# Gender-Specific Racial/Ethnic Differences in Adult Mortality: New Evidence from the National Longitudinal Mortality Survey

Frank W. Heiland<sup>†</sup> and Duygu Başaran Şahin<sup>#</sup>

September 26, 2014

## **Abstract**

This paper investigates racial/ethnic differences in U.S. mortality, using data from the 2013 release of the National Longitudinal Mortality Survey. We estimate period life tables at survey baseline (1983) and follow selected birth cohorts (1923-24, 1927-28, 1931-32) from working age into retirement. Period life tables reveal sizeable black-white gaps in remaining lifespans for women, and smaller and potentially vanishing gaps (at older ages) for men. Life expectancy at age 65 is 19.1 years for black (non-Hispanic) women compared to 21.9 years for white (non-Hispanic) women. For black (non-Hispanic) men, e65 is 15.7 years compared to 15.6 years for white men. The presence of large and gender-specific racial/ethnic mortality gaps is confirmed by cohort analysis, but there is no evidence of a mortality "cross-over" during retirement age. We discuss the findings in the context of previous estimates and the debate about raising the earliest eligibility age for Social Security retirement benefits.

**Keywords:** Mortality Differentials, Race/Ethnicity, National Longitudinal Mortality Survey, Retirement

6868, fax: (646) 660-6871, e-mail: <u>frank.heiland@baruch.cuny.edu</u>.

<sup>&</sup>lt;sup>†</sup>Corresponding author. Associate Professor, School of Public Affairs, The Graduate Center of CUNY (Economics), CUNY Institute for Demographic Research, City University of New York, Baruch College, 1 Bernard Baruch Way, Box D-901, New York, NY 10010, phone: (646) 660-

<sup>\*</sup>Doctoral Student, The Graduate Center of CUNY (Sociology), and Research Fellow, CUNY Institute for Demographic Research, City University of New York, e-mail: dbasaran\_sahin@gc.cuny.edu.

#### I. Introduction

The United States experienced an unprecedented decline in mortality rates in the twentieth century (Cutler et al. 2006). This remarkable decline increased average life expectancy at birth by almost 30 years (White & Preston 1996). At the end of the 1990s more than three quarters of the U.S. population were expected to survive to age 65 (Anderson 1999).

However, the gains in survivorship and their concentration over the lifecourse have been uneven across gender and racial/ethnic lines. Mortality has declined more rapidly for women than men for most of the 20<sup>th</sup> century, and the stark gender differences are expected to continue (Crimmins et al. 1996, Horiuchi 1999, Elo 2001). Racial/ethnic gaps in life expectancy at birth are at least as pronounced as the gender-gaps (Kitagawa & Hauser 1973, Hayward & Heron 1999, Elo 2001, Arias et al. 2010). Some studies suggest that racial/ethnic gaps may become more narrow at older ages (Zelnik 1969, Bayo 1972, Ladika and Wolf 1998), but the evidence of a "black-white cross-over" in mortality rates at older ages has been questioned on the ground of data quality concerns (Elo & Preston 1994, Preston & Elo 2006).

Understanding gender-specific racial/ethnic gaps in mortality is important, as they speak to fundamental differences in individuals' lives. Non-Hispanic black men may be significantly less likely to reach traditional retirement ages than any other gender-race/ethnic group. The presence of gender-gaps suggests that many women will outlive their partners by a substantial margin. The implications for economic wellbeing and retirement planning are profound and the practical significance is heightened by the fact that longevity and socio-economic status are positively correlated (Geruso 2012).

This paper presents new evidence on the gender-specificity of the racial/ethnic gaps in mortality, using data from the 2013 release of the National Longitudinal Mortality Survey

(NLMS). We obtain estimates of the gender-specific gaps in adult life expectancy (e25, e45, e62, and e65) and study the gender-race/ethnicity patterns of the transition from working age to retirement age using life tables for three birth cohorts (1923-24, 1927-28, and 1931-32).

The NLMS data are well-suited for this analysis, as the sample is unusually large, deaths are linked from official records, and race/ethnicity information is available. Few studies have analyzed mortality differentials with NLMS data (Geruso 2012, Rogot et al. 1992, Sorlie et al. 1995, Elo & Preston 1996, Johnson et al. 1999). Previous studies have given short shrift to cohort analysis. The present study is the first to estimate gender-specific racial/ethnic gaps in adult mortality using the NLMS cohort data. Moreover, our estimates are based on the latest data release (February 2013), which carefully updated and revised all measures.

### II. Background

### Literature

Almost all studies in demography show that, like many other industrialized rich countries, the U.S. experienced an unprecedented decline in mortality rates in the twentieth century (Cutler et al. 2006). This remarkable decline in turn increased the life expectancy at birth by almost 30 years from 1900 to 1997 (White & Preston 1996). At the end of the 1990s more than three quarters of the U.S. population were expected to survive to age 65 (Anderson 1999).

However, not all groups benefitted equally from the decline in mortality. The overall mortality decline favored women (Elo 2001). Hence sex differentials in mortality increased in the U.S.. Horiuchi (1999) finds that while the female-male gap in life expectancy was around three years in the 1900s, it had increased to about eight years by the late 1990s.

Racial/ethnic differences in mortality are even more pronounced. Elo (2001) analyzes data from the National Center on Health Statistics Report of 1998 and concludes: "African Americans and individuals from low socioeconomic backgrounds face greater odds against reaching old age than individuals from other racial/ethnic groups and higher socioeconomic back-grounds" (p.97). Similarly, Hayward and Heron (1999) show that, across all racial/ethnic groups, non-Hispanic blacks have the lowest life expectancy at birth. Compared to whites, Hispanics have lower life expectancy although the gap is not as wide as the gap between blacks and white (Hayward & Heron 1999:85). Asian American men have the highest life expectancy, 59 years at age 20, and black men have the lowest, 48 years at age 20 (p.84).

Differences in socio-economic status are often cited as the main driver of racial/ethnic mortality gaps in the U.S.. As a result, educational attainment—used as a proxy for SES—has been the focus of a growing body of research. Most recently, Hummer and Hernandez (2013), for instance, examine the educational differences in adult mortality and life expectancy. While avoiding causal language on the relationship between education and mortality, the authors show that adults with higher levels of education have lower age-specific mortality rates than those with less education, across every age, gender and racial/ethnic population group (Hummer & Hernandez 2013: 3). This is consistent with earlier studies. For example, Jemal et al. (2008) find that women age 24-65 who did not complete high school have mortality rates that are four times higher than women who have sixteen or more years of education.

There is evidence that the relationships vary by gender and race/ethnicity. Among men, mortality rates are more than four times higher between these two groups (Hummer & Hernandez 2013: 3). Citing evidence on differences in mortality by education, sex and race from Hummer and Lariscy (2011), Hummer and Hernandez (p. 3) write: "Educational differences in

mortality are wider among U.S. white adults than among either black or Hispanic adults." They also report that compared to whites with low levels of education, whites with higher education have far lower mortality rates and longer life expectancies (Hummer & Hernandez 2013: 5).

Marital status, which has also been used to proxy for SES, has been linked to mortality as well: Longer life expectancy is observed for individuals who are married compared to other marital status groups (Kitagawa & Hauser, Lin et al. 2003, Elo & Preston 1996, Sorlie et al. 1995). Together, the differences in education attainment and the likelihood to be married can explain much of the gap in life expectancy between white (non-Hispanics) and black (non-Hispanics) (Geruso 2012).

While most studies suggest that whites have greater life expectancy at birth than other races/ethnicities in the U.S., some studies report a black-white cross-over in mortality rates at older ages, which clearly challenges the convention of simplistic patterns. Early work by Bayo (1972) and Zelnik (1969), for instance, suggests that recorded death rates for African-Americans were lower than whites at oldest ages. Ladika and Wolf (1998) too find that among older males (70+ years), the life expectancies for blacks exceed those for whites. Similarly, in their study on Piedmont residents in North Carolina Crimins et al. (1996) find that at ages 75 and 85, blacks can be expected to live longer than whites.

Evidence of a cross-over in black-white mortality rates at older ages has fueled speculation that blacks' may experience strong selection effects ("survival of the fittest") (Manton & Stallord 1981). However, some of the earlier findings have been questioned. Elo and Preston argue in three different papers (Elo & Preston 1994; Preston & Elo 2006, Preston et al. 1999) that the observed lower mortality rates of blacks may be an artifact of poor data. Concerns

regarding data quality have plagued this literature going back to Zelnik (1969) and Coale and Kisker (1990).

### Present Study

The previous literature contends that a) higher educational attainment has an impact on longer life expectancies and lower mortality rates and b) whites have an advantage over blacks and Hispanics. In this paper, we analyze the National Longitudinal Mortality Study (NLMS) Public Use Microdata Sample (PUMS) File Release 4 from February 28, 2013. We provide new estimates of the gender-specificity of the racial/ethnic patterns in adult mortality, using evidence from period and (partial) cohort life tables.

The NLMS PUMS provides longitudinal data for the period 1983-1994. Combining data from Current Population Surveys (CPS) and a subset of the 1980 Census, the NLMS PUMS follows these individuals for 11 years and matches the deceased cases with information from death certificates, which are provided by the National Center for Health Statistics. Due to data limitations we are only able to create partial life tables by race, gender and educational attainment level and compare our results with previous literature. Unlike previous literature, this paper focuses on the educational, racial and gender differences in older adult mortality, especially during retirement years. Findings indicate that NLMS PUMS offers similar mortality patterns. However different from Hayward and Heron (1999), we find that Hispanics have similar mortality rates to whites.

While the follow-up period for NLMS PUMS is relatively short, it spans an interesting recent period of rising inequality (Elo et al. 2006). We do not look at income or wealth measures in this paper, but we use education, which is one of the three elements of typical SES

measurement—income and occupation are the other two (Christenson & Johnson 1995).

Following Elo et al. (2006), using education instead of SES provides a more robust comparison since educational attainment is usually set at an earlier age in human life (around age 25) and is unlikely to change, although more people tend to get more education later in life. Elo et al. (2006) also highlight that, unlike occupation, educational attainment "can be used equally well to classify men and women, economically active and inactive individuals, and working-aged people and the elderly" (p.181).

This paper also contributes to the existing literature on mortality differences at older ages by offering evidence on the transition to retirement ages from (partial) cohort life tables, conditional attaining peak-working ages, in addition to period life tables. In the cohort perspective, we are subject to age-limitations given by the 10-year follow-up period in the NLMS File 11. We can create partial cohort life tables, where we follow a birth cohort for ten years. Since our focus is on racial/ethnic gaps in the transition from peak working to retirement age, we focus on three birth cohorts: those born in 1923-24, 1927-28, and 1931-32. We follow the three cohorts from ages 60-70, 56-66, and 52-62, respectively.

The remainder of the paper is organized as follows: In the next section, we describe our data and methods. Then we show the results from our period and cohort analyses. Finally, we provide some discussion and conclusion.

#### III. Data and Methods

Data Set

The NLMS PUMS is a collection of three large national longitudinal mortality data sets, each representative of the non-institutionalized population in the U.S. for a particular period. The NLMS PUMS is public-use and protects respondents' identity. These data contain basic demographic variables selected from a larger list of variables available in the original NLMS. The availability of information on individuals' characteristics including race/ethnicity and educational attainment is a key advantage of the NLMS data over other sources for mortality data by gender such as the Human Mortality Database.

There are three different files in the NLMS PUMS. The first one, which also has the largest number of observations (individuals), follows the respondents for 11 years. The other two files follow individuals only for six years. In order to have the largest sample size and longest period of follow-up, we are using the first file, which is also called File 11 in the NLMS PUMS documentation. NLMS PUMS contains approximately 2.7 million observations and the sample in File 11 used here has approximately 1.2 million individuals.

As a quick robustness check on the NLMS PUMS data, we compared age-specific death rates for males, females and the total population from the Human Mortality Database with the NLMS PUMS numbers for the birth cohort 1923-24. The results indicate that the NLMS PUMS file might not be as representative as researchers thought. Appendix Figure 1 shows the graphs

-

<sup>&</sup>lt;sup>1</sup> Exclusion of the institutionalized population in the NLMS will yield estimates of mortality that are systematically lower than in the population overall. We expect it to affect male mortality more than female mortality, and to play a greater role when looking at African American men than white men. During the 1970s and 80s the incarceration rate more than doubled from 96 people per 100,000 to 227 per 100,000 (Blumstein 1988). By the end of 2004 the rate had reached 737 per 100,000 (Patterson 2010). According to 2000 census estimates even though African-Americans account for less than 15% of the U.S. population, they make up almost 50% of the incarcerated population (Beck and Karberg 2001). Massey and Denton (1993) show that prisoners are much more likely to have a socioeconomically disadvantaged background, which increases their chances of having higher mortality rates. Harlow (2003) estimates that "in 1997, 44% of prisoners in state correctional facilities did not have a high school education prior to admission, compared with 18% of their non-prison counterparts".

for HMD and NLMS PUMS side by side. We see that our analysis based on the NLMS PUMS data overall underestimate the age-specific death rates for the given cohort, especially for males and the whole 1923-24 cohort. This finding supports our claim that the NLMS PUMS introduces a bias by not including the institutionalized population, which has more males than females. Not surprisingly the most closely aligned graphs between the HMD and NLMS PUMS data are for females.

