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1 Introduction1

Fifty years ago, in the first issue of the first volume of the then-new journal Demography, Nathan2

Keyfitz (1964) described the “population projection as a matrix operator.” He showed that popula-3

tion projections using the cohort component method could be written as matrix population models,4

and emphasized the value in doing so to focus attention on the mathematical structure of the pro-5

jection, inviting deeper analyses of its properties with more powerful mathematical tools. Today,6

official projections are often implemented as computer algorithms, the details of which are obscure7

but which permit almost endless fine-tuning of relationships. But the advantages of considering8

projections as matrix operators are no less real. In this paper, we carry on in this spirit, using9

matrix calculus methods to develop a complete perturbation analysis of population projections.10

As is customary in demography, we use the term projection to describe a conditional prediction11

of population size and structure, over a specified time horizon, such as are regularly developed by12

national governments, international consortia (e.g., Eurostat), and non-governmental organizations13

(U.N.). All projections are conditional in the sense that they are based on one or more hypothetical14

scenarios defining future rates of mortality, fertility, and migration (collectively, the “vital rates”),15

and also conditional on an initial population.16
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The vital rate scenarios are defined in terms of a set of parameters; the nature of those pa-17

rameters will depend on the details of the scenarios. Sensitivity analysis (also called perturbation18

analysis) asks how the results of the projection would change in response to changes in the param-19

eters. Sensitivity analysis is useful because:20

1. It can project the consequences of changes in the vital rates. Such changes could result from21

human actions, either intentional (e.g., policies to encourage reproduction, public health22

interventions, or conservation strategies applied to endangered species) or unintentional (e.g.,23

consequences of pollution or environmental degredation), or natural changes.24

2. It can be used to compare potential policy interventions and identify interventions that would25

have particularly large effects. If an outcome is particularly sensitive to a particular param-26

eter, that parameter may be an attractive target for intervention.27

3. It can be used retrospectively to decompose observed changes in some outcome into contri-28

butions from changes in each of the parameters (Caswell 2000, 2001).29

4. It can be used to identify parameters the estimation of which deserves extra attention, because30

they have large effects on the results.31

5. It can quantify uncertainty of projection results: given the uncertainty in some parameter θ,32

and the sensitivity of an outcome of interest to changes in θ, it is possible to approximate33

the resulting uncertainty in the outcome. Demogaphers have become increasingly concerned34

with estimating the uncertainty of projection results (Booth 2006, Ahlburg and Lutz 1998).35

1.1 Sensitivity and elasticity36

Our approach is to calculate the derivatives of the projection results to the parameters and initial37

conditions. This gives the effects of small changes, gives approximate results for quite large changes,38

and identifies parameters with particularly large or small impacts on the results. As we will show,39

the parameters may include aspects of mortality, fertility, or immigration. The projection results40

may include a variety of different functions of the population, including measures of size, structure,41

and growth.42
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We will present results for both sensitivity and elasticity. If y is a function of x, we define the43

sensitivity of y to changes in x as44

sensitivity =
dy

dx
. (1)

The elasticity of y is the proportional sensitivity, which is45

elasticity =
x

y

dy

dx
(2)

=
εy

εx
(3)

This gives the proportional change in y resulting from a proportional change in x. There is no46

standard notation for elasticities, despite their widespread use in economics and population biology.47

The notation used here, εy/εx, which parallels the notation for derivatives, is adapted from a48

notation used by Samuelson (1947). Elasticities are only defined when y > 0 and x ≥ 0.49

In Section 2 we will write both one-sex and two-sex projections as matrix operators, and discuss50

the scenarios that might be involved in such projections and the parameters that might determine51

those scenarios. Then, in Section 3 we will give the expressions for the sensitivities and elasticities52

of the population vector (abundance by age class of males, or females, or both combined) to changes53

in mortality, fertility, and immigration. A particularly important part of our results, in Section 3.5,54

is to show how the sensitivity results for the population vector can be translated directly into other55

dependent variables, such as weighted population size, ratios, and growth rates.56

Our approach here is to write the projection as a matrix operator, and then to use matrix57

calculus (e.g., Caswell 2007, 2008, 2012) to derive the needed derivatives of the results to underlying58

parameters. These methods are easily implemented in any matrix-oriented computer language,59

especially Matlab, but also R.60

After presenting the theory, in Section 4 we will apply the calculations to a projection of61

the population of Spain, using information from the Instituto Nacional de Estadistica (INE). We62

conclude with a discussion of how these results apply to evaluating the uncertainty of projections63

and future developments.64

Notation. Matrices are denoted by upper case bold symbols (e.g., A) and vectors by lower case65

bold symbols (e.g., n). All vectors are column vectors by default. The vector xT is the transpose of66
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the vector x. The Hadamard, or element-by-element, product of A and B is A◦B. The Kronecker67

product is A⊗B. The diagonalization operator D(x) creates a matrix with x on the diagonal and68

zeros elsewhere. The vec operator, when applied to a m × n matrix X creates a mn × 1 vector69

vecX by stacking each column of X on top of the next. When necessary, subscripts are attached to70

indicate the size of matrices or vectors; e.g., Is is the s× s identity matrix. The vector 1 is a vector71

of ones, and the vector ei is the ith unit vector, with a 1 in the ith location and zeros elsewhere.72

2 Projection as a matrix operation73

2.1 Dynamics74

Any cohort-component population projection can be written as a matrix operator. As a simple75

example, we present a one-sex model, but we focus most of our attention on a two-sex model76

that includes separate rates for males and females. Multistate projections will be considered in a77

subsequent paper.78

A single-sex projection can be written as79

n(t+ 1) = A(t)n(t) + b(t) n(0) = n0 (4)

where n(t) is a vector whose entries are the numbers of individuals in each age class or stage at80

time t, A(t) is a projection matrix incorporating the vital rates at time t, and b(t) is a vector81

giving the number of immigrants in each age class or stage at time t. The projection begins with82

a specified initial condition, denoted n0, and is carried out until some target time T .83

Two-sex projections are generalizations of (4). We define population vectors nf and nm, and84

projection matrices Af and Am, for females and males, respectively. We assume that reproduction85

is female dominant1, so all fertility is attributed to females. We decompose the projection matrices86

for females and males into87

Af (t) = Uf (t) + rF(t) (5)

Am(t) = Um(t) (6)

1Two-sex models that do not assume dominance by one sex have been used to project animal populations, but
not, as far as we know, human populations (Jenouvrier et al. 2010, 2012, 2014).
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where U describes transitions and survival of extant individuals and F describes the production of88

new individuals by reproduction.89

In an age-classified model, F will have fertilities on the first row and zeros elsewhere. A pro-90

portion r of the offspring are female. This model attributes reproduction to females; hence there91

is no need to create separate fertility matrices for reproduction by males and females.92

