>$  ATT was not estimated because the raw difference in the outcome between the insured and uninsured was statistically non-significant.