#### Measures

The NLMS PUMS contains 37 variables. The ones used in this paper are: age, sex, race, Hispanic origin, highest grade completed, death indicator and length of follow-up.

Age in File 11 is age at last birthday reported based on the interview report. Sex represents the respondent's stated gender, male or female. People whose gender could not be determined in the Current Population Surveys are not included in File 11. The race variable has five categories: White, Black, American Indian or Eskimo, Asian or Pacific Islander and Other nonwhite. The Hispanic origin variable divides the answers into three groups: Mexicans, Other Hispanics and Non-Hispanics. Information on educational attainment is provided in a variable on highest grade completed.<sup>2</sup>

The death indicator variable tells whether or not the respondent has died in the follow-up period. The length of follow-up the number of days respondents lived during the follow-up period. "Persons who were alive at the end of the 11 year follow-up period are given a value of 4018," which is the maximum follow-up period considered (NLMS PUMS documentation 2013). This allows researcher to calculate the exact age at death.

<sup>&</sup>lt;sup>2</sup> The CPS changed the way it measured education. Prior to 1992, the CPS used the "years of schooling approach," asking respondents about their highest grade level attended. In 1992 they started asking about degrees earned instead. The NLMS PUMS translated the latter information into years of school for comparability. This is illustrated in Appendix Table1 show the detailed categorization of the highest grade completed variable in NLMS. Appendix Table 2 shows our categorization used in the analyses.

The goal of this paper is to examine racial/ethnic gaps in adult mortality by gender. In our cohort analysis, we construct our sample to include individuals from birth cohorts that overlap with age 62 during the follow-up period. Specifically, for the first birth cohort we limit our sample to those who were 60 years old in 1983, at the beginning of the NLMS PUMS follow-up period. This corresponds to the 1923-24 birth cohort. For the second birth cohort we limit our sample to those who were 56 years in 1983. This corresponds to the 1927-28 birth cohort. We proceed in a similar fashion for the 1931-32 birth cohort.

For all three cohorts, by selecting cases based on the length of the follow-up period, we obtain the exact number of those who were still alive in 1984, 1985, or 1986 and do the same calculation until the end of the follow-up period. Then we select cases based on race, gender and educational attainment to perform (partial) cohort life table calculations. (See Appendix Tables 4a-4d for the partial life tables of the 1923-24 cohort by gender and race/ethnicity).

We recode some of the variables to get appropriate information for the life tables. We create dummy variables for non-Hispanic whites and non-Hispanic blacks using the race variable and information on Hispanic origin. We also recode the variable on highest grade completed. (See Appendix Tables 1 and 2 for the new categories.) Basic sample descriptives of the birth cohort data are provided in Table 1.

#### Methods

We apply standard period and cohort life table techniques (without smoothing). Standard errors and 95% confidence intervals are calculated but not shown here for expositional ease. Given the large sample sizes in the NLMS, they are consistently small. They are available from the authors upon request. We begin by estimating Period Life Tables for the year 1983, using

deaths that occurred within the first 12 months of the beginning of the survey period. Period Life Tables capture mortality conditions of many different birth cohorts at the same moment in time. To analyze racial/ethnic mortality gaps over actual life courses, we then estimate (partial) cohort life tables, following respondents born in 1923-24, 1927-28, and 1931-32 into retirement age.

For the numerator of the nmx (number of people who die in the age interval from x to x+n), we first compute a new variable called "age at death." Age at death is the summation of the initial age and the length of follow-up divided by 365. Since the unit for the length of follow-up is days we divide the value for the "follow" variable by 365 to compute its equivalent value in years. Then by adding this value to the age at the time of the interview we get the age at death.

To illustrate with an example, assume that a person stated to be 55 years old in 1983 and this person did not die during the follow-up period. Then the age at death value for this person would be 55+(4018/365) which equals 66.08 years. If this person had died at the 3065<sup>th</sup> days of the follow-up period then s/he would have 63.39 years for the age at death value. So unlike the age variable, which represents age at last birthday, age at death is continuous. This allows us to have a more accurate number of people who died at exact ages (e.g. 56.7 or 63.8). Although it provides a better estimate of the number who died in that age interval, because the exact age in 1983 is not known, it unwillingly skews the nmx's to some degree.

#### IV. Main Results

We begin with a discussion of the period life table results. Table 2 provides a summary of our estimated life expectancies at ages 25, 45, 62, and 65 for key demographic groups by gender: Non-Hispanic blacks ("NHB"), non-Hispanic whites ("NHW"), married, less than a high school education, completed high school, more than a high school education. The complete NLMS File 11 (1983) life tables by gender and race/ethnicity are shown in Appendix Tables 3a-d. Figures 1 and 2 show the corresponding gender-specific survival curves by race-ethnicity and education.

As shown in Table 2, there are sizeable racial/ethnic gaps in average remaining life spans for women at all ages. We estimate that life expectancy at age 25 is 52.3 years for black (non-Hispanic) women compared to 58.1 years for white (non-Hispanic) women. At age 65 (62), that figure is 19.1 (21.2) years for black women and 21.9 (24.2) years for white women. Notice that while the gap declines in absolute terms when comparing e65 to e25, it actually widens from 111% to 115% when measured using a more meaningful metric of relative years, e<sup>white</sup>/e<sup>black</sup> (in %).

For men, the estimated black-white gaps are much smaller than for women and vanish at retirement age. At age 25, life expectancy is 46.4 years for black (non-Hispanic) men and 49.8 years for white (non-Hispanic) men. At age 65 (62), the corresponding values are 15.7 (17.0) years and 15.6 (17.5) years for white men. The (slight) reversal of the black-white mortality gap for men reflects a "cross-over" in age-specific mortality at age 63 as shown in Appendix Tables 3a and b. Looking at Figure 1, the cross-over occurs when the (vertical) gap between the survival curves for black and white men starts to narrow.

Looking across gender lines, the racial/ethnic patterns just described imply that the gender gaps in remaining life span are smaller among blacks than whites and they narrow more

among blacks in age (but only in absolute terms). Table 2 shows that the gender-specific black-white gaps are similar in size to male-female life expectancy gaps, but they are larger than the gaps across educational groups (for a given sex).

As discussed above, our cohort analysis follows three birth cohorts for 10 years each, conditional on survival to age 52, 56, 60: 1923-24 (age 60-70), 1927-28 (56-66), and 1931-32 (52-62). Figures 3a-c show the survivorship curves by sex and race/ethnicity for the three cohorts. For the 1923-24 birth cohort, the (partial) cohort life table estimates by race/ethnicity are shown in Appendix Tables 4a-d.

Looking at the survival curves in Figures 3a-c, for all three birth cohorts we observe a similar pattern of widening black-white survival differentials (indicated in the figures by widening vertical differences between pairs of survival curves at higher age). This implies that there is no evidence from our cohort analysis to suggest a "cross-over" in mortality at these ages. Comparing black and white men, the divergence of the survival curves is particularly marked, with the generations of blacks dying at noticeably higher rates than their white counterparts.

Across birth cohorts, keeping in mind that the age ranges do not overlap perfectly, there is no evidence that the racial/ethnic mortality gaps during the transition to retirement age are narrowing. In fact, the black-white divergence of the survival curves appears to be most pronounced in the most recent cohort considered (1931-32). It appears that white men have enjoyed greater improvements in survival across these generations than have black men.

The cohort survival curves confirm that white females experienced the lowest mortality risk of all four groups. In the 1923-24 and 1927-28 cohorts, black females are a clear second behind white females. However, our results indicate that this pattern may be breaking down.

Looking at the 1931-32 birth cohorts, black women in that generation are trailing white men in

cumulative survival between age 52 and 58, and the curves are very close to each other and essentially move in parallel after that.

Age 62 is of particular significance as it the earliest eligibility age for Social Security retirement benefits. In light of that and the fact that Social Security provides incentives to delay benefit take-up until at least age 65, the normal retirement age for the cohorts investigated here, we did some additional analysis of survival to ages 62 and 65. The results are shown in Table 3; they are based on the (partial) cohort life table estimates.

The conditional survival probabilities to ages 62 and 65 help illustrate the magnitudes of the mortality gaps across gender and racial/ethnic lines discussed above. Among men born in 1923-24 who live to age 60, white men are 2.2 percentage points more likely to live to age 62 than black men. For the 1931-32 cohort this gap is 2.3 points. Among women the corresponding figures are 1 point and 0.5 points, consistent with greater racial/ethnic cohort mortality differentials among men than women.

Looking across identical age ranges, we see evidence of declining mortality across cohorts: Among black women born in 1923-24, 97.2% of those who reached aged 60 survived to age 62, 93.0% survived to age 65. 94.3% of black men who reached age 60 survived to age 62, 91.4% survived to age 65. This compares to conditional survival probabilities to age 62 of 97.8% for black women and 95.2% for black men born in 1931-32.

Lastly, survivorship curves by educational attainment show that the gap is wider for the 1923-24 cohort. As expected those with highest level of educational attainment, college degree in our analysis, have the highest change of surviving (not shown). It is not surprising that the gap between different educational attainment levels is smaller for the 1927-28 cohort as we are examining a younger cohort, whose chances of surviving is higher simply because death occurs

more at older ages. Although the no-education group seems to catch up with the most highly educated group at older ages for both cohorts, this result should not be taken too seriously for reasons we will discuss later.

#### V. Discussion

This paper provides new evidence on racial/ethnic differences in U.S. mortality. Using data from the 2013 release of the NLMS, we estimate period life tables and follow selected birth cohorts (1923-24, 1927-28, 1931-32) from working age into retirement. We find sizeable black-white gaps in remaining lifespans for women, and smaller and potentially vanishing gaps (at older ages) for men. The presence of large and gender-specific racial/ethnic mortality gaps is confirmed by our cohort analysis and there is no indication that they may be narrowing.

The analysis contributes to a better understanding of the magnitude of the differences in survivorship across gender and racial/ethnic lines and their persistence over the lifecourse and across cohorts. Our findings are largely consistent with previous evidence of stark gender and racial/ethnic gaps in mortality (Crimmins et al. 1996, Horiuchi 1999, Elo 2001, Kitagawa & Hauser 1973, Hayward & Heron 1999, Elo 2001, Arias et al. 2010). Analysis of cohort mortality provides no evidence of a narrowing of these gaps.

Some studies suggest that racial/ethnic gaps may become more narrow at older ages (Zelnik 1969, Bayo 1972, Ladika and Wolf 1998), but previous evidence of a 'black-white cross-over' in mortality rates at older ages has been questioned on the basis of data quality concerns (Elo & Preston 1994, Preston & Elo 2006). Our analysis of individuals' vital transitions from working age to retirement age did not provide any support for a mortality "cross-over" during retirement age. However, further cohort analysis is needed to put our findings into

perspective. It would be desirable to examine additional cohorts, including older cohorts to perhaps relate better to earlier studies including Preston and Elo (1994), whose focus is on the overstatement of age in the oldest age groups, which extends past the retirement-age-related cut-offs considered here.

### VI. Conclusion

Population aging and rising old-age dependency ratios are now evident in many countries. This trend is expected to accelerate dramatically in the coming decades, especially in developed and transition countries (e.g., Bloom and Canning 2008). Estimates for the U.S. suggest that there are currently 2.8 workers for each Social Security beneficiary. By 2033 there will be 2.1 workers for each beneficiary. Longer average life spans for each successive cohort due to declining mortality profiles are contributing to this aging phenomenon (Cutler et al. 2006).

The amount of resources societies will have to make available for future generations of retirees will crucially depend on the distribution of remaining life spans at retirement age. For example, estimates for the United States suggest that every year in life expectancy increases the outlays of the Social Security program by approximately 1 billion dollars. Without adjustments, the Trustees of Social Security expect that over a 75-year period, the program would require additional revenue equivalent to \$8.6 trillion in present value dollars to pay all scheduled benefits (SSA-T 2012).

Looking at life expectancy overall, however, provides an incomplete picture of how individuals with above-average mortality and their families are affected. Most notably black men face a substantially greater risk of not even reaching their pensionable age, resulting in lost personal utility and financial instability for their families. The impact will be exacerbated given that individuals who live longer tend to be healthier and have higher lifetime earnings (e.g., De

Nardi et al. 2009).<sup>3</sup> For these reasons, the variation mortality across racial/ethnic and gender lines should be of great importance to researchers and policymakers alike.

In December 2010, President Obama's National Commission on Fiscal Responsibility and Reform (NCFRR, 2010) proposed steps to address the long-run solvency problems of Social Security. The commission recommended that retirement benefits be reduced by indexing the retirement ages to gains in life expectancy. Specifically, the NCFRR suggested that the earliest age of retirement benefit eligibility should be increased by one month every two years.. According to their calculations, the earliest retirement age would increase to 63 by 2046 and 64 by 2070, while the full retirement age would reach 68 and 69 in those years. Raising the early retirement age in that fashion would be highly regressive and likely hit African American families the hardest.

-

<sup>&</sup>lt;sup>3</sup> Using data on individuals' pension wealth (Primary Insurance Amount, PIA) and longevity from the Health and Retirement Survey (HRS), a survey of a recent cohort of American retirees, we observe a correlation coefficient of 0.14 between PIA and remaining lifespan. While this is a modest level of correlation, it does suggest that longevity gains disproportionately benefit those who are better off.

#### References

Anderson, R.N. 1999. *United States Abridged Life Tables, 1997*. Hyattsville, MD: National Center For Health Statistics.