The male component of the population is projected by the survival matrix Um; the input of93

new individuals comes from the female population. The projection model becomes94

nf (t+ 1) =
[
Uf (t) + rF(t)

]
nf (t) + bf (t) (7)

nm(t+ 1) = Um(t)nm(t) + (1− r)F(t)nf (t) + bm(t) (8)

The formulations (4) and (7)–(8) are general enough to encompass all the projections typically95

used. The vector n can incorporate any type of population structure considered relevant. If individ-96

uals are grouped into age classes, then A is the familiar Leslie matrix, with survival probabilities97

on the subdiagonal, fertilities in the first row, and zeros elsewhere. If individuals are classified98

by other criteria (“stages” in common usage), A will have the structure needed to capture transi-99

tions among stages based on physiological condition, developmental stage, socio-economic grouping,100

marital status, parity status, etc.101

Immigration, denoted here by b(t), is a particularly challenging part of population projection.102

We explore the reasons for this, and some of the ways in which migration is handled, in Sec-103

tion 6.3. Some implementations of migration require minor modifications of equations (4)–(8), but104

the sensitivities are derived in the same way as what we are about to show.105

2.2 Scenarios and parameters106

A projection is based on a scenario of how the future might unfold. The matrices U(t) and F(t),107

and the vector b(t), describe the future dynamics of the mortality, fertility, and immigration. The108

future being unknown, considerable ingenuity is required to construct these functions. Three major109

approaches seem to be used, singly or in combination.110

1. Extrapolation of trends. This approach starts from the observation that some vital rates111

(particularly mortality and fertility rates) develop gradually over time, and extrapolates112
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those patterns into the future. The best-known of these is perhaps the Lee-Carter model113

for mortality, which projects mortality with a time-series model applied to a singular value114

decomposition of a past record of age- and time-specific mortality rates. Recent developments115

include sophisticated Bayesian methods that also produce statistically rigorous uncertainty116

bounds (e.g., Gerland et al. 2014).117

2. Assumptions and expert opinion. Future trends in vital rates are sometimes simply assumed,118

based on unspecified conceptual models. The projections of Eurozone countries by Eurostat,119

for example, are based on the assumption that the mortality and fertility of all European120

countries will converge to a common value by the year 2150 (Lanzieri 2009). The rates for121

a given country in each year are determined by interpolating between the rates at the start122

of the projection and the final target rates. Other studies have been based on the opinion123

of experts who are not directly involved in the projection process. Lutz and colleagues,124

for instance, have used a Delphi-method based approach to collect and aggregate external125

expert opinions on demographic trends in a systematic manner (Ahlburg and Lutz 1998).126

Expectations of population members about their own lives (e.g. survey data on the expected127

number of children or expected remaining life expectancy) have also been used to define128

scenarios.129

3. Dependence on external factors, which can themselves be projected. If the vital rates depend130

on some factor, and the dynamics of that factor can be predicted, this provides the basis for a131

projection of the vital rates. The appoach has been used for animal populations. For example,132

projections of populations of polar bears and emperor penguins under the impact of climate133

change have been based on projections of sea ice conditions (a critical environmental variable134

for these species) generated by models of global climate conditions produced by the IPCC135

(Hunter et al. 2010, Jenouvrier et al. 2009, 2012, 2014). Similarly, projections of human136

populations have been based on expectations about future economic, social or environmental137

developments (Booth 2006).138

Regardless of how the scenario of future conditions is obtained, the resulting projection depends on139

a set of parameters which jointly determine the projection matrices and the immigration vectors.140

We will write this set of parameters as a vector θ, of dimension p. In this paper, we focus on141

7



the commonly encountered case in which the parameters are the age- and time-specific rates of142

mortality, fertility, and immigration:143

θ(t) =


µ(t) vector of mortality rates

f(t) vector of age-specific fertility

b(t) immigration vector

(9)

These vectors might, in turn, be expressed as functions of a scalar quantity such as life expectancy,144

or a parametric model such as the Gompertz, gamma-Gompertz, or Siler models for mortality, or145

the Coale-Trussel function for fertility. In that case, the vector θ would include the parameters146

that define those functions.147

3 Perturbation analysis of projections148

Our goal is to quantify the sensitivity and elasticity of projection results to the parameters in θ.149

To do that, we need to introduce the matrix calculus framework for derivatives of vectors (the150

projection output) with respect to other vectors (the parameter vector).151

3.1 Matrix calculus notation152

Matrix calculus permits the differentiation of scalar-, vector-, or matrix-valued functions of scalar-,153

vector-, or matrix-valued arguments.154

The underlying theory is developed in detail by Magnus and Neudecker (1987); for an introduc-155

tory account see Abadir and Magnus (2005). The methods have been applied to demography in a156

series of papers (Caswell 2006, 2007, 2008, 2010, 2011, 2012, Caswell and Shyu 2012, van Raalte157

and Caswell 2013, Engelman et al. 2014).158

If y is a n× 1 vector function of the m× 1 vector x, then the sensitivity of y to x is the n×m159

Jacobian matrix written as160

dy

dxT
=

(
dyi
dxj

)
. (10)
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We will use the fact that this calculus satisfies the chain rule, so that if z is a function of y, then161

dz

dxT
=

dz

dyT

dy

dxT
. (11)

The elasticity of y is the n×m matrix given by162

εy

εxT
= D(y)−1

(
dy

dxT

)
D(x) (12)

Our goal is to obtain a set of sensitivity and elasticity relationships of the form163

dξ

dθT
and

εξ

εθT

where ξ is a projection output. This output might be n(t), the population vector, or it might be164

some scalar function of n (e.g., a dependency ratio).165

In each case the sensitivity is obtained from a dynamic model for the derivative166

dn(t)

dθ(x)

If there are ω age classes and p parameters, then this derivative is a ω× p matrix whose (i, j) entry167

is the derivative of ni(t) with respect to the parameter θi.168

3.2 One-sex projections169

For simplicity, we begin with the one-sex projection (4). We consider the effects of changes in the170

parameters at time x on the projected population at time t, for x = 0, . . . , T and t = 0, . . . , T .171

Changes in θ(x) obviously have no effect on n(t) for t < x (we ignore the complications of time172

travel). However, a perturbation at time x will ripple through n(t) for all t > x, and our goal is to173

find out how.174

The dynamics of the population vector n(t) are obtained by iterating equation (4). The sensi-175

tivity of n(t) to a change in θ(x) is obtained by iterating the dynamic equation176

dn(t+ 1)

dθT(x)
= A(t)

dn(t)

dθT(x)
+ (nT(t)⊗ I)

dvecA(t)

dθT(x)
+

db(t)

dθT(x)
(13)
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starting from the initial condition177

dn(0)

dθT(x)
= 0ω×p (14)

The elasticity of n(t) to θ(x) is, from (12),178

εn(t)

εθT(x)
= D

(
n(t)

)−1 dn(t)

dθT(x)
D [θ(x)] (15)

The structure of (13) is common to all the sensitivity results:179

dn(t+ 1)

dθT(x)︸ ︷︷ ︸
sensitivity at t+ 1

= A(t)
dn(t)

dθT(x)︸ ︷︷ ︸
sensitivity at t

+ (nT(t)⊗ I)
dvecA(t)

dθT(x)︸ ︷︷ ︸
effects via A

+
db(t)

dθT(x)︸ ︷︷ ︸
effects via b

(16)

The sensitivity at t + 1 is projected from the sensitivity at t, the effects of parameters on the180

projection matrix, and the effects of parameters on the immigration vector.181

3.3 Two-sex projections182

The sensitivity of the two-sex projection is given by the two derivatives,183

dnf (t)

dθT(x)
and

dnm(t)

dθT(x)

These derivatives are obtained from dynamic expressions, for the female population184

dnf (t+ 1)

dθT(x)
=

(
UF (t) + rF(t)

) dnf (t)

dθT(x)
+
(
nT
f (t)⊗ I

)(dvecUF (t)

dθT(x)
+ r

dvecF(t)

dθT(x)

)

+
dbf (t)

dθT(x)
(17)

and the male population185

dnm(t+ 1)

dθT(x)︸ ︷︷ ︸
sensitivity at t+ 1

= Um(t)
dnm(t)

dθT(x)
+ (1− r)F(t)

dnf (t)

dθT(x)︸ ︷︷ ︸
sensitivities at t

+ (nT
m(t)⊗ I)

dvecUm(t)

dθT(x)︸ ︷︷ ︸
effects via male transitions
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+ (1− r)
(
nT
f (t)⊗ I

) dvecF(t)

dθT(x)︸ ︷︷ ︸
effects via female fertility

+
dbm(t)

dθT(x)︸ ︷︷ ︸
effects via immigration

(18)

Equations (17) and (18) are iterated from initial conditions186

dnf (0)

dθT(x)
=
dnm(0)

dθT(x)
= 0ω×p (19)

along with the iteration of equations (7) and (8) for the population vectors nf (t) and nm(t).187

We have labelled the terms in (18) to show the parallels with (16). In both cases, the sensitivity188

at time t+ 1 depends on the sensitivity at time t and on the effects of the parameter vector on the189

transition and fertility matrices and on the immigration vector. In the next section we turn to the190

calculation of these derivatives.191

The elasticities of nf (t) and nm(t) are given by applying (15) to the corresponding derivatives192

for female and male population:193

εnf (t)

εθT(x)
= D [nf (t)]−1 dnf (t)

dθT(x)
D[θ(x)] (20)

and similarly for nm.194

The combined population of both males and females is nc = nf + nm. The sensitivity and195

elasticity of nc are196

dnc(t)

dθT(x)
=

dnf (t)

dθT(x)
+
dnm(t)

dθT(x)
(21)

εnc(t)

εθT(x)
= D [nc(t)]

−1

[
dnf (t)

dθT(x)
+
dnm(t)

dθT(x)

]
D[θ(x)] (22)

The entire system of sensitivity and elasticity relationships is obtained by simultaneously iter-197

ating equations (7) and (8) to project the populations of females and males, and the equations (17)198

and (18) to project the sensitivity of the female and male populations.199
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3.4 Parameters and the derivatives of matrices200

So far we have left the parameter vector θ undefined, because the results apply to any choice of201

parameter. Now we become more specific by focusing on the cases where θ is a vector of mortality202

rates, or of fertilities, or of immigration rates. We consider each of these important cases and203

present the derivatives of the matrices U and F, and the vector b, to those parameters. These204

derivatives appear in the expressions (17), (18), and (21) and the corresponding elasticity equations.205

A change in the parameter vector θ at time x can affect the projection matrices only when206

t = x; to indicate this, we will use the Kronecker delta function207

δ(x, t) =

 1 if x = t

0 if x 6= t
(23)

Because sex-specific mortality only affects the matrices for that sex, the following results apply to208

either male or female rates, so we do not include the subscript to define the sex of the subpopulation.209

• Mortality: θ = µ. Mortality rates affect the transition matrix U (or the projection matrix A210

if transitions and fertility are not separated). Define the survival vector p = exp(−µ), which211

appears on the subdiagonal of U, and an indicator matrix Z with ones on the subdiagonal212

and zeros elsewhere. Then213

dvecA(t)

dµT(x)
=
dvecU(t)

dµT(x)
= −δ(x, t)D(vecZ) (1⊗ I)D

(
p(t)

)
(24)

where 1 is a vector of ones. The derivatives of F and b with respect to µ are zero.214

• Fertility: θ = f . The fertility vector appears on the first row of the matrix F. The derivative215

of F is216

dvecF(t)

dfT
= δ(x, t) (I⊗ e1) (25)

where e1 is the first unit vector. The derivatives of U and b with respect to f are zero.217

• Immigration: θ = b. When the parameter vector is the immigration vector, then218

db(t)

dbT(x)
= δ(x, t)I (26)
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and the derivatives of U, F, and A with respect to b are all zero.219

3.5 Choosing a dependent variable220

These results presented so far provide the sensitivity of every age class, at every time from 0 to221

T , with respect to changes in mortality, fertility, and immigration of every age class, at every222

time from 0 to T . This high-dimensional structure is more information than anyone wants, but it223

can be condensed to provide information on the sensitivity of any projection outcome that is of224

interest. An informal survey of Statistical Offices2 finds that they typically present projections of225

the total population size, the proportional representation of specific age groups (e.g., working age226

adults, school-age children, people of retirement age, women of childbearing age), ratios such as227

the old-age, young-age, and total dependency ratios, and descriptors of the age distribution such228

as the median age in the population.229

In this section, we show how to calculate the sensitivity and elasticity of such dependent variables230

from the derivatives of n(t) given in (17), (18), and (21). In the following, sensitivities can be applied231

to the female population, the male population, or the combined population.232

1. Total population size N(t). The total population size is N(t) = 1Tn(t); its sensitivity to233

parameter changes at time x is234

dN(t)

dθT(x)
= 1T dn(t)

dθT(x)
(27)

The elasticity of N(t) is235

εN(t)

εθT(x)
=

1

N(t)

dN(t)

dθT(x)
D(θ) (28)

2. Weighted total population size. Suppose that N(t) = cTn(t), where c is a vector that applies236

different weights to each age class. For example, c might contain the labor income of each age237

class, or the prevalence in each age class of some health condition. N(t) is now a weighted238

population size; the sensitivity of N(t) to a change in parameters at time x is239

dN(t)

dθT(x)
= cT dn(t)

dθT(x)
. (29)

2European Union, Germany, France, Belgium, Ireland, Estonia, Spain, Austria, Finland, Sweden, United Kingdom,
Iceland, and Switzerland
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The elasticity is again given by (28).240