Anderson, N.B., et al. 2004. *Critical Perspectives on Racial and Ethnic Differences in Health in Late Life*, National Research Council report. National Academies Press, Washington, DC.

Arias, E. et al. 2010. *United States Life Tables*, 2005. National Vital Statistics Reports 58 (10). Hyattsville, MD: National Center for Health Statistics.

Bayo, F. 1972. "Mortality of the Aged," Transactions of the Society of Actuaries 24: 1-24.

Beck, A. J., and Karberg, J.C. 2001. "Prison and Jail Inmates at Midyear 2000," Bureau of Justice Statistics Bulletin report. U.S. Department of Justice, Office of Justice Programs, Washington, DC.

Bloom, D.E., and Canning, D. 2008. "Global Demographic Change: Dimensions and Economic Significance," *Population and Development Review* 34 (Suppl.): 17–51.

Blumstein, A., and Beck, A.J. 1999. "Population Growth in U.S. Prisons, 1980-1996." Pp. 17-62 In: Prisons, edited by M. Tonry and J. Petersilia. Chicago: University of Chicago Press.

Christenson, B. and Johnson, N.E. 1995. "Educational Inequality in Adult Mortality: An Assessment with Death Certificate Data from Michigan," *Demography* 32 (2): 215-229.

Coale, A.J., and Kisker, E.E. 1990. "Defects in Data on Old Age Mortality in the United States: New Procedures for Calculating Mortality Schedules and Life Tables at the Highest Ages," *Asian and Pacific Population Forum* 4(1): 1-31.

Crimmins, E.M., M.D., Hayward, and Saito, Y. 1996. "Differential in Active Life Expectancy in Older Populations in the United States," *Journal of Gerontology: Social Sciences* 51B: S111-20.

Cutler, D., Deaton, A., and Lleras-Muney, A. 2006. "The Determinants of Mortality," *Journal of Economic Perspectives* 20(3): 7-120.

De Nardi, M., French, E., and Jones, J.B. 2009. "Life Expectancy and Old Age Savings," *American Economic Review: Papers & Proceedings* 99-2: 110–115.

Elo, I. 2001. "New African American Life Tables from 1935-1940 to 1985-1990," *Demography* 38(1): 97-114.

Elo, I., & Preston, S. (1996). Educational differentials in mortality: United States, 1979-1985. Social Science & Medicine, 42, 47-57.

Elo, I., and Preston, S.H. 1994. "Estimating African-American Mortality from Inaccurate Data," *Demography* 31(3): 427-458.

Geruso, M. 2012. "Black-White Disparities in Life Expectancy: How Much Can Standard SES Variables Explain?," *Demography* 49(2): 553-74.

Harlow, C.W. 2003. "Education and Correctional Populations." Bureau of Justice Statistics Special Report. U.S. Department of Justice, Office of Justice Programs, Washington, DC.

Hayward M.D., and Heron, M. 1999. "Racial Inequality in Active Life among Adult Americans," *Demography* 36-1: 77-91.

Horiuchi, S. 1999. "Epidemiological Transitions in Developed Countries: Past, Present and future." In: Health and Mortality Issues of Global Concern. New York: United Nations.

Hummer, R., and Hernandez, E. 2013. "The Effect of Educational Attainment on Adult Mortality in the U.S.," *Population Reference Bureau* 68(1).

Jemal, A., et al. 2008. "Widening of Socioeconomic Inequalities in U.S. Death Rates, 1993-2001," PLoS ONE 3(5): e218.

Johnson, N.J., Sorlie, P.D., and Backlund, E. 1999. "The impact of specific occupation on mortality in the U.S. National Longitudinal Mortality Study," *Demography* 36(3): 355-67.

Kitagawa, E., and Hauser, P. 1973. *Differential Mortality in the United States: A Study in Socioeconomic Epidemiology*. Harvard University Press.

Laditka, S.B., and Wolf, D.A. 1998. "New Methods for Analyzing Active Life Expectancy," *Journal of Aging and Health* 10: 214-41.

Manton, K.G., and Stellard, E. 1981. "Methods for Evaluating the Heterogeneity of Aging Processes in Human Populations Using Vital Statistics Data: Explaining the Black Mortality Crossover by a Model Mortality Selection," *Human Biology* 53: 47-67.

Massey, D. and N. Denton. 1993. American Apartheid: Segregation and the American Underclass. Cambridge, MA: Harvard University Press.

Masters, R.K. et al. 2012. "Educational Differences in U.S. Adult Mortality: A Cohort Perspective," *American Sociological Review* 77(4): 548-72.

Patterson, E. 2010. "Incarcerating Death: Mortality in the U.S. State Correctional Facilities, 1985-1998," *Demography* 47-3: 587-607.

Preston, S., and Elo, I. 2006. "Black Mortality at Very Old Ages in Official Us Life Tables: A Skeptical Appraisal," *Population and Development Review* 32(2): 557-565.

Preston, S., Elo, I., and Stewart Q. 1999. "Effects of Age Misreporting on Mortality Estimates at Older Ages", Population Studies 53 (2): 165-177.

Rogot, E., Sorlie, P.D., and Johnson, N.J. 1992. "Life expectancy by employment status, income, and education in the National Longitudinal Mortality Study," *Public Health Reports* 107: 457-

61.

SSA-T (2012). The 2012 Annual Report of the Board of Trustees of the Federal Old-Age and Survivors Insurance and Federal Disability Insurance Trust Funds. Washington, D.C.

Sorlie, P.D., E. Backlund, and Keller, J.B. 1995. "US mortality by economic, demographic, and social characteristics: the National Longitudinal Mortality Study," *American Journal of Public Health* 85(7): 949-56.

White, K.M., and Preston, S.H., 1996. "How Many Americans Are Alive Because of Twentieth Century Improvements in Mortality?," *Population and Development Review* 22: 415-49.

Zelnik, M. 1969. "Age Pattern of Mortality of American Negroes 1900-02 to 1959-61," *Journal of the American Statistical Association* 64(326): 433-51.

Table 1. Total Sample Sizes and Frequency Distribution by Birth Cohorts

| Ns                          | 1923-24 | %     | 1927-28 | %     | 1931-32 | %     |
|-----------------------------|---------|-------|---------|-------|---------|-------|
| Race                        |         |       |         |       |         |       |
| Non-Hispanic White          | 10,323  | 83.4% | 10,658  | 82.6% | 10,482  | 81.6% |
| Non-Hispanic Black          | 1,013   | 8.2%  | 1,027   | 8.0%  | 1060    | 8.3%  |
| Other/Unknown/Missing       | 1,039   | 8.4%  | 1,219   | 9.4%  | 1,303   | 10.1% |
| Hispanic Origin             |         |       |         |       |         |       |
| Non-Hispanic                | 11,602  | 93.8% | 11,994  | 92.9% | 11,887  | 92.5% |
| Hispanic                    | 549     | 4.4%  | 669     | 5.2%  | 714     | 5.6%  |
| Unknown/missing             | 224     | 1.8%  | 241     | 1.9%  | 244     | 1.9%  |
| Gender                      |         |       |         |       |         |       |
| Non-Hispanic Female         | 6,065   |       | 6,163   |       | 6,074   |       |
| Non-Hispanic White          | 5,498   | 90.7% | 5,548   | 90.0% | 5,450   | 89.7% |
| Non-Hispanic Black          | 567     | 9.3%  | 615     | 10.0% | 624     | 10.3% |
| Non-Hispanic Male           | 5,271   |       | 5,522   |       | 5,468   |       |
| Non-Hispanic White          | 4,825   | 91.5% | 5,110   | 92.5% | 5,032   | 92.0% |
| Non-Hispanic Black          | 446     | 8.5%  | 412     | 7.5%  | 436     | 8.0%  |
| Mortality                   |         |       |         |       |         |       |
| Non-Hispanic White Deceased | 1,861   | 87.7% | 1,395   | 87.1% | 965     | 87.1% |
| Non-Hispanic Black Deceased | 262     | 12.3% | 207     | 12.9% | 143     | 12.9% |
| Deceased Total              | 2,123   |       | 1,602   |       | 1,108   |       |
| Total                       | 12,375  |       | 12,904  |       | 12,845  |       |

*Notes:* The Ns represent the sample size as they appear in the NLMS file. For life tables we apply different restrictions (e.g. limiting sample size to cases which provide valid answer for educational attainment).

Table 2. Life Expectancy for Key Demographics (Period Life Tables, 1983)

| Demographic                       | Averag | e Years o | f Life Re | maining |
|-----------------------------------|--------|-----------|-----------|---------|
|                                   | e25    | e45       | e62       | e65     |
| All                               | 53.57  | 34.77     | 20.84     | 18.81   |
| Non-Hispanic Black ("NHB") Female | 52.25  | 34.00     | 21.19     | 19.12   |
| Non-Hispanic Black Male           | 46.37  | 28.32     | 17.03     | 15.67   |
| Non-Hispanic White ("NHW") Female | 58.06  | 38.99     | 24.17     | 21.91   |
| Non-Hispanic White Male           | 49.79  | 31.08     | 17.46     | 15.56   |
| Married                           | 53.41  | 34.26     | 19.96     | 17.82   |
| Female                            | 60.97  | 41.80     | 27.10     | 24.80   |
| Male                              | 50.78  | 31.73     | 17.98     | 16.03   |
| Less Than High School             | 51.19  | 33.13     | 20.09     | 18.23   |
| Female                            | 55.63  | 37.08     | 23.29     | 21.24   |
| Male                              | 47.13  | 29.53     | 16.97     | 15.22   |
| High School                       | 54.35  | 35.65     | 21.51     | 19.44   |
| Female                            | 57.76  | 38.82     | 23.95     | 21.61   |
| Male                              | 50.03  | 31.57     | 18.20     | 16.38   |
| More Than High School             | 55.74  | 36.58     | 21.97     | 19.74   |
| Female                            | 58.75  | 39.49     | 24.67     | 22.21   |
| Male                              | 52.14  | 33.04     | 18.66     | 16.51   |

*Notes:* Females in bold font. Life Expectancy at ages 25 (e25), 45 (e45), 62 (e62), and 65 (e65) are calculated from Period Life Tables (1983) estimated from NLMS File 11 data.

Table 3. Conditional Survival at Retirement Age (Cohort Life Tables, partial)

| Demographic          |         | y of Living to<br>on attaining age 60) |
|----------------------|---------|----------------------------------------|
|                      | Age 62  | Age 65                                 |
| 1923-24 Birth Cohort | 1280 02 | 1250                                   |
| NHB Female           | 0.972   | 0.930                                  |
| NHB Male             | 0.943   | 0.848                                  |
| NHW Female           | 0.982   | 0.950                                  |
| NHW Male             | 0.965   | 0.914                                  |
| 1927-28 Birth Cohort |         |                                        |
| NHB Female           | 0.973   | 0.919                                  |
| NHB Male             | 0.956   | 0.891                                  |
| NHW Female           | 0.983   | 0.953                                  |
| NHW Male             | 0.969   | 0.911                                  |
| 1931-32 Birth Cohort |         |                                        |
| NHB Female           | 0.978   | N/A                                    |
| NHB Male             | 0.952   | N/A                                    |
| NHW Female           | 0.983   | N/A                                    |
| NHW Male             | 0.975   | N/A                                    |

*Notes:* Females in bold font. Survival probabilities are calculated from Cohort Life Tables (partial) estimated from NLMS File 11 data.

Figure 1. Survival Curves by Race/Ethnicity and Sex

(Period Life Tables, 1983, NLMS File 11)

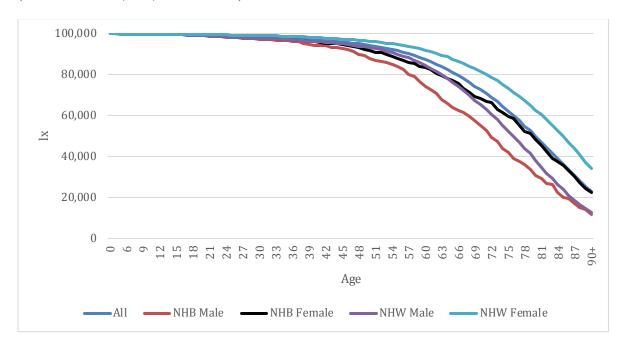



Figure 2. Survival Curves by Education and Sex

(Period Life Tables, 1983, NLMS File 11)

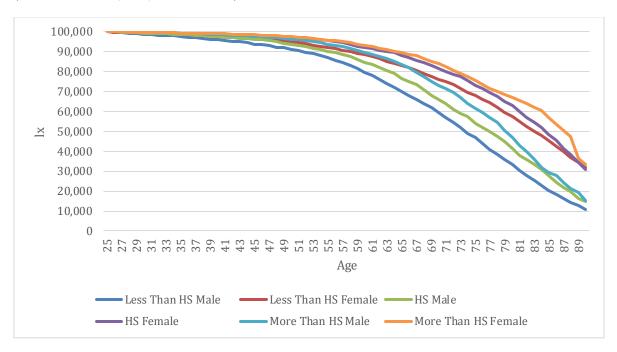



Figure 3a. Survival Curves by Race/Ethnicity and Sex, Birth Cohort 1931-32

(Partial Cohort Life Tables, Conditional on Survival to Age 52, NLMS File 11)




Figure 3b. Survival Curves by Race/Ethnicity and Sex, Birth Cohort 1927-28

(Partial Cohort Life Tables, Conditional on Survival to Age 56, NLMS File 11)