The weight vector c might also subject to perturbations (e.g., if the prevalence of a health241

condition was to change by screening or treatment). The sensitivity of N(t) to changes in c242

is243

dN(t)

dcT
= nT(t) (30)

The corresponding elasticities of N(t) to θ and c are244

εN(t)

εcT
=

1

N(t)
nT(t)D(c) (31)

The elasticities of N(t) to c in (31) always sum to 1.245

3. Ratios of weighted population sizes. Let246

R(t) =
aTn(t)

cTn(t)
, (32)

where a and c are vectors of weights. Such ratios appear frequently as dependent variables247

in population projections. Examples of include:248

(a) The proportional representation of an age group (e.g., the proportion over 65 years of249

age). In this case, a is an indicator vector, containing ones corresponding to the ages in250

the age group, and zeros elsehwere. The vector c = 1, so that cTN is the total population251

size.252

(b) Dependency ratios. In this case, a and c are both indicator vectors for the relevant age253

groups. The old-age dependency ratio, for example, is obtained by letting a indicate254

ages beyond retirement age and c indicate working ages.255

(c) Weighted dependency ratios. Instead of considering all individuals of retirement age, or256

working age, to be equal, a and c can be vectors of weights. For example, the economic257

support ratio (Prskawetz and Sambt 2014) is computed by letting a be a vector giving258

age-specific labor income, and c a vector giving age-specific consumption.259

(d) Moments of the age distribution. The mean of the age distribution is obtained by setting260
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the vector a to the midpoints of the age intervals; e.g., for one year age classes,261

a =

(
0.5 1.5 2.5 · · ·

)T

(33)

and setting c = 1. The second moment of the age distribution is obtained by setting262

a =

(
0.52 1.52 2.52 · · ·

)T

(34)

and c = 1. The variance in age is obtained from the first and second moments in the263

usual way.264

(e) Moments of age-specific properties. Suppose that B(x) is some measurement on age265

class x (e.g., the mean body mass index (BMI) of age class x). Then the mean BMI in266

the population would be obtained by setting c = 1 and267

a =

(
B(1) B(2) B(3) · · ·

)T

. (35)

The sensitivity of a ratio (Caswell 2007) is268

dR(t)

dθT(x)
=

dR(t)

dnT(t)

dn(t)

dθT(x)
(36)

=

(
cTn(t)aT − aTn(t)cT

(cTn(t))2

)
dn(t)

dθT(x)
. (37)

The elasticity of the ratio is269

εR(t)

εθT(x)
=

1

R(t)

dR(t)

dθT(x)
D [θ(x)] (38)

4. Short-term growth rates. Define the k-step growth rate of the weighted population size cTn,270

at time t as271

λ(t) =
cTn(t+ k)

cTn(t)
. (39)

This gives the average growth rate of the population over the next k years, starting from year272
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t. To obtain the sensitivity of λ(t), note that273

dλ(t)

dθT(x)
=

∂λ(t)

∂cTn(t)

dcTn(t)

dθT(x)
+

∂λ(t)

∂cTn(t+ k)

dcTn(t+ k)

dθT(x)
(40)

From (39), we have274

∂λ(t)

∂cTn(t)
=
−cTn(t+ k)

[cTn(t)]2
(41)

∂λ(t)

∂cTn(t+ k)
=

1

cTn(t)
(42)

Assembling all the pieces gives the sensitivity of the short-term k-step growth rate,275

dλ(t)

dθT(x)
=
−cTn(t+ k)

[cTn(t)]2
cT dn(t)

dθT(x)
+

1

cTn(t)
cTdn(t+ k)

dθT(x)
(43)

In the special case where interest focuses on total population size, one simply sets c = 1.276

The quantity λ is a discrete time growth rate; the corresponding continuous growth rate over277

the interval is given by r(t) = log(λ(t))/k, and278

dr(t)

dθT(x)
=

1

kλ(t)

dλ(t)

dθT(x)
(44)

3.6 Aggregating perturbations over age and time279

The expressions presented so far give the response of every age class in the population n, at any time280

t, to a perturbation of any of the parameters in θ, at any other time x. This is a 4-dimensional281

information structure, and it will often be appropriate to simplify the structure by aggregating282

sensitivity over age, or time, or parameters, or all of these. Some examples are:283

1. The sensitivity of n at time t to a perturbation, at time x, that affects all age classes by the284

same amount (e.g., an additive or a proportional hazard imposed on the mortality schedule).285

The sensitivity and elasticity are given by286

sensitivity:
dn(t)

dθT(x)
1 (45)
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elasticity:
εn(t)

εθT(x)
1 (46)

2. The sensitivity of the population vector at time t to a change in θ(x) that is applied equally287

at every time from x = 0 to x = T . In a slight abuse of notation, let us denote the sensitivity288

of n(t) to this perturbation as289

dn(t)

dθT(0, T )
=

T∑
x=0

dn(t)

dθT(x)
(47)

The corresponding elasticity is290

εn(t)

εθT(0, T )
= D[n(t)]−1

T∑
x=0

(
dn(t)

dθT(x)
D[θ(x)]

)
(48)

=

T∑
x=0

εn(t)

εθT(x)
(49)

3. The response of a summation of population properties over time. For example, consider the291

the population vector summed from time t = 0 to t = T . The sensitivity and elasticity of292

this sum are293

d

dθT(x)

T∑
t=0

n(t) =

T∑
t=0

dn(t)

dθT(x)
(50)

ε

εθT(x)

T∑
i=0

n(t) = D

[∑
t

n(t)

]−1 T∑
t=0

dn(t)

dθT(x)
D [θ(x)] (51)

4 Projection of the population of Spain294

To illustrate the use of matrix calculus techniques for sensitivity and elasticity calculations, we use295

a projection of the population of Spain, published by the Spanish Instituto Nacional de Estadistica296

(INE). The projection uses the cohort component method and distinguishes single-year age groups297

(ages 0 to 100+ years) and sex of population members. It covers the years 2012 to 2052. Projec-298

tion intervals have the length of one year (INE 2012a). The projection is based on the following299

assumptions:300
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• The fertility scenario is presented in the form of age-specific fertility rates. INE assumes that301

the total fertility rate will increase from 1.36 children per women in 2011 to 1.56 in 2051, and302

that the mean age at childbearing will rise from 31 to 32 years within the same period. On303

their internet webpages, INE has published fertility vectors for f(t) for t = 1, . . . , 40 which304

reflect these assumptions (INE 2012b).305

• The mortality scenario is defined in terms of the age- and sex-specific probabilities of death. It306

is assumed that life expectancy at birth will increase from 80 years in 2011 to 87 years in 2051307

for men, and from 83 years to 91 years for women over the same time period. Corresponding308

to these assumptions, INE presents a series of age- and sex-specific probabilities of death,309

q(t) for t = 1, . . . , 40 (INE 2012b).310

• Migration assumptions are expressed in terms of age- and sex-specific immigration numbers311

and emigration rates. INE assumes that the migratory balance of Spain, which was negative312

by 50.000 persons in 2011, will recover during the projection period. In the last ten projection313

years, the number of persons who move to Spain is assumed to exceed emigration numbers314

by around 438.000 persons. Emigration rates are held constant over the entire projection315

interval.3 Because of the assumptions of INE, we incorporated emigration into the matrix316

U, treating emigration and mortality as two competing risks for leaving the population (INE317

2012b).318

In a press note on the population projections of 2012, INE emphasizes two key findings: First,319

the population of Spain is expected to decline from 46.2 million persons in 2012 to 41.5 million320

residents in 2052. Second, the population is expected to age. INE estimates that 37 percent of321

the population will be aged 64 or older in 2052, raising the overall dependency ratio, defined as322

the quotient between the population under 16 and over 64 years of age and the population aged323

16 to 64, from 0.504 (in 2012) to 0.995 (in 2052). These projection results form the basis of324

governmental planning (INE 2012a). Analysing their sensitivity and elasticity to changes in the325

underlying assumptions is therefore not only relevant for the demographic research community, but326

also for policy makers in Spain.327

3This seems strange to us, but is clear in the data provided by INE.
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5 Sensitivity and elasticity of the population projection of Spain328

The sensitivity and elasticity of the projection results can be evaluated by focusing on the popu-329

lation of Spain as a whole, or by analyzing the male and female population separately. Here, we330

use examples from both perspectives. In constructing the transition matrices U(t) we combined331

mortality and emigration as independent ways of leaving the population.4 Let Pi be the element332

in the (i+ 1, i) entry of U; then we write333

Pi = (1− qi) (1− ri) (52)

where qi is the probability of death and ri the probability of emigrating.334

5.1 Sensitivity of the total population size335

Figure 1 shows the sensitivity of the total population size at terminal time T = 40 to changes in the336

vital rates applied in every projection year. The x-axis of the graphs shows the ages at which we337

perturb the vital rates; the y-axis shows the size of the effect. Figure 1 suggests that perturbations338

in vital rates tend to have the largest effect on the final population size if they occur at young adult339

ages, particularly around age 30.340

Perturbations in mortality and emigration rates, combined into one set of rates Pi, have a w-341

shaped effect on the total population size, with effects being largest around age 30 and to a lesser342

extent around age 50. Increasing rates at these ages by one unit during the projection period343

reduces the final population size by between 1.8 × 107 and 2 × 107 units. Perturbations at other344

ages, especially above age 65, have a smaller effect on the final population size.345

Perturbations in immigration also have the strongest effect on the final population size if they346

occur at young adult ages. At age 30, increasing immigration numbers by one unit, i.e. by one347

male and one female immigrant per projection year, increases the final population size by around348

110 persons. This includes the additional immigrants themselves and their offspring. Above age349

30, the effect of perturbations in immigration numbers decreases, first until age 40 where the effect350

4The effect of perturbations in immigration and emigration assumptions cannot be tested jointly, since INE defines
emigration assumptions as probabilities and immigration assumptions in terms of numbers. We chose to combine
mortality and emigration data into one set of rates indicating processes of leaving the population. Other statistical
offices commonly express emigration assumptions in the form of numbers. In this case, emigration numbers can be
incorporated in the migration vector.
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of perturbations briefly levels off, and then more rapidly above age 50. Note that sensitivities to351

changes in immigration are many orders of magnitude smaller than those to changes in the other352

vital rates. This is because immigration is measured in numbers, while mortality/emigration and353

fertility are per capita rates.354

The sensitivity of total population size to perturbations in fertility rates shows a somewhat355

different age pattern. The effect of perturbations increases with age and is strongest at age 49.356

At this age, an increase in fertility rates by one unit across all projection years increases the final357

population size by around 10× 106 units.358

Overall, Figure 1 suggests that the population size in the final projection year is most sensitive359

to perturbations occurring at young adult ages, particularly in the case of mortality and migration.360

Numerically strong cohorts pass through age groups 30 to 40 at the beginning of the projection361

period, so that any perturbations in the vital rates concern large population numbers. The effects362

of perturbations also accumulate during the projection period, when population members move363

to older age groups. While Figure 1 allows comparisons of perturbation effects across ages, com-364

parisons between vital rates are difficult, given that immigration assumptions are defined in terms365

of numbers and fertility and mortality/emigration assumptions as rates. In order to compare the366

effect of perturbations across vital rates, we calculate elasticities.367

5.2 Elasticity of male and female population sizes368

Figure 2 shows the elasticity of the Spanish population at T=40 to perturbations in mortality,369

fertility and migration, applied in every projection year. Here, we distinguish between the male370

and female population. Elasticity calculations also allow us to look at the effect of perturbations371

in mortality and emigration separately. Ages on the x-axis again represent the ages at which372

perturbations occur.373

The elasticity patterns show similarities to the sensitivity results: The elasticity of male and374

female populations to perturbations in vital rates is strongest around ages 25 to 35. This is the case375

for immigration numbers, where the effects of perturbations are highest at age 28. The separate376

analysis for emigration rates shows that perturbations also have the strongest influence around age377

30. A one per cent change in female emigration rates at this age across all projection years, for378

instance, reduces the final population size by 0.01 per cent. The size of effects is stronger for the379
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male than for the female population. This is because the male population reacts to perturbations380

of both male and female immigration numbers and emigration rates. If the female population381

increases or is reduced due to perturbations in immigration or emigration, this changes the number382

of male offspring. The female population, by contrast, is not directly affected by perturbations383

in male migration in our model. The elasticity of the final male and female population sizes to384

perturbations in fertility reaches its highest level around age 35. The elasticity results thus confirm385

that projection parameters at ages 25 to 35 have to be defined with particular care if the projection386

outcome of interest is the final population size.387

Only elasticity to mortality follows a different pattern: The effect of perturbations increases388

with age and is highest at 85 years for males and at around 90 years for females. One reason for389

the comparatively large effect of perturbations at these ages is that mortality rates are high, so390

that any proportional changes will have the large effects. Overall, however, it is remarkable that391

the proportional effect of perturbations in mortality rates on the total male and female population392

sizes in the final projection year is substantially smaller than the effect of perturbations in any of393

the other vital rates.394

5.3 Elasticity of the school-age population (6 to 16 years)395

Elasticities to perturbations in vital rates can not only be calculated for male, female or total396

population sizes, but also for subgroups of the population. Here, we calculate the elasticity of397

the school-age population groups in Spain (6 to 16 years, male and female persons combined) to398

perturbations. Again, we focus on the size of this population group at T= 40 and assume that399

perturbations have occurred throughout the projection period.400

Figure 3 shows that perturbations in mortality rates have almost no influence on the number of401