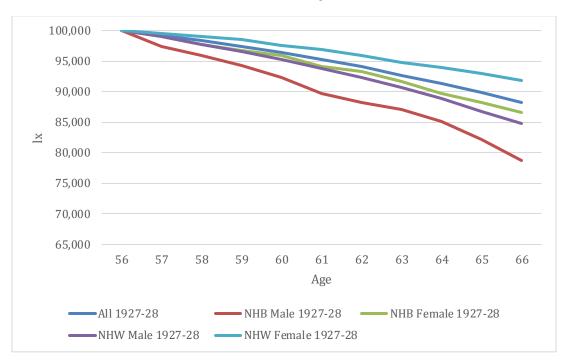
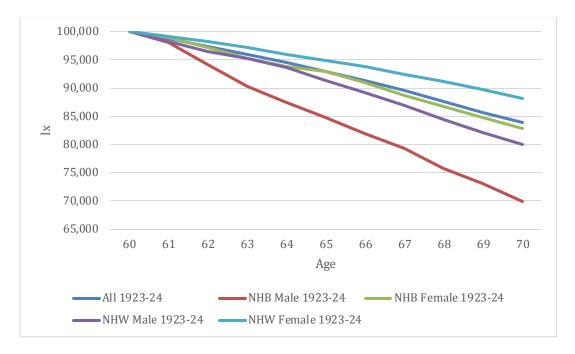




Figure 3c. Survival by Race/Ethnicity and Sex, Birth Cohort 1923-24

(Partial Cohort Life Tables, Conditional on Survival to Age 60, NLMS File 11)



Appendix Table 1: Education Variable Original Categories

| Highest | Grade Completed Variable |
|---------|--------------------------|
| Value   | Categories               |
| 1       | None, LT E1              |
| 2       | Completed E1, E2, E3, E4 |
| 3       | Completed E5, E6         |
| 4       | Completed E7, E8         |
| 5       | Completed H1             |
| 6       | Completed H2             |
| 7       | Completed H3             |
| 8       | Completed H4             |
| 9       | Completed C1             |
| 10      | Completed C2             |
| 11      | Completed C3             |
| 12      | Completed C4             |
| 13      | Completed C5             |
| 14      | Completed C6             |

Appendix Table 2: Recoded Education Variable Categories

| Value in the paper       | Value in NLMS    |
|--------------------------|------------------|
| 1= Less than high school | 0,1,2,3,4,5,6,7  |
| 2= High school           | 8                |
| 3= More than high school | 9,10,11,12,13,14 |

Appendix Table 3a: Period Life Table for Black (non-Hispanic) Males (1983, NLMS File 11)

| Ja.             | LCH | ou L    | пе т       | auk   | 101 1    | DIACK    | (11011)          | -1 112          | Janne   | <i>)</i> 1 <b>v</b> 1a | 1162 (1 | 1903      |
|-----------------|-----|---------|------------|-------|----------|----------|------------------|-----------------|---------|------------------------|---------|-----------|
| Age             | n   | nDx     | nPYx       | nax   | nMx      | nqx      | lx               | ndx             | nLx     | Tx                     | ex      | Age       |
|                 |     |         |            |       |          |          |                  |                 |         |                        |         |           |
| 0               | 1   | 1       | 840        | 0.048 | 0.001190 | 0.001189 | 100,000          | 119             | 99,887  | 7,033,292              | 70.3329 | 0         |
| 1-4             | 4   | 0       | 3,495      | 1.648 | 0.000000 | 0.000000 | 99,881           | 0               | 399,524 | 6,933,405              | 69.4166 | 1-4       |
| 5               | 1   | 0       | 809        | 0.500 | 0.000000 | 0.000000 | 99,881           | 0               | 99,881  | 6,533,881              | 65.4166 | 5         |
| 6               | 1   | 0       | 802        | 0.500 | 0.000000 | 0.000000 | 99,881           | 0               | 99,881  | 6,434,000              | 64.4166 | 6         |
| 7               | 1   | 0       | 885        | 0.500 | 0.000000 | 0.000000 | 99,881           | 0               | 99,881  | 6,334,119              | 63.4166 | 7         |
| 8               | 1   | 0       | 909        | 0.500 | 0.000000 | 0.000000 | 99,881           | 0               | 99,881  | 6,234,237              | 62.4166 | 8         |
| 9               | 1   | 2       | 897        | 0.500 | 0.002230 | 0.002227 | 99,881           | 222             | 99,770  | 6,134,356              | 61.4166 | 9         |
| 10              | 1   | 0       | 895        | 0.500 | 0.000000 | 0.000000 | 99,659           | 0               | 99,659  | 6,034,587              | 60.5526 | 10        |
| 11              | 1   | 1       | 950        | 0.500 | 0.001053 | 0.001052 | 99,659           | 105             | 99,606  | 5,934,928              | 59.5526 | 11        |
| 12              | 1   | 0       | 897        | 0.500 | 0.000000 | 0.000000 | 99,554           | 0               |         | 5,835,322              |         | 12        |
| 13              | 1   | 0       | 943        | 0.500 | 0.000000 | 0.000000 | 99,554           | 0               |         | 5,735,768              |         | 13        |
| 14              | 1   | 0       | 1,068      | 0.500 | 0.000000 | 0.000000 | 99,554           | 0               | 99,554  | 5,636,214              | 56.6148 | 14        |
| 15              | 1   | 1       | 1,307      | 0.500 | 0.000765 | 0.000765 | 99,554           | 76              | 99,516  | 5,536,660              | 55.6148 | 15        |
| 16              | 1   | 2       | 1,303      | 0.500 | 0.001535 | 0.001534 | 99,478           | 153             |         | 5,437,145              |         | 16        |
| 17              | 1   | 0       | 1,275      | 0.500 | 0.000000 | 0.000000 | 99,325           | 0               | 99,325  | 5,337,743              | 53.7401 | 17        |
| 18              | 1   | 2       | 1,198      |       |          | 0.001668 | 99,325           | 166             |         | 5,238,418              |         | 18        |
| 19              | 1   | 0       | 1,075      | 0.500 | 0.000000 | 0.000000 | 99,159           | 0               |         | 5,139,176              |         | 19        |
| 20              | 1   | 3       | 959        |       |          | 0.003123 | 99,159           | 310             |         | 5,040,017              | 50.8274 | 20        |
| 21              | 1   | 3       | 883        |       |          | 0.003392 | 98,850           | 335             |         | 4,941,012              |         | 21        |
| 22              | 1   | 0       | 878        |       |          | 0.000000 | 98,514           | 0               |         | 4,842,330              |         | 22        |
| 23              | 1   | 2       | 927        |       |          | 0.002155 | 98,514           | 212             |         | 4,743,816              |         | 23        |
| 24              | 1   | 2       | 860        |       |          | 0.002323 | 98,302           | 228             |         | 4,645,407              |         | 24        |
| 25              | 1   | 1       | 928        |       |          | 0.002323 | 98,074           | 106             |         | 4,547,219              |         | 25        |
|                 |     |         |            |       |          | 0.001077 | 97,968           |                 |         | 4,449,198              |         |           |
| 26<br>27        | 1   | 1 2     | 865<br>821 |       |          |          |                  | 113<br>238      |         |                        |         | 26        |
|                 | 1   |         | 821        |       |          | 0.002433 | 97,855           |                 |         | 4,351,287              |         | 27        |
| 28              | 1   | 0       | 793        |       |          | 0.000000 | 97,617           | 222             |         | 4,253,551              |         | 28        |
| 29              | 1   | 2       | 840        |       |          |          | 97,617           | 232             |         | 4,155,934              |         | 29        |
| 30              | 1   | 1       | 848        |       |          | 0.001179 | 97,385           | 115             |         | 4,058,433              |         | 30        |
| 31              | 1   | 0       | 795        |       |          | 0.000000 | 97,270           | 0               | -       | 3,961,106              |         | 31        |
| 32              | 1   | 4       | 765        |       |          | 0.005215 | 97,270           | 507             |         | 3,863,836              |         | 32        |
| 33              | 1   | 0       | 750        |       |          | 0.000000 | 96,763           | 0               |         | 3,766,820              |         | 33        |
| 34              | 1   | 1       | 667        |       |          | 0.001498 | 96,763           | 145             | -       | 3,670,057              |         | 34        |
| 35              | 1   | 3       | 652        |       | 0.004601 |          | 96,618           | 444             | -       | 3,573,367              |         | 35        |
| 36              | 1   | 1       | 626        |       |          | 0.001596 | 96,174           | 154             |         | 3,476,971              |         | 36        |
| 37              | 1   | 5       | 624        |       |          | 0.007981 | 96,021           | 766             | 95,637  | 3,380,874              | 35.2099 | 37        |
| 38              | 1   | 3       | 619        | 0.500 | 0.004847 | 0.004835 | 95,254           | 461             | 95,024  | 3,285,236              | 34.4891 | 38        |
| 39              | 1   | 3       | 611        | 0.500 | 0.004910 | 0.004898 | 94,794           | 464             | 94,562  | 3,190,212              | 33.6542 | 39        |
| 40              | 1   | 1       | 555        | 0.500 | 0.001802 | 0.001800 | 94,329           | 170             | 94,245  | 3,095,651              | 32.8174 | 40        |
| 41              | 1   | 1       | 577        | 0.500 | 0.001733 | 0.001732 | 94,160           | 163             | 94,078  | 3,001,406              | 31.8757 | 41        |
| 42              | 1   | 4       | 544        | 0.500 | 0.007353 | 0.007326 | 93,997           | 689             | 93,652  | 2,907,328              | 30.9301 | 42        |
| 43              | 1   | 1       | 552        | 0.500 | 0.001812 | 0.001810 | 93,308           | 169             | 93,224  | 2,813,676              | 30.1547 | 43        |
| 44              | 1   | 2       | 524        | 0.500 | 0.003817 | 0.003810 | 93,139           | 355             |         | 2,720,452              |         | 44        |
| 45              | 1   | 2       | 533        | 0.500 | 0.003752 | 0.003745 | 92,784           | 348             |         | 2,627,490              |         | 45        |
| 46              | 1   | 5       | 416        |       |          | 0.011947 | 92,437           | 1,104           |         | 2,534,880              |         | 46        |
| 47              | 1   | 7       | 473        |       |          | 0.014690 | 91,332           | 1,342           |         | 2,442,995              |         | 47        |
| 48              | 1   | 4       | 485        |       |          | 0.008214 | 89,991           | 739             |         | 2,352,334              |         | 48        |
| 49              | 1   | 7       | 461        |       |          | 0.015070 | 89,252           | 1,345           |         | 2,262,713              |         | 49        |
| 50              | 1   | 5       | 497        |       |          | 0.010010 | 87,907           | 880             |         | 2,174,133              |         | 50        |
| 51              | 1   | 3       | 476        |       |          | 0.006283 | 87,027           | 547             | -       | 2,086,667              |         | 51        |
| 52              | 1   | 3       | 436        |       |          | 0.006857 | 86,480           | 593             |         | 1,999,914              |         | 52        |
| 53              | 1   | 6       | 430        |       | 0.013953 |          | 85,887           | 1,190           |         | 1,913,730              |         | 53        |
| 54              | 1   | 4       | 428        |       |          | 0.009302 | 84,697           | 788             |         | 1,828,439              |         | 54        |
| 55              | 1   | 8       | 434        |       |          | 0.018265 | 83,909           | 1,533           |         | 1,744,136              |         | 55        |
| 56              | 1   | 11      | 412        |       |          | 0.016263 | 82,376           | 2,170           |         | 1,660,993              |         | 56        |
| 57              | 1   | 7       | 452        |       |          | 0.015368 | 80,206           | 1,233           |         | 1,579,702              |         | 57        |
| 58              | 1   | 14      | 433        |       |          | 0.013308 | 78,973           | 2,513           |         | 1,500,113              |         | 58        |
|                 |     |         |            |       |          |          |                  |                 | -       |                        |         |           |
| 59              | 1   | 12      | 431        |       |          | 0.027460 | 76,460           | 2,100           |         | 1,422,396              |         | 59<br>60  |
| 60              | 1   | 9       | 446        |       |          | 0.019978 | 74,361           | 1,486           |         | 1,346,985              |         | 60        |
| 61              | 1   | 13      | 406        |       |          | 0.031515 | 72,875           | 2,297           |         | 1,273,367              |         | 61        |
| 62              | 1   | 14      | 346        |       |          | 0.039660 | 70,579           | 2,799           |         | 1,201,640              |         | 62        |
| 63              | 1   | 11      | 351        |       |          | 0.030856 | 67,779           | 2,091           |         | 1,132,461              |         | 63        |
| 64              | 1   | 10      | 355        |       |          | 0.027778 | 65,688           | 1,825           |         | 1,065,727              |         | 64        |
| 65              | 1   | 8       | 383        |       |          | 0.020672 | 63,863           | 1,320           |         | 1,000,951              |         | 65        |
| 66              | 1   | 6       | 353        |       |          | 0.016854 | 62,543           | 1,054           |         | 937,748                |         | 66        |
| 67              | 1   | 11      | 314        |       |          | 0.034429 | 61,489           | 2,117           |         | 875,732                |         | 67        |
| 68              | 1   | 11      | 315        |       |          | 0.034321 | 59,372           | 2,038           |         | 815,301                |         | 68        |
| 69              | 1   | 10      | 260        |       |          | 0.037736 | 57,334           | 2,164           |         |                        |         | 69        |
| 70              | 1   | 15      | 303        |       |          | 0.048309 | 55,171           | 2,665           |         | 700,695                |         | 70        |
| 71              | 1   | 17      | 267        |       |          | 0.061706 | 52,506           | 3,240           |         | 646,857                |         | 71        |
| 72              | 1   | 13      | 283        |       |          | 0.044905 | 49,266           | 2,212           |         | 595,971                |         | 72        |
| 73              | 1   | 14      | 199        |       |          | 0.067961 | 47,053           | 3,198           |         | 547,812                |         | 73        |
| 74              | 1   | 11      | 217        |       |          | 0.049438 | 43,856           | 2,168           |         | 502,357                | 11.4548 | 74        |
| 75              | 1   | 14      | 195        | 0.500 | 0.071795 | 0.069307 | 41,687           | 2,889           | 40,243  | 459,586                | 11.0245 | 75        |
| 76              | 1   | 7       | 180        | 0.500 | 0.038889 | 0.038147 | 38,798           | 1,480           | 38,058  | 419,343                | 10.8083 | 76        |
| 77              | 1   | 6       | 145        | 0.500 | 0.041379 | 0.040541 | 37,318           | 1,513           | 36,562  | 381,285                |         | 77        |
| 78              | 1   | 8       | 117        |       |          | 0.066116 | 35,805           | 2,367           |         | 344,723                |         | 78        |
| 79              | 1   | 12      | 137        |       |          | 0.083916 | 33,438           | 2,806           |         | 310,101                |         | 79        |
| 80              | 1   | 6       | 114        |       |          | 0.051282 | 30,632           | 1,571           |         | 278,066                |         | 80        |
| 81              | 1   | 6       | 81         |       |          | 0.071429 | 29,061           | 2,076           |         | 248,220                |         | 81        |
| 82              | 1   | 2       | 57         |       |          | 0.071423 | 26,985           | 931             |         | 220,196                |         | 82        |
| 83              | 1   | 9       | 60         |       |          | 0.139535 | 26,055           | 3,636           |         | 193,676                |         | 83        |
| 84              | 1   | 6       | 55         |       |          | 0.103448 |                  |                 |         |                        |         | 84        |
|                 |     |         |            |       |          |          | 22,419           | 2,319           |         | 169,439                |         |           |
| 85              | 1   | 2       | 56         |       |          | 0.035088 | 20,100           | 705             |         | 148,179                |         | 85        |
| 86              | 1   | 5       | 38         |       |          | 0.123457 | 19,395           | 2,394           |         | 128,432                |         | 86        |
| 87              | 1   | 6       | 44         |       |          | 0.127660 | 17,000           | 2,170           |         | 110,235                |         | 87        |
|                 | 1   | 1       | 26         |       |          | 0.037736 | 14,830           | 560             |         | 94,319                 |         | 88        |
| 88              |     |         |            |       |          |          |                  |                 |         |                        |         |           |
| 88<br>89<br>90+ | 1   | 3<br>14 | 16<br>79   |       | 0.187500 | 1.000000 | 14,270<br>11,824 | 2,446<br>11,824 |         | 79,769<br>66,722       |         | 89<br>90+ |