school-age children in the final projection year - mortality rates are very low at ages 6 to 16 and any402

perturbations therefore do not matter for the development of this population group. Perturbations403

in immigration and emigration directly influence the size of the school age population if they occur404

at young ages (particularly ages 1 to 10 years). A one per cent increase in immigration numbers405

at age 5, for instance, would increase the number of school-age children in the final projection406

year by almost 0.02 percent. Perturbations in migration at ages 20 to 35 influence the school-407

age population through fertility. A change in the number of women in these age groups through408
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migration influences the number of newborn children in Spain who with a delay of 6 years reach409

school age. Fertility has by far the largest effect on the school-age population: If the fertility rate410

was one per cent higher than assumed by INE during the projection period at age 34 alone, the411

school-age population in the final projection would be 0.08 per cent larger. Fertility assumptions412

must therefore be of particular concern for policy makers interested in the future development of413

this population group.414

5.4 Elasticity of population with dementia415

Sensitivities and elasticities to perturbations in vital rates can also be calculated for the Spanish416

population weighted by a set of prevalences. Here, we calculate the elasticity of the number of417

persons with dementia in the final projection year to perturbations in the vital rates and prevalences.418

Figure 4 shows the prevalence of dementia by age among the Spanish population in 2012. Prevalence419

rates increase strongly above age 70, with prevalence rates of women reaching higher levels than420

those of men. We have projected the number of persons with dementia in Spain by keeping these421

rates constant. Figure 4 shows the elasticity of the projected population with dementia in 2052422

(male and female cases combined) to perturbations.423

The number of persons with dementia reacts most strongly to perturbations in the prevalences.424

A one percent increase at any age between 85 and 90 years across projection years, for instance,425

would increase the number of dementia cases in the last projection year by between 0.05 and 0.06426

per cent. Perturbations in the vital rates would have a comparatively smaller effect. Mortality and427

migration perturbations under age 30 do not affect the number of dementia cases in 2052 at all,428

since persons in these age groups do not reach ages during the projection period at which dementia429

becomes prevalent. For the same reason, perturbations in fertility do not influence the number of430

dementia cases. Above age 30, the effect of perturbations in mortality, emigration and immigration431

increases and reaches its highest level at ares 55 (emigration) and 65 (immigration). Perturbations432

of mortality show the largest impact between ages 85 and 90, when prevalence rates in dementia433

reach high levels. Overall, however, developments in the prevalence of dementia appear to be more434

decisive for the future number of dementia cases than trends in the vital rates.435
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5.5 Elasticity of dependency and support ratios436

One of the findings that INE highlights in their press note is that the overall dependency ratio437

in Spain (defining persons under age 16 and over age 64 as dependent) will double during the438

projection period. In 2052, the dependent population in Spain is expected to be as large as the439

population of working age. Again, we calculate how sensitive this result is to perturbations in the440

vital rates. Figure 5 shows the elasticity of the dependency ratio in the final projection year to441

perturbations in the vital rates during the projection period.442

The dependency ratio reacts to perturbations in vital rates across all ages, but the size and443

direction of effects differ: Perturbations in immigration and emigration between ages 20 and 30444

have the strongest influence. Immigration numbers and emigration rates are particularly high445

among these age groups, so that proportional changes have a strong impact. In addition, cohorts446

who pass through these age groups particularly at the beginning of the projection period spend a447

large number of years in the working age population and barely contribute to to the size of the448

population classified as ’dependent’. Perturbations in mortality rates have a comparatively smaller449

effect. The elasticity of the dependency ratio increases above age 40 and reaches the highest point450

at age 85, when a one percent increase in the mortality rate decreases the total dependency ratio in451

the final projection year by 0.007 per cent. Perturbations in fertility rates have the proportionally452

smallest effect on the overall dependency ratio in the last projection year. This is because during453

the 40-year projection period, newborn cohorts contribute both to the size of age groups defined454

as dependent and to the working age population. Both effects largely cancel each other out.455

The dependency ratio as defined by INE is a simplified construct to measure economic depen-456

dency. It disregards that population members above age 65 may continue to be productive and that457

not all population members aged 16 to 64 are part of the labour force. A more nuanced perspective458

is possible by using age-specific income and consumption data for Spain which have been prepared459

by the National Transfer Accounts (NTA) Project.5 Here we have calculated support ratios for460

Spain which draw on these data. We use per capita normalised annual consumption (public and461

private consumption) and labour income flow values. The data used by NTA date from the year462

2000. We have used these values as weights which we apply to the age distribution of the Spanish463

5Data and further information are available at www.ntaccounts.org.
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population in every projection year. We then obtain support ratios by calculating the ratio of464

income to consumption. Again, elasticities can be calculated for this more nuanced measure.465

Figure 5 shows how perturbations in the vital rates, occurring in every projection year, would466

influence the support ratio in 2052. Due to differences in the calculation of the support ration and467

the dependency ratio, perturbations have opposing effects on the two indicators - any perturbation468

that increases the dependency ratio would decrease the support ratio. To facilitate comparisons469

between the two figures, we have reversed the sign of elasticity results in the support ratio figure.470

Perturbations show a similar pattern across ages as in case of the overall dependency ratio, with471

effects of perturbations across age groups largely pointing in the same direction. Effects are however472

smaller. This reflects that population members across the age spectrum contribute both to con-473

sumption and income patterns. Only perturbations in fertility have a qualitatively different effect474

from the first dependency indicator: They increase the support ratio in the last projection year.475

This result reflects Spanish income and consumption data which show that consumption outweighs476

income until age 24. Young persons therefore remain ’net consumers’ for longer than assumed by477

the first indicator. Perturbations in fertility during a projection period of 40 years therefore put478

an upward pressure on the support ratio.479

6 Discussion480

6.1 Sensitivity analysis and scenarios481

Population projections incorporate large amounts of demographic information. The projection of482