Appendix Table 3b: Period Life Table for White (non-Hispanic) Males (1983, NLMS File 11)

|                      |       |          |            | aule  |                      | V THIC   | (HOII)           |                | Juine  |                  | ues (.  | _        |
|----------------------|-------|----------|------------|-------|----------------------|----------|------------------|----------------|--------|------------------|---------|----------|
| Age                  | n     | nDx      | nPYx       | nax   | nMx                  | nqx      | lx               | ndx            | nLx    | Tx               | ex      | Ag       |
| 0                    | 1     | 8        | 5,178      | 0.040 | 0.001545             | 0.001543 | 100,000          | 154            | 00 953 | 7,376,225        | 72 7622 | 0        |
| 1-4                  | 4     | 7        | 20,577     |       | 0.001343             |          | 99,846           | 136            |        | 7,376,223        |         | 1-4      |
| 5                    | 1     | 3        | 5,068      |       | 0.000592             |          | 99,710           | 59             |        | 6,877,308        |         | 5        |
| 6                    | 1     | 0        | 4,921      |       | 0.000000             |          | 99,651           | 0              |        | 6,777,628        |         | 6        |
| 7                    | 1     | 1        | 5,000      |       | 0.000200             |          | 99,651           | 20             |        | 6,677,977        |         | 7        |
| 8                    | 1     | 1        | 5,111      |       | 0.000196             |          | 99,631           | 19             |        | 6,578,336        |         | 8        |
| 9                    | 1     | 2        | 5,620      |       | 0.000356             |          | 99,612           | 35             |        | 6,478,715        |         | 9        |
| 10                   | 1     | 2        | 5,528      |       | 0.000362             |          | 99,576           | 36             |        | 6,379,121        |         | 10       |
| 11                   | 1     | 1        | 5,525      |       | 0.000181             |          | 99,540           | 18             |        | 6,279,563        |         | 11       |
| 12                   | 1     | 1        | 5,448      |       | 0.000184             |          | 99,522           | 18             |        | 6,180,032        |         | 12       |
| 13                   | 1     | 1        | 5,594      |       | 0.000179             |          | 99,504           | 18             |        | 6,080,519        |         | 13       |
| 14                   | 1     | 3        | 6,437      |       | 0.000466             |          | 99,486           | 46             |        | 5,981,024        |         | 14       |
| 15                   | 1     | 4        | 8,333      |       | 0.000480             |          | 99,440           | 48             |        | 5,881,561        | 59.1470 | 15       |
| 16                   | 1     | 7        | 7,992      |       | 0.000876             |          | 99,392           | 87             |        | 5,782,145        |         | 16       |
| 17                   | 1     | 10       | 8,223      |       | 0.001216             |          | 99,305           | 121            |        | 5,682,797        |         | 17       |
| 18                   | 1     | 11       | 7,896      |       | 0.001393             |          | 99,184           | 138            |        | 5,583,552        |         | 18       |
| 19                   | 1     | 9        | 7,539      |       | 0.001194             |          | 99,046           | 118            |        | 5,484,437        | 55.3725 | 19       |
| 20                   | 1     | 7        | 7,479      | 0.500 | 0.000936             | 0.000936 | 98,928           | 93             | 98,882 | 5,385,450        | 54.4381 | 20       |
| 21                   | 1     | 12       | 7,373      |       | 0.001628             |          | 98,835           | 161            |        | 5,286,568        |         | 21       |
| 22                   | 1     | 8        | 7,839      |       | 0.001021             |          | 98,675           | 101            |        | 5,187,813        |         | 22       |
| 23                   | 1     | 9        | 7,967      |       | 0.001130             |          | 98,574           | 111            |        | 5,089,189        |         | 23       |
| 24                   | 1     | 16       | 8,034      |       | 0.001992             |          | 98,463           | 196            |        | 4,990,670        |         | 24       |
| 25                   | 1     | 10       | 8,104      |       | 0.001334             |          | 98,267           | 121            |        | 4,892,305        |         | 25       |
| 26                   | 1     | 9        | 8,273      |       | 0.001088             |          | 98,146           | 107            |        | 4,794,099        |         | 26       |
| 27                   | 1     | 7        | 8,152      |       | 0.000859             |          | 98,039           | 84             |        | 4,696,007        | 47.8994 | 27       |
| 28                   | 1     | 7        | 8,201      |       | 0.000854             |          | 97,955           | 84             |        | 4,598,010        |         | 28       |
| 29                   | 1     | 9        | 8,237      |       | 0.001093             |          | 97,871           | 107            |        | 4,500,097        | 45.9798 | 29       |
| 30                   | 1     | 10       | 8,233      |       | 0.001215             |          | 97,764           | 119            |        | 4,402,279        |         | 30       |
| 31                   | 1     | 11       | 8,137      |       | 0.001352             |          | 97,646           | 132            |        | 4,304,574        |         | 31       |
| 32                   | 1     | 10       | 8,158      |       | 0.001226             |          | 97,514           | 119            |        | 4,206,994        |         | 32       |
| 33                   | 1     | 8        | 8,086      |       | 0.000989             |          | 97,394           | 96             |        | 4,109,540        |         | 33       |
| 34                   | 1     | 12       | 7,472      |       | 0.001606             |          | 97,298           | 156            |        | 4,012,194        |         | 34       |
| 35                   | 1     | 12       | 7,080      |       | 0.001695             |          | 97,142           | 165            |        | 3,914,974        |         | 35       |
| 36                   | 1     | 14       | 7,160      |       | 0.001955             |          | 96,977           | 189            |        | 3,817,915        |         | 36       |
| 37                   | 1     | 10       | 7,002      | 0.500 | 0.001428             | 0.001427 | 96,788           | 138            | 96,719 | 3,721,032        | 38.4452 | 37       |
| 38                   | 1     | 21       | 6,817      | 0.500 | 0.003081             | 0.003076 | 96,650           | 297            | 96,501 | 3,624,313        | 37.4994 | 38       |
| 39                   | 1     | 10       | 6,329      | 0.500 | 0.001580             | 0.001579 | 96,353           | 152            | 96,276 | 3,527,812        | 36.6136 | 39       |
| 40                   | 1     | 14       | 6,203      | 0.500 | 0.002257             | 0.002254 | 96,200           | 217            | 96,092 | 3,431,535        | 35.6707 | 40       |
| 41                   | 1     | 11       | 5,970      | 0.500 | 0.001843             | 0.001841 | 95,984           | 177            | 95,895 | 3,335,443        | 34.7502 | 41       |
| 42                   | 1     | 16       | 5,775      | 0.500 | 0.002771             | 0.002767 | 95,807           | 265            | 95,674 | 3,239,548        | 33.8133 | 42       |
| 43                   | 1     | 15       | 5,469      | 0.500 | 0.002743             | 0.002739 | 95,542           | 262            | 95,411 | 3,143,874        | 32.9058 | 43       |
| 44                   | 1     | 14       | 5,341      | 0.500 | 0.002621             | 0.002618 | 95,280           | 249            | 95,155 | 3,048,463        | 31.9948 | 44       |
| 45                   | 1     | 13       | 5,167      | 0.500 | 0.002516             | 0.002513 | 95,031           | 239            | 94,911 | 2,953,308        | 31.0774 | 45       |
| 46                   | 1     | 21       | 5,097      | 0.500 | 0.004120             | 0.004112 | 94,792           | 390            | 94,597 | 2,858,396        | 30.1544 | 46       |
| 47                   | 1     | 24       | 5,054      | 0.500 | 0.004749             | 0.004737 | 94,402           | 447            | 94,179 | 2,763,799        | 29.2769 | 47       |
| 48                   | 1     | 16       | 4,903      | 0.500 | 0.003263             | 0.003258 | 93,955           | 306            | 93,802 | 2,669,621        | 28.4139 | 48       |
| 49                   | 1     | 29       | 4,833      | 0.500 | 0.006000             | 0.005982 | 93,649           | 560            | 93,369 | 2,575,819        | 27.5051 | 49       |
| 50                   | 1     | 29       | 5,128      | 0.500 | 0.005655             | 0.005639 | 93,089           | 525            | 92,826 | 2,482,450        | 26.6676 | 50       |
| 51                   | 1     | 25       | 4,973      | 0.500 | 0.005027             | 0.005015 | 92,564           | 464            | 92,332 | 2,389,624        | 25.8160 | 51       |
| 52                   | 1     | 37       | 5,032      | 0.500 | 0.007353             | 0.007326 | 92,099           | 675            | 91,762 | 2,297,293        | 24.9436 | 52       |
| 53                   | 1     | 41       | 4,917      | 0.500 | 0.008338             | 0.008304 | 91,425           | 759            | 91,045 | 2,205,531        | 24.1240 | 53       |
| 54                   | 1     | 52       | 5,085      |       | 0.010226             |          | 90,666           | 922            |        | 2,114,486        | 23.3218 | 54       |
| 55                   | 1     | 40       | 4,999      |       | 0.008002             |          | 89,743           | 715            |        | 2,024,281        | 22.5564 | 55       |
| 56                   | 1     | 52       | 5,110      |       | 0.010176             |          | 89,028           | 901            |        | 1,934,896        |         | 56       |
| 57                   | 1     | 66       | 5,009      |       | 0.013176             |          | 88,126           | 1,154          |        | 1,846,319        |         | 57       |
| 58                   | 1     | 71       | 5,092      |       | 0.013943             |          | 86,973           | 1,204          |        | 1,758,769        |         | 58       |
| 59                   | 1     | 84       | 5,025      |       | 0.016716             |          | 85,769           | 1,422          |        | 1,672,398        |         | 59       |
| 50                   | 1     | 83       | 4,825      |       | 0.017202             |          | 84,347           | 1,439          |        | 1,587,341        |         | 60       |
| 51                   | 1     | 83       | 4,634      |       | 0.017911             |          | 82,908           | 1,472          |        | 1,503,713        |         | 61       |
| 62                   | 1     | 93       | 4,687      |       | 0.019842             |          | 81,436           | 1,600          |        | 1,421,541        |         | 62       |
| 53                   | 1     | 93       | 4,532      |       | 0.020521             |          | 79,836           | 1,622          |        | 1,340,904        |         | 63       |
| 64                   | 1     | 114      | 4,224      |       | 0.026989             |          | 78,215           | 2,083          |        | 1,261,879        |         | 64       |
| 55                   | 1     | 107      | 4,339      |       | 0.024660             |          | 76,132           | 1,855          |        | 1,184,706        |         | 65       |
| 56                   | 1     | 119      | 4,078      |       | 0.029181             |          | 74,277           | 2,136          |        | 1,109,501        |         | 66       |
| 57                   | 1     | 121      | 3,883      |       | 0.031161             |          | 72,141           | 2,214          |        | 1,036,292        |         | 67       |
| 58                   | 1     | 137      | 3,689      |       | 0.037137             |          | 69,928           | 2,550          |        | 965,257          |         | 68       |
| 59                   | 1     | 113      | 3,565      |       | 0.031697             |          | 67,378           | 2,102          |        | 896,605          |         | 69       |
| 70                   | 1     | 127      | 3,328      |       | 0.038161             |          | 65,276           | 2,444          |        | 830,278          |         | 70       |
| 71                   | 1     | 118      | 3,099      |       | 0.038077             |          | 62,831           | 2,348          |        | 766,225          |         | 71       |
| 72                   | 1     | 134      | 3,029      |       | 0.044239             |          | 60,484           | 2,618          |        | 704,567          |         | 72       |
| 73                   | 1     | 131      | 2,726      |       | 0.048056             |          | 57,866           | 2,716          |        | 645,393          |         | 73       |
| 74                   | 1     | 129      | 2,490      |       | 0.051807             |          | 55,150<br>52,365 | 2,785          |        | 588,885          |         | 74       |
| 75                   | 1     | 119      | 2,365      |       | 0.050317             |          |                  | 2,570          |        | 535,127          |         | 75       |
| 76                   | 1     | 125      | 2,094      |       | 0.059694             |          | 49,795           | 2,886          |        | 484,047          | 9.7208  | 76       |
| 77                   | 1     | 113      | 1,823      |       | 0.061986             |          | 46,909           | 2,820          |        | 435,695          |         | 77       |
| 78                   | 1     | 109      | 1,671      |       | 0.065230             |          | 44,088           | 2,785          |        | 390,197          |         | 78       |
| 79                   | 1     | 126      | 1,545      |       | 0.081553             |          | 41,303           | 3,236          |        | 347,501          |         | 79       |
| 80                   | 1     | 132      | 1,379      |       | 0.095722             |          | 38,067           | 3,477          |        | 307,816          |         | 80       |
| 81                   | 1     | 101      | 1,150      |       | 0.087826             |          | 34,589           | 2,910          |        | 271,488          |         | 81       |
| 82                   | 1     | 92       | 1,072      |       | 0.085821             |          | 31,679           | 2,607          |        | 238,353          |         | 82       |
| 83                   | 1     | 95       | 893        |       | 0.106383             |          | 29,072           | 2,937          | 27,604 | 207,978          |         | 83       |
| 84                   | 1     | 76       | 759        |       | 0.100132             |          | 26,136           | 2,492          |        | 180,373          |         | 84       |
| 85                   | 1     | 77       | 660        |       | 0.116667             |          | 23,644           | 2,606          |        | 155,484          |         | 85       |
| 0.0                  | 1     | 57       | 468        |       | 0.121795             |          | 21,037           | 2,415          |        | 133,143          |         | 86       |
|                      |       | 51       | 423        | 0.500 | U.120567             | 0.113712 | 18,622           | 2,118          | 17,563 | 113,314          | 6.0849  | 87       |
| 87                   | 1     |          |            |       |                      |          |                  | 4              | 4 = == | or               | F 0     | -        |
| 86<br>87<br>88<br>89 | 1 1 1 | 46<br>42 | 367<br>271 | 0.500 | 0.125341<br>0.154982 | 0.117949 | 16,505<br>14,558 | 1,947<br>2,094 |        | 95,750<br>80,219 |         | 88<br>89 |

Appendix Table 3c: Period Life Table for Black (non-Hispanic) Females (1983, NLMS File 11)

| Age      | n | nDx      | nPYx           | nax   | nMx                  | nqx      | lx               | ndx            | nLx              | Tx                     | ex                 | Age      |
|----------|---|----------|----------------|-------|----------------------|----------|------------------|----------------|------------------|------------------------|--------------------|----------|
|          |   |          |                |       |                      |          |                  |                |                  |                        |                    | _        |
| 0        | 1 | 1        | 828            |       | 0.001208             |          | 100,000          | 121            |                  | 7,640,741              |                    | 0        |
| 1-4      | 4 | 1        | 3,484          |       | 0.000287             |          | 99,879           | 115            |                  | 7,540,856              | 75.4996            | 1-4      |
| 5        | 1 | 1        | 864            |       | 0.001157             |          | 99,765           | 115            |                  | 7,141,608              | 71.5845            | 5        |
| 6        | 1 | 0        | 835            |       | 0.000000             |          | 99,649           | 0              |                  | 7,041,901              | 70.6668            | 6        |
| 7        | 1 | 0        | 844            |       | 0.000000             |          | 99,649           | 0              |                  | 6,942,251              | 69.6668            | 7        |
| 8<br>9   | 1 | 0        | 865<br>871     |       | 0.000000             |          | 99,649<br>99,649 | 0              |                  | 6,842,602<br>6,742,953 | 68.6668<br>67.6668 | 9        |
| 10       | 1 | 0        | 894            |       | 0.000000             |          | 99,649           | 0              |                  | 6,643,303              |                    | 10       |
| 11       | 1 | 0        | 928            |       | 0.000000             |          | 99,649           | 0              |                  | 6,543,654              |                    | 11       |
| 12       | 1 | 0        | 955            |       | 0.000000             |          | 99,649           | 0              |                  | 6,444,005              | 64.6668            | 12       |
| 13       | 1 | 1        | 923            |       | 0.001083             |          | 99,649           | 108            |                  | 6,344,355              |                    | 13       |
| 14       | 1 | 0        | 1,166          |       | 0.000000             |          | 99,541           | 0              |                  | 6,244,760              | 62.7353            | 14       |
| 15       | 1 | 0        | 1,322          | 0.500 | 0.000000             | 0.000000 | 99,541           | 0              | 99,541           | 6,145,218              | 61.7353            | 15       |
| 16       | 1 | 1        | 1,317          | 0.500 | 0.000759             | 0.000759 | 99,541           | 76             | 99,504           | 6,045,677              | 60.7353            | 16       |
| 17       | 1 | 2        | 1,411          | 0.500 | 0.001417             | 0.001416 | 99,466           | 141            | 99,395           | 5,946,173              | 59.7810            | 17       |
| 18       | 1 | 0        | 1,330          |       | 0.000000             |          | 99,325           | 0              | 99,325           | 5,846,778              | 58.8651            | 18       |
| 19       | 1 | 1        | 1,295          |       | 0.000772             |          | 99,325           | 77             |                  | 5,747,453              | 57.8651            | 19       |
| 20       | 1 | 2        | 1,301          |       | 0.001537             |          | 99,248           | 152            |                  | 5,648,166              | 56.9094            | 20       |
| 21       | 1 | 1        | 1,213          |       | 0.000824             |          | 99,096           | 82             |                  | 5,548,994              | 55.9962            | 21       |
| 22       | 1 | 3        | 1,293          |       | 0.002320             |          | 99,014           | 229            |                  | 5,449,939              | 55.0420            | 22       |
| 23       | 1 | 0        | 1,282          |       | 0.000000             |          | 98,785           | 0              |                  | 5,351,039              | 54.1687            | 23       |
| 24       | 1 | 2        | 1,271          |       | 0.001574 0.003690    |          | 98,785           | 155            |                  | 5,252,254              | 53.1687            | 24       |
| 25<br>26 | 1 | 5<br>0   | 1,355<br>1,240 |       | 0.003690             |          | 98,629<br>98,266 | 363<br>0       |                  | 5,153,547<br>5,055,100 | 52.2516<br>51.4429 | 25<br>26 |
| 27       | 1 | 1        | 1,240          |       | 0.000805             |          | 98,266           | 79             |                  | 4,956,833              | 50.4429            | 27       |
| 28       | 1 | 0        | 1,127          |       | 0.000000             |          | 98,187           | 0              |                  | 4,858,607              | 49.4832            | 28       |
| 29       | 1 | 1        | 1,197          |       | 0.000835             |          | 98,187           | 82             |                  | 4,760,420              | 48.4832            | 29       |
| 30       | 1 | 5        | 1,135          |       | 0.004405             |          | 98,105           | 431            |                  | 4,662,274              | 47.5233            | 30       |
| 31       | 1 | 2        | 1,168          |       | 0.001712             |          | 97,674           | 167            |                  | 4,564,384              | 46.7309            | 31       |
| 32       | 1 | 0        | 1,115          |       | 0.000000             |          | 97,507           | 0              |                  | 4,466,794              | 45.8101            | 32       |
| 33       | 1 | 2        | 1,056          | 0.500 | 0.001894             | 0.001892 | 97,507           | 184            | 97,415           | 4,369,287              | 44.8101            | 33       |
| 34       | 1 | 1        | 959            |       | 0.001043             |          | 97,322           | 101            |                  | 4,271,872              | 43.8941            | 34       |
| 35       | 1 | 1        | 917            |       | 0.001091             |          | 97,221           | 106            |                  | 4,174,601              | 42.9394            | 35       |
| 36       | 1 | 3        | 891            |       | 0.003367             |          | 97,115           | 326            |                  | 4,077,433              | 41.9857            | 36       |
| 37       | 1 | 3        | 916            |       | 0.003275             |          | 96,788           | 316            |                  | 3,980,481              | 41.1256            | 37       |
| 38       | 1 | 2        | 823            |       | 0.002430             |          | 96,472           | 234            |                  | 3,883,851              | 40.2589            | 38       |
| 39<br>40 | 1 | 2        | 778<br>802     |       | 0.002571 0.003741    |          | 96,238<br>95,991 | 247            |                  | 3,787,496 3,691,382    | 39.3556<br>38.4556 | 39<br>40 |
| 41       | 1 | 2        | 787            |       | 0.003741             |          | 95,632           | 358<br>243     |                  | 3,595,571              | 37.5979            | 41       |
| 42       | 1 | 3        | 737            |       | 0.002541             |          | 95,390           | 388            |                  | 3,500,060              | 36.6923            | 42       |
| 43       | 1 | 0        | 711            |       | 0.000000             |          | 95,002           | 0              |                  | 3,404,864              | 35.8399            | 43       |
| 44       | 1 | 3        | 653            |       | 0.004594             |          | 95,002           | 435            |                  | 3,309,862              | 34.8399            | 44       |
| 45       | 1 | 4        | 700            | 0.500 | 0.005714             | 0.005698 | 94,567           | 539            |                  | 3,215,077              | 33.9980            | 45       |
| 46       | 1 | 3        | 611            | 0.500 | 0.004910             | 0.004898 | 94,028           | 461            | 93,798           | 3,120,780              | 33.1900            | 46       |
| 47       | 1 | 3        | 605            | 0.500 | 0.004959             | 0.004946 | 93,567           | 463            | 93,336           | 3,026,983              | 32.3509            | 47       |
| 48       | 1 | 4        | 614            |       | 0.006515             |          | 93,104           | 605            |                  | 2,933,647              | 31.5092            | 48       |
| 49       | 1 | 5        | 629            |       | 0.007949             |          | 92,500           | 732            |                  | 2,840,845              | 30.7119            | 49       |
| 50       | 1 | 6        | 677            |       | 0.008863             |          | 91,767           | 810            |                  | 2,748,711              | 29.9530            | 50       |
| 51       | 1 | 2        | 602            |       | 0.003322             |          | 90,958           | 302            |                  | 2,657,348              | 29.2152            | 51       |
| 52<br>53 | 1 | 6<br>7   | 624<br>603     |       | 0.009615<br>0.011609 |          | 90,656<br>89,789 | 868<br>1,036   |                  | 2,566,541<br>2,476,319 | 28.3107<br>27.5794 | 52<br>53 |
| 54       | 1 | 7        | 566            |       | 0.011003             |          | 88,752           | 1,091          |                  | 2,387,049              | 26.8956            | 54       |
| 55       | 1 | 5        | 618            |       | 0.008091             |          | 87,661           | 706            |                  | 2,298,842              | 26.2241            | 55       |
| 56       | 1 | 6        | 615            |       | 0.009756             |          | 86,955           | 844            |                  | 2,211,534              | 25.4331            | 56       |
| 57       | 1 | 5        | 560            |       | 0.008929             |          | 86,111           | 765            |                  | 2,125,001              | 24.6775            | 57       |
| 58       | 1 | 8        | 581            | 0.500 | 0.013769             | 0.013675 | 85,345           | 1,167          |                  | 2,039,273              | 23.8944            | 58       |
| 59       | 1 | 6        | 539            | 0.500 | 0.011132             | 0.011070 | 84,178           | 932            | 83,712           | 1,954,511              | 23.2187            | 59       |
| 60       | 1 | 6        | 567            |       | 0.010582             |          | 83,246           | 876            |                  | 1,870,799              | 22.4730            | 60       |
| 61       | 1 | 11       | 493            |       | 0.022312             |          | 82,370           | 1,818          |                  | 1,787,990              | 21.7068            | 61       |
| 62       | 1 | 7        | 485            |       | 0.014433             |          | 80,552           | 1,154          |                  | 1,706,529              | 21.1853            | 62       |
| 63       | 1 | 8        | 478            |       | 0.016736             |          | 79,398           | 1,318          |                  | 1,626,554              | 20.4860            | 63       |
| 64<br>6E | 1 | 10       | 464            |       | 0.015086             |          | 78,080           | 1,169          |                  | 1,547,815              |                    | 64<br>6E |
| 65<br>66 | 1 | 10<br>15 | 530<br>517     |       | 0.018868             |          | 76,911<br>75,474 | 1,438<br>2,158 |                  | 1,470,319              |                    | 65<br>66 |
| 67       | 1 | 11       | 432            |       | 0.025463             |          |                  | 1,843          |                  | 1,394,126              |                    | 67       |
| 68       | 1 | 12       | 413            |       | 0.029056             |          |                  | 2,047          |                  | 1,247,338              |                    | 68       |
| 69       | 1 | 8        | 425            |       | 0.018824             |          |                  | 1,295          |                  | 1,176,890              |                    | 69       |
| 70       | 1 | 8        | 412            |       | 0.019417             |          | 68,130           | 1,310          |                  | 1,108,112              |                    | 70       |
| 71       | 1 | 3        | 372            |       | 0.008065             |          | 66,820           | 537            |                  | 1,040,637              |                    | 71       |
| 72       | 1 | 16       | 329            | 0.500 | 0.048632             | 0.047478 |                  | 3,147          | 64,710           |                        |                    | 72       |
| 73       | 1 | 7        | 284            |       | 0.024648             |          | 63,136           | 1,537          | 62,368           | 909,375                |                    | 73       |
| 74       | 1 | 10       | 306            |       | 0.032680             |          | 61,599           | 1,981          | 60,609           |                        |                    | 74       |
| 75       | 1 | 5        | 266            |       | 0.018797             |          | 59,618           | 1,110          | 59,063           |                        |                    | 75       |
| 76       | 1 | 15       | 262            |       | 0.057252             |          | 58,508           | 3,256          | 56,880           |                        |                    | 76       |
| 77       | 1 | 13       | 234            |       | 0.055556             |          |                  | 2,987          | 53,759           |                        |                    | 77       |
| 78       | 1 | 4        | 183            |       | 0.021858             |          |                  | 1,130          | 51,700           |                        |                    | 78       |
| 79<br>80 | 1 | 11       | 198<br>200     |       | 0.055556             |          |                  | 2,764          | 49,753           |                        | 11.0491            | 79<br>80 |
| 81       | 1 | 13       | 136            |       | 0.065000<br>0.066176 |          | 48,371<br>45,326 | 3,045<br>2,903 | 46,849<br>43,874 |                        |                    | 81       |
| 82       | 1 | 11       | 122            |       | 0.090164             |          |                  | 3,660          | 40,593           |                        | 10.3339            | 82       |
| 83       | 1 | 4        | 110            |       | 0.036364             |          |                  | 1,384          | 38,070           |                        | 9.9046             | 83       |
| 84       | 1 | 6        | 108            |       | 0.055556             |          |                  | 2,020          | 36,368           |                        | 9.2529             | 84       |
| 85       | 1 | 5        | 70             |       | 0.071429             |          |                  | 2,438          | 34,138           |                        |                    | 85       |
| 86       | 1 | 6        | 73             |       | 0.082192             |          | 32,919           | 2,599          | 31,620           |                        | 8.3645             | 86       |
| 87       | 1 | 5        | 49             |       | 0.102041             |          |                  | 2,944          | 28,848           |                        | 8.0386             | 87       |
| 88       | 1 | 5        | 46             |       | 0.108696             |          |                  | 2,822          | 25,965           | 214,883                |                    | 88       |
| 89       | 1 | 4        | 47             |       | 0.085106             |          | 24,554           | 2,004          | 23,552           | 188,918                | 7.6939             | 89       |
| 90+      |   | 24       | 176            | 0.000 | 0.136364             | 1.000000 | 22,550           | 22,550         | 165,366          | 165,366                | 7.3333             | 90+      |
|          |   |          |                |       |                      |          |                  |                |                  |                        |                    |          |