Spain, with 101 ages projected across 40 years on the basis of annual rates of mortality, fertility,483

immigration, and emigration, contains over 16,000 pieces of information. It requires some kind of484

parameterization carrying enough information to specify all these.485

The result of this collection of demographic information is a diverse set of outcomes: population486

vectors, population sizes (weighted in various ways), ratios, growth rates, etc. Changes in any of487

the parameters at any time will change these results. The sensitivity structure quantifies these488

effects.489

Disciplines in which sensitivity analyses of various kinds are common (e.g., population ecology490

from the 1980s onwards) experience a kind of shift in perspective, in which the sensitivity of a491
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dependent variable to changes in parameters becomes as much a part of the results as the dependent492

variable itself. Until you have understood the sensitivity relationships, you have not understood493

the model.494

Statistical offices and agencies often carry out projections under multiple scenarios (low, medium,495

high ...). Such projections are a kind of perturbation analysis, measuring the effects of large changes496

imposed on many of the vital rates. But there are an infinite number of possible scenario modifica-497

tions. The results of a sensitivity or elasticity analysis give a quantitative measure of the effects of498

perturbations of specific rates. For example, from graphs of the form of Figures 4 or 5, we know,499

without the need for any scenario modifications at all, that changes in the vital rates will have500

less effect on the number of persons with dementia than changes in the prevalence rates, or that501

changes in fertility scenarios will have different effects on the economic support ratio than on the502

total dependency ratio. In addition, not only do we know that changes in the migration scenarios503

at different ages will have different effects on the support ratio (that’s probably pretty intuitively504

obvious), we can say what those differences are. Such conclusions may help decide what kind of505

scenario modifications are most worth looking at.506

6.2 Sensitivity analysis and uncertainty507

Because population projections are used for many types of social, economic and ecological planning,508

demographers have invested considerable attention in the last years to measure their uncertainty. A509

large body of literature has focused on probabilistic population projections based on past projection510

errors, expert opinion or stochastic models (Keilman et al. 2002).511

Sensitivity analysis does not, by itself, provide information on the uncertainty of a projection (it512

is a prospective, not a retrospective, perturbation analysis, in the terminology of Caswell (2000)).513

Knowing that an outcome is more or less sensitive to some parameter does not tell whether the514

outcome is more or less certain. Much depends on the precision with which the parameter is515

estimated.516

Sensitivity analysis however provides a powerful way to translate uncertainty in parameter517

estimates into uncertainty in projection outcomes. Suppose that ξ is a projection result (vector-518

or scalar-valued), and that the projection depends on some set of parameters θ. The uncertainty519
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of the estimate of ξ can be measured by the covariance matrix520

C(ξ) =

(
Cov(ξi, ξj)

)
(53)

If ξ is a scalar, this is simply the variance V (ξ), but if the projection result is multivariate (as it521

often is), the covariances are an important part of the uncertainty.522

The uncertainty in the estimates of the parameter vector θ is given by the covariance matrix523

C(θ). This covariance matrix might be obtained, e.g., from the Fisher information matrix provided524

by maximum likelihood estimation of θ.525

Then, to first order, the uncertainty in θ translates into uncertainty in ξ by526

C(ξ) =
dξ

dθT
C(θ)

(
dξ

dθT

)T

(54)

If ξ is a scalar, this reduces to527

V (ξ) =
dξ

dθT
C(θ)

(
dξ

dθT

)T

(55)

and if θ is also a scalar, then528

V (ξ) =

(
dξ

dθ

)2

V (θ). (56)

These calculations formalize the intuitive notion that uncertainty in a parameter to which an529

outcome is very sensitive will create a high degree of uncertainty in that outcome.530

6.3 Immigration and emigration531

Births, deaths, and emigration are events that happen to individuals in the population under532

study. They can be described by rates, estimated from the number of events and the number533

of individuals at risk. Those rates can be transformed to probabilities and then applied to the534

appropriate components of cohorts to project the population forward.535

Immigration, however, is not an event to which individuals in the population are at risk, and536

hence it cannot be described as a rate. Thus, in equations (4), (7), and (8), immigration appears537

as a vector b(t), with units of numbers of individuals, which is added to the result of applying the538

per capita rates in U and F.539
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Immigration is handled differently by the various agencies and organizations engaged in projec-540

tions. The projection of Spain in Section 4 has taken the entirely sensible approach of separating541

emigration and immigration, including the former, along with mortality, in the matrix U, and542

adding the latter to b.543

The projections prepared by Eurostat (Lanzieri 2009) make this approach slightly more subtle,544

noting that individuals that immigrate during (t,t+1) spend some fraction of the interval in the545

population, and hence subject to the mortality and fertility rates in action during that time (G.546

Lanzieri, personal communication). This means that a basic projection equation becomes547

n(t+ 1) = A(t)n(t) + B(t)b(t) (57)

where B(t) is a matrix that includes mortality and fertility of immigrants during the fraction of548

the interval during which they are assumed to be present (usually 0.5 years). The projection (57)549

is easily subjected to perturbation analyses. For example, the term db(t)/dθT(x) in equation (13)550

would simply be replaced with551

B(t)
db(t)

dθT(x)
+
(
bT(t)⊗ I

) dvecB(t)

dθT(x)
.

Another common approach is to define b as net migration (immigration - emigration); treating552

both immigration and emigration as additive. This has unfortunate theoretical properties; it asserts553

that the number of individuals leaving the population is independent of the population at risk of554

leaving. In principle, in the long run this could draw a population down to impossible negative555

values. For the short time horizons in practical population projections, this is unlikely to be a556

problem.557

Yet another option is to describe both immigration and emigration as rates applied to the popu-558

lation at risk. This conceptualizes immigration as a flow of individuals “sucked” into the population559

by the residents. It also has bad long-run theoretical properties: the number of immigrants goes560

to zero as population decreases, and increases without bounds as the population grows. An empty561

population would remain so.562
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6.4 Data requirements and applications563

Goldstein and Stecklov (2002) have lamented the lack of clarity and transparency in reports of564

population projections. The trajectories of mortality, fertility, and immigration are seldom reported,565

and “even when extensive documentation is provided, it is difficult to replicate the calculations566

without access to proprietary computer software used by the team that prepared the projection.”567

(Goldstein and Stecklov 2002, p. 121). We urge agencies to consider reporting their projections568

in the form of projection matrices. The entries of U, F, and b may require considerable effort569

to obtain, and sophisticated methods to estimate from data on populations, births, deaths, etc.570

But once the estimation process is completed, the projection matrix formulation provides a readily571

computable, non-proprietary method of studying the results. And the mathematical relationships572

extracted from those matrices are valid regardless of how the matrices themselves are obtained.573

Sensitivity analysis is just one of the possible uses of the matrices.574

Sensitivity analyses using matrix calculus techniques require only the basic ingredients of any575

cohort component projection — initial age- and sex-specific population vector and the fertility,576

mortality, and migration parameters for every projection year. The sensitivity and elasticity anal-577

yses can be extended to multistate population projections; these developments are left for future578

research. In the meantime, the analyses presented here will be beneficial for demographers and579

government officials producing projections, because they will improve our understanding of the580

underlying mechanisms leading to uncertainties and allow for precise quantifications of the impact581

of changes in vital rates or policies on any projection output.582
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A Derivations643

In this section, we present the derivations of the sensitivity results in Section 3.644

For more details and many more demographic examples of this approach, see Caswell (2008,645

2009). For an introductory presentation of the matrix calculus methods, see Abadir and Magnus646

(2005).647

A.1 Derivatives of n(t)648

One-sex projections. We begin with the single sex projection of equation (4). Take the differ-649

ential of both sides to obtain650

dn(t+ 1) = A(t)dn(t) + [dA(t)]n(t) + db(t) (A-1)