Appendix Table 3d: Period Life Table for White (non-Hispanic) Females (1983, NLMS File 11)

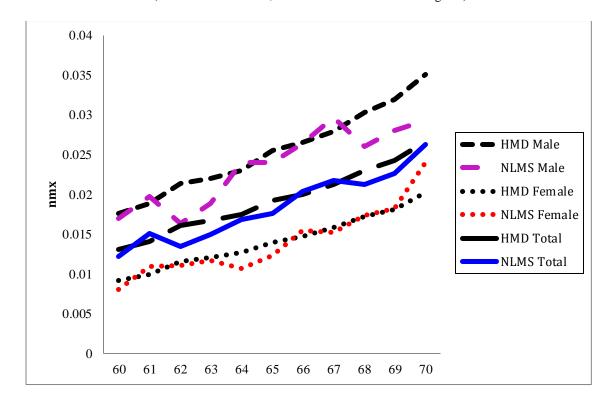
| ou.      | r eno | u Lii |        | iuic i | 101 11   | ппе      | (HOII-  |           | , <del>,</del> |           | iaics   | (1) |
|----------|-------|-------|--------|--------|----------|----------|---------|-----------|----------------|-----------|---------|-----|
| Age      | n     | nDx   | nPYx   | nax    | nMx      | nqx      | lx      | ndx       | nLx            | Tx        | ex      | Ag  |
|          |       | 2     | 4.015  | 0.047  | 0.000610 | 0.000610 | 100.000 | <b>C1</b> | 00.043         | 0.250.217 | 02 5022 |     |
| 0        | 1     | 3     | 4,915  |        | 0.000610 |          |         | 61        |                | 8,258,217 |         |     |
| 1-4      | 4     | 6     | 19,553 |        | 0.000307 |          |         | 123       |                | 8,158,275 | 81.6325 |     |
| 5        | 1     | 0     | 4,553  |        | 0.000000 |          |         | 0         |                | 7,758,807 | 77.7308 |     |
| 6        | 1     | 1     | 4,567  |        | 0.000219 |          |         | 22        |                | 7,658,991 | 76.7308 |     |
| 7        | 1     | 0     | 4,569  |        | 0.000000 |          |         | 0         |                | 7,559,185 | 75.7475 |     |
| 8        | 1     | 1     | 4,941  | 0.500  | 0.000202 | 0.000202 | 99,795  | 20        | 99,784         | 7,459,391 | 74.7475 | 8   |
| 9        | 1     | 0     | 5,063  | 0.500  | 0.000000 | 0.000000 | 99,774  | 0         | 99,774         | 7,359,606 | 73.7625 | 9   |
| 10       | 1     | 1     | 5,295  | 0.500  | 0.000189 | 0.000189 | 99,774  | 19        | 99,765         | 7,259,832 | 72.7625 | 10  |
| 11       | 1     | 1     | 5,242  | 0.500  | 0.000191 | 0.000191 | 99,756  | 19        | 99,746         | 7,160,067 | 71.7761 | 11  |
| 12       | 1     | 2     | 5,168  | 0.500  | 0.000387 | 0.000387 |         | 39        |                | 7,060,321 | 70.7897 | 12  |
| 13       | 1     | 1     | 5,316  |        | 0.000188 |          |         | 19        |                | 6,960,604 | 69.8169 |     |
| 14       | 1     | 2     | 6,179  |        | 0.000324 |          |         | 32        |                | 6,860,915 |         |     |
| 15       | 1     | 2     | 7,764  |        | 0.000321 |          |         | 26        |                | 6,761,252 | 67.8521 |     |
|          |       | 0     | 7,736  |        |          |          | -       |           |                |           |         |     |
| 16       | 1     |       |        |        | 0.000000 |          |         | 0         |                | 6,661,618 |         |     |
| 17       | 1     | 3     | 8,083  |        | 0.000371 |          |         | 37        |                | 6,561,997 | 65.8695 |     |
| 18       | 1     | 2     | 7,986  |        | 0.000250 |          |         | 25        |                | 6,462,394 | 64.8937 |     |
| 19       | 1     | 4     | 8,127  |        | 0.000492 |          | -       | 49        |                | 6,362,822 | 63.9099 |     |
| 20       | 1     | 3     | 8,291  |        | 0.000362 |          | -       | 36        |                | 6,263,288 |         |     |
| 21       | 1     | 8     | 8,326  | 0.500  | 0.000961 | 0.000960 | 99,474  | 96        | 99,427         | 6,163,795 | 61.9637 | 21  |
| 22       | 1     | 1     | 8,322  | 0.500  | 0.000120 | 0.000120 | 99,379  | 12        | 99,373         | 6,064,369 | 61.0228 | 22  |
| 23       | 1     | 1     | 8,520  | 0.500  | 0.000117 | 0.000117 | 99,367  | 12        | 99,361         | 5,964,996 | 60.0300 | 23  |
| 24       | 1     | 3     | 8,604  | 0.500  | 0.000349 | 0.000349 | 99,355  | 35        |                | 5,865,635 | 59.0370 | 24  |
| 25       | 1     | 4     | 8,767  |        | 0.000456 |          |         | 45        |                | 5,766,297 | 58.0574 |     |
| 26       | 1     | 4     | 8,840  |        | 0.000452 |          |         | 45        |                | 5,666,999 | 57.0837 |     |
| 27       | 1     | 9     | 8,714  |        | 0.001033 |          |         | 102       |                | 5,567,746 | 56.1093 |     |
|          |       |       |        |        | 0.001033 |          |         |           |                | 5,468,567 |         |     |
| 28       | 1     | 1     | 8,715  |        |          |          | ,       | 11        |                |           | 55.1668 |     |
| 29       | 1     | 6     | 8,719  |        | 0.000688 |          |         | 68        |                | 5,369,445 | 54.1730 |     |
| 30       | 1     | 4     | 8,686  |        | 0.000461 |          |         | 46        |                | 5,270,362 | 53.2100 |     |
| 31       | 1     | 3     | 8,583  |        | 0.000350 |          |         | 35        |                | 5,171,337 | 52.2343 |     |
| 32       | 1     | 6     | 8,413  |        | 0.000713 |          |         | 71        |                | 5,072,351 | 51.2524 | 32  |
| 33       | 1     | 9     | 8,719  | 0.500  | 0.001032 | 0.001032 | 98,898  | 102       |                | 4,973,418 | 50.2886 | 33  |
| 34       | 1     | 10    | 8,096  | 0.500  | 0.001235 | 0.001234 | 98,796  | 122       | 98,735         | 4,874,572 | 49.3400 | 34  |
| 35       | 1     | 9     | 7,581  | 0.500  | 0.001187 | 0.001186 | 98,674  | 117       | 98,615         | 4,775,837 | 48.4003 | 35  |
| 36       | 1     | 6     | 7,422  | 0.500  | 0.000808 | 0.000808 |         | 80        | 98,517         | 4,677,222 | 47.4572 |     |
| 37       | 1     | 5     | 7,337  | 0.500  | 0.000681 | 0.000681 | 98,477  | 67        |                | 4,578,705 | 46.4952 | 37  |
| 38       | 1     | 13    | 6,971  |        | 0.001865 |          |         | 183       |                | 4,480,262 | 45.5266 |     |
| 39       | 1     | 10    | 6,740  |        | 0.001484 |          |         | 146       |                | 4,381,944 | 44.6106 |     |
| 40       | 1     | 13    | 6,553  |        | 0.001984 |          |         | 194       |                | 4,283,790 | 43.6761 |     |
| 41       | 1     | 8     | 6,069  |        | 0.001304 |          |         | 129       |                | 4,285,790 | 42.7619 |     |
|          |       |       |        |        |          |          |         |           |                |           |         |     |
| 42       | 1     | 10    | 5,864  |        | 0.001705 |          |         | 167       |                | 4,087,985 | 41.8176 |     |
| 43       | 1     | 8     | 5,820  |        | 0.001375 |          |         | 134       |                | 3,990,311 | 40.8881 |     |
| 44       | 1     | 7     | 5,652  |        | 0.001238 |          |         | 121       |                | 3,892,787 | 39.9437 |     |
| 45       | 1     | 5     | 5,591  |        | 0.000894 |          |         | 87        |                | 3,795,390 | 38.9926 |     |
| 46       | 1     | 6     | 5,272  | 0.500  | 0.001138 | 0.001137 | 97,249  | 111       | 97,194         | 3,698,097 | 38.0270 | 46  |
| 47       | 1     | 16    | 5,411  | 0.500  | 0.002957 | 0.002953 | 97,139  | 287       | 96,995         | 3,600,903 | 37.0697 | 47  |
| 48       | 1     | 9     | 5,217  | 0.500  | 0.001725 | 0.001724 | 96,852  | 167       | 96,768         | 3,503,908 | 36.1780 | 48  |
| 49       | 1     | 15    | 5,204  | 0.500  | 0.002882 | 0.002878 | 96,685  | 278       | 96,546         | 3,407,140 | 35.2396 | 49  |
| 50       | 1     | 21    | 5,455  | 0.500  | 0.003850 | 0.003842 | 96,407  | 370       | 96,221         | 3,310,594 | 34.3399 | 50  |
| 51       | 1     | 13    | 5,234  |        | 0.002484 |          |         | 238       |                | 3,214,373 | 33.4704 |     |
| 52       | 1     | 21    | 5,450  |        | 0.003853 |          |         | 368       |                | 3,118,456 | 32.5524 |     |
| 53       | 1     | 14    | 5,288  |        | 0.002648 |          |         | 252       |                | 3,022,842 | 31.6762 |     |
| 54       | 1     | 22    | 5,390  |        | 0.004082 |          |         | 388       |                | 2,927,538 | 30.7588 |     |
|          |       |       |        |        |          |          |         |           |                |           | 29.8826 |     |
| 55       | 1     | 31    | 5,479  |        | 0.005658 |          |         | 535       |                | 2,832,555 |         |     |
| 56       | 1     | 23    | 5,548  |        | 0.004146 |          |         | 390       |                | 2,738,033 | 29.0493 |     |
| 57       | 1     | 33    | 5,509  |        | 0.005990 |          |         | 561       |                | 2,643,973 |         |     |
| 58       | 1     | 44    | 5,456  |        | 0.008065 |          | -       | 749       |                | 2,550,389 | 27.3341 |     |
| 59       | 1     | 44    | 5,403  |        | 0.008144 |          |         | 751       |                | 2,457,459 | 26.5514 |     |
| 60       | 1     | 44    | 5,498  | 0.500  | 0.008003 | 0.007971 | 91,804  | 732       | 91,438         | 2,365,280 | 25.7644 | 60  |
| 61       | 1     | 43    | 5,206  | 0.500  | 0.008260 | 0.008226 | 91,072  | 749       | 90,698         | 2,273,842 | 24.9674 | 61  |
| 62       | 1     | 48    | 5,293  | 0.500  | 0.009069 | 0.009028 |         | 815       |                | 2,183,144 | 24.1704 | 62  |
| 63       | 1     | 51    | 5,047  |        | 0.010105 |          |         | 900       |                | 2,093,228 |         |     |
| 64       | 1     | 65    | 4,939  |        | 0.013161 |          |         | 1,159     |                | 2,004,171 | 22.6184 |     |
| 65       | 1     | 62    | 5,225  |        | 0.011866 |          |         | 1,032     |                | 1,916,142 |         |     |
| 66       | 1     | 62    | 4,855  |        | 0.011000 |          |         | 1,097     |                | 1,829,208 |         |     |
| 67       | 1     | 68    | 4,626  |        | 0.012770 |          |         | 1,245     |                | 1,743,339 |         |     |
| 68       | 1     | 67    | 4,631  |        | 0.014768 |          |         | 1,243     |                | 1,658,640 |         |     |
|          | 1     |       |        |        | 0.014468 |          |         |           |                |           |         |     |
| 69<br>70 |       | 85    | 4,444  |        |          |          | -       | 1,570     |                | 1,575,168 |         |     |
| 70       | 1     | 67    | 4,312  |        | 0.015538 |          |         | 1,253     |                | 1,493,084 |         |     |
| 71       | 1     | 75    | 4,090  |        | 0.018337 |          |         | 1,454     |                | 1,412,413 |         |     |
| 72       | 1     | 83    | 4,032  |        | 0.020585 |          |         | 1,601     |                | 1,333,095 |         |     |
| 73       | 1     | 92    | 3,644  |        | 0.025247 |          |         | 1,920     |                | 1,255,305 |         |     |
| 74       | 1     | 91    | 3,469  |        | 0.026232 |          |         | 1,944     |                | 1,179,275 |         |     |
| 75       | 1     | 83    | 3,355  | 0.500  | 0.024739 | 0.024437 | 73,126  | 1,787     | 72,232         | 1,105,178 | 15.1133 | 75  |
| 76       | 1     | 88    | 3,101  | 0.500  | 0.028378 | 0.027981 | 71,339  | 1,996     | 70,341         | 1,032,945 | 14.4794 | 76  |
| 77       | 1     | 93    | 2,924  |        | 0.031806 |          |         | 2,171     | 68,257         | 962,604   |         |     |
| 78       | 1     | 90    | 2,616  |        | 0.034404 |          |         | 2,272     | 66,036         | 894,347   |         |     |
| 79       | 1     | 87    | 2,504  |        | 0.034744 |          |         | 2,216     | 63,792         | 828,311   | 12.7629 |     |
| 80       | 1     | 88    | 2,347  |        | 0.037495 |          |         | 2,307     | 61,530         | 764,519   |         |     |
|          |       |       |        |        |          |          |         |           |                |           |         |     |
| 81       | 1     | 84    | 1,960  |        | 0.042857 |          |         | 2,533     | 59,110         | 702,989   |         |     |
| 82       | 1     | 83    | 1,807  |        | 0.045932 |          |         | 2,597     | 56,545         | 643,879   |         |     |
| 83       | 1     | 72    | 1,556  |        | 0.046272 |          |         | 2,499     | 53,997         | 587,335   |         |     |
| 84       | 1     | 76    | 1,373  |        | 0.055353 |          |         | 2,841     | 51,327         | 533,338   |         |     |
| 85       | 1     | 76    | 1,224  | 0.500  | 0.062092 | 0.060222 | 49,906  | 3,005     | 48,404         | 482,011   | 9.6583  | 85  |
| 86       | 1     | 69    | 1,027  | 0.500  | 0.067186 | 0.065002 |         | 3,049     | 45,377         | 433,607   | 9.2452  |     |
| 87       | 1     | 61    | 819    |        | 0.074481 |          |         | 3,149     | 42,278         | 388,231   | 8.8532  |     |
|          | 1     | 56    | 627    |        | 0.089314 |          |         | 3,480     | 38,963         | 345,953   |         |     |
| 88       |       | 50    | J-/    | 0.500  |          |          |         |           |                |           |         |     |
| 88<br>89 | 1     | 50    | 577    | 0.500  | 0.086655 | 0.083056 | 37,223  | 3,092     | 35,678         | 306,990   | 8.2472  | 89  |