Applying the vec operator to both sides, using the result (Roth 1934) that vecABC = (CT ⊗A) vecB,651

yields652

dn(t+ 1) = A(t)dn(t) + (nT(t)⊗ I) dvecA(t) + db(t) (A-2)

Now let A(t) and b(t) be functions of the parameter vector θ(x). By the chain rule for matrix653

calculus, the derivative with respect to the θ is then654

dn(t+ 1)

dθT(x)
= A(t)

dn(t)

dθT(x)
+ (nT(t)⊗ I)

dvecA(t)

dθT(x)
+

db(t)

dθT(x)
(A-3)

This is a dynamic system in the derivative matrix dn(t)/dθT(x). If the parameter vector affects655

the vital rates but not the starting population for the projection, then (A-3) is iterated from the656

initial condition657

dn(0)

dθT(x)
= 0ω×p. (A-4)

Setting θ = n0 gives the sensitivity of the projection to the initial population. The last two658

terms in (A-3) are zero, and the remaining term is iterated from the initial condition659

dn(0)

dθT(x)
= Iω. (A-5)
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Two-sex projections. We apply the same approach to the two-sex projection in equations (7)660

and (8). For notational convenience, we temporarily suppress the time-dependence of the matrices661

U(t), F(t), and b(t). Differentiating both sides of (7) and (8) gives662

dnf (t+ 1) = (dUf )nf (t) + Ufdnf (t) + r (dF)nf

+rFdnf (t) + dbf (A-6)

dnm(t+ 1) = Umdnm(t) + (1− r)Fdnf (t) + (dUm)nm(t)

+(1− r) (dF)nf (t) + dbm (A-7)

Applying the vec operator gives663

dnf (t+ 1) = (Ufd+ rF) dnf (t) +
(
nT
f (t)⊗ I

)
dvecUf

+r
(
nT
f (t)⊗ I

)
dvecF + dbf (A-8)

dnm(t+ 1) = Umdnm(t) + (1− r)Fdnf (t) + (nT
m(t)⊗ I) dvecUm

+(1− r)
(
nT
f (t)⊗ I

)
dvecF + dbm (A-9)

Notice that the male population is sensitive to changes in the parameters of the female population,664

because of fertility. The second and fourth terms in (A-9) provide the required links between the665

female and male population.666

Finally, we introduce the parameter vector θ and use the chain rule to obtain the sensitivity of667

the two-sex projection, first for females:668

dnf (t+ 1)

dθT(x)
=

(
UF (t) + rF(t)

) dnf (t)

dθT(x)
+
(
nT
f (t)⊗ I

)(dvecUF (t)

dθT(x)
+ r

dvecF(t)

dθT(x)

)

+
dbf (t)

dθT(x)
(A-10)

and then for males:669

dnm(t+ 1)

dθT(x)
= Um(t)

dnm(t)

dθT(x)
+ (1− r)F(t)

dnf (t)

dθT(x)
+ (nT

m(t)⊗ I)
dvecUm(t)

dθT(x)
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+(1− r)
(
nT
f (t)⊗ I

) dvecF(t)

dθT(x)
+
dbm(t)

dθT(x)
(A-11)

A.2 Derivatives of projection matrices670

We turn now to the derivatives of the projection matrices U and F, and the immigration vec-671

tor b, given in Section 3.4. We consider the derivatives with respect to mortality, fertility, and672

immigration.673

Mortality. Write the matrix U as674

U = Z ◦ (1pT) . (A-12)

Differentiating gives675

dU = Z ◦ (1dpT) . (A-13)

Apply the vec operator676

dvecU = D(vecZ)vec (1dpT) (A-14)

= D(vecZ) (I⊗ 1) dp (A-15)

(A-16)

The differential of p is677

dp = −D(p)dµ. (A-17)

Substituting (A-17) into (A-15) gives the result (24).678

Fertility. The matrix F can be written679

F = e1f
T. (A-18)

Differentiating gives680

dF = e1df
T (A-19)
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Applying the vec operator gives681

dvecF = (I⊗ e1) df . (A-20)

Using the delta function gives the result (25).682

Immigration. The derivative of the immigration vector to itself is the identity matrix, by defi-683

nition.684
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(a) Sensitivity to mortality and emigration
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(b) Sensitivity to fertility
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(c) Sensitivity to immigration

Figure 1: The sensitivity of N(T ), where T = 40, to a change in age-specific vital rates, applied in every
year from t = 0 to t = T . (a) mortality and emigration, (b) fertility, (c) immigration. Based on INE (2012)
projections for Spain from 2012 to 2052.

35



0 10 20 30 40 50 60 70 80 90 100
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

Age at perturbation

E
la

s
ti
c
it
y
 o

f 
m

a
le

 p
o

p
u

la
ti
o

n
 t

o
 p

e
rt

u
rb

a
ti
o

n
s

 

 

Mortality

Fertility

Immigration

Emigration

(a) Male population

0 10 20 30 40 50 60 70 80 90 100
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

Age at perturbation

E
la

s
ti
c
it
y
 o

f 
fe

m
a

le
 p

o
p

u
la

ti
o

n
 t

o
 p

e
rt

u
rb

a
ti
o

n
s

 

 

Mortality

Fertility

Immigration

Emigration
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Figure 2: The elasticity of male and female population size N(t), where T = 40, to changes in age-specific
vital rates, applied in every year from t = 0 to t = T . (a) male population, (b) female population. Based on
INE (2012) projections for Spain from 2012 to 2052.
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Figure 3: The elasticity of the school-age population size (6 to 16 years) at N(t), where T = 40, to changes
in age-specific vital rates, applied in every year from t = 0 to t = T . Based on INE (2012) projections for
Spain from 2012 to 2052.
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(a) Prevalence of dementia in Spain, 2012
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(b) Elasticity of the population with dementia

Figure 4: The elasticity of the population with dementia to changes in age-specific vital rates and preva-
lences at T = 40. The perturbations are applied in t = 0 to t = T . (a) Age- and sex-specific prevalence of
dementia in Spain, (b) elasticity of population with dementia. Based on INE (2012) projections for Spain
from 2012 to 2052. Data on dementia obtained from Alzheimer Europe (2014).

38



0 10 20 30 40 50 60 70 80 90 100
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Age at perturbation

El
as

tic
ity

 o
f o

ve
ra

ll 
de

pe
nd

en
cy

 ra
tio

 

 

Mortality
Fertility
Immigration
Emigration

(a) Total dependency ratio
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(b) Support ratio

Figure 5: The elasticity of the total dependency ratio and support ratio to changes in age-specific mortality,
fertility, and migration at T = 40. The perturbations are applied in t = 0 to t = T . (a) total dependency
ratio (dependent ages: below age 16 and above age 64), (b) support ratio. Based on INE (2012) projections
for Spain from 2012 to 2052. Age-specific consumption and labour income data obtained from the National
Transfer Accounts Project: http://ntaccounts.org
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