# **Appendix Table 4a:** Partial Cohort Life Table for Black (non-Hispanic) Males (1923-24 Birth Cohort, Conditional on Survival to Age 60, NLMS File 11)

| Age | n | nDx | nPYx | nax | nMx      | SE(nMx)  | nqx      | SE(nqx)  | lx     | SE(Ix) | ndx  | nLx   |
|-----|---|-----|------|-----|----------|----------|----------|----------|--------|--------|------|-------|
|     |   |     |      |     |          |          |          |          |        |        |      |       |
| 60  | 1 | 9   | 446  | 0.5 | 0.020179 | 0.006659 | 0.019978 | 0.006592 | 100000 | 0      | 1998 | 99001 |
| 61  | 1 | 17  | 437  | 0.5 | 0.038902 | 0.009253 | 0.038159 | 0.009077 | 98002  | 659    | 3740 | 96132 |
| 62  | 1 | 18  | 420  | 0.5 | 0.042857 | 0.009887 | 0.041958 | 0.00968  | 94263  | 1092   | 3955 | 92285 |
| 63  | 1 | 13  | 402  | 0.5 | 0.032338 | 0.008825 | 0.031824 | 0.008685 | 90307  | 1388   | 2874 | 88870 |
| 64  | 1 | 12  | 389  | 0.5 | 0.030848 | 0.008769 | 0.03038  | 0.008636 | 87434  | 1556   | 2656 | 86105 |
| 65  | 1 | 13  | 377  | 0.5 | 0.034483 | 0.0094   | 0.033898 | 0.009241 | 84777  | 1687   | 2874 | 83340 |
| 66  | 1 | 12  | 364  | 0.5 | 0.032967 | 0.009361 | 0.032432 | 0.009209 | 81904  | 1809   | 2656 | 80575 |
| 67  | 1 | 16  | 352  | 0.5 | 0.045455 | 0.011108 | 0.044444 | 0.010861 | 79247  | 1906   | 3522 | 77486 |
| 68  | 1 | 12  | 336  | 0.5 | 0.035714 | 0.010127 | 0.035088 | 0.00995  | 75725  | 2014   | 2657 | 74397 |
| 69  | 1 | 14  | 324  | 0.5 | 0.04321  | 0.011301 | 0.042296 | 0.011062 | 73068  | 2084   | 3090 | 71523 |
| 70  | 1 | 15  | 310  | 0.5 | 0.048387 | 0.012195 | 0.047244 | 0.011907 | 69978  | 2154   | 3306 | 68325 |

# **Appendix Table 4b:** Partial Cohort Life Table for White (non-Hispanic) Males (1923-24 Birth Cohort, Conditional on Survival to Age 60, NLMS File 11)

| Age | n | nDx | nPYx | nax | nMx      | SE(nMx)  | nqx      | SE(nqx)  | lx     | SE(lx) | ndx  | nLx   |
|-----|---|-----|------|-----|----------|----------|----------|----------|--------|--------|------|-------|
|     |   |     |      |     |          |          |          |          |        |        |      |       |
| 60  | 1 | 83  | 4825 | 0.5 | 0.017202 | 0.001872 | 0.017055 | 0.001856 | 100000 | 0      | 1706 | 99147 |
| 61  | 1 | 86  | 4742 | 0.5 | 0.018136 | 0.001938 | 0.017973 | 0.001921 | 98294  | 186    | 1767 | 97411 |
| 62  | 1 | 66  | 4656 | 0.5 | 0.014175 | 0.001733 | 0.014075 | 0.00172  | 96528  | 262    | 1359 | 95848 |
| 63  | 1 | 76  | 4590 | 0.5 | 0.016558 | 0.001884 | 0.016422 | 0.001868 | 95169  | 307    | 1563 | 94388 |
| 64  | 1 | 110 | 4514 | 0.5 | 0.024369 | 0.002295 | 0.024075 | 0.002268 | 93606  | 351    | 2254 | 92480 |
| 65  | 1 | 105 | 4404 | 0.5 | 0.023842 | 0.002299 | 0.023561 | 0.002272 | 91353  | 403    | 2152 | 90277 |
| 66  | 1 | 114 | 4299 | 0.5 | 0.026518 | 0.002451 | 0.026171 | 0.002419 | 89200  | 445    | 2334 | 88033 |
| 67  | 1 | 122 | 4185 | 0.5 | 0.029152 | 0.002601 | 0.028733 | 0.002564 | 86866  | 484    | 2496 | 85618 |
| 68  | 1 | 105 | 4063 | 0.5 | 0.025843 | 0.00249  | 0.025513 | 0.002458 | 84370  | 520    | 2153 | 83294 |
| 69  | 1 | 109 | 3958 | 0.5 | 0.027539 | 0.002602 | 0.027165 | 0.002566 | 82217  | 548    | 2233 | 81101 |
| 70  | 1 | 105 | 3849 | 0.5 | 0.02728  | 0.002626 | 0.026913 | 0.002591 | 79984  | 573    | 2153 | 78908 |


# **Appendix Table 4c:** Partial Cohort Life Table for Black (non-Hispanic) Females (1923-24 Birth Cohort, Conditional on Survival to Age 60, NLMS File 11)

| Age | n | nDx | nPYx | nax | nMx      | SE(nMx)  | nqx      | SE(nqx)  | lx     | SE(Ix) | ndx  | nLx   |
|-----|---|-----|------|-----|----------|----------|----------|----------|--------|--------|------|-------|
|     |   |     |      |     |          |          |          |          |        |        |      |       |
| 60  | 1 | 6   | 567  | 0.5 | 0.010582 | 0.004297 | 0.010526 | 0.004275 | 100000 | 0      | 1053 | 99474 |
| 61  | 1 | 10  | 561  | 0.5 | 0.017825 | 0.005587 | 0.017668 | 0.005537 | 98947  | 427    | 1748 | 98073 |
| 62  | 1 | 11  | 551  | 0.5 | 0.019964 | 0.005959 | 0.019766 | 0.005901 | 97199  | 690    | 1921 | 96239 |
| 63  | 1 | 8   | 540  | 0.5 | 0.014815 | 0.005199 | 0.014706 | 0.005161 | 95278  | 887    | 1401 | 94577 |
| 64  | 1 | 5   | 532  | 0.5 | 0.009398 | 0.004183 | 0.009355 | 0.004164 | 93877  | 1003   | 878  | 93438 |
| 65  | 1 | 12  | 527  | 0.5 | 0.02277  | 0.006499 | 0.022514 | 0.006426 | 92999  | 1068   | 2094 | 91952 |
| 66  | 1 | 13  | 515  | 0.5 | 0.025243 | 0.006913 | 0.024928 | 0.006827 | 90905  | 1203   | 2266 | 89772 |
| 67  | 1 | 11  | 502  | 0.5 | 0.021912 | 0.006535 | 0.021675 | 0.006464 | 88639  | 1327   | 1921 | 87678 |
| 68  | 1 | 11  | 491  | 0.5 | 0.022403 | 0.00668  | 0.022155 | 0.006606 | 86717  | 1419   | 1921 | 85757 |
| 69  | 1 | 11  | 480  | 0.5 | 0.022917 | 0.006831 | 0.022657 | 0.006754 | 84796  | 1501   | 1921 | 83836 |
| 70  | 1 | 13  | 469  | 0.5 | 0.027719 | 0.007582 | 0.02734  | 0.007478 | 82875  | 1575   | 2266 | 81742 |

# **Appendix Table 4d:** Partial Cohort Life Table for White (non-Hispanic) Females (1923-24 Birth Cohort, Conditional on Survival to Age 60, NLMS File 11)

| Age | n | nDx | nPYx | nax | nMx      | SE(nMx)  | nqx      | SE(nqx)  | lx     | SE(Ix) | ndx  | nLx   |
|-----|---|-----|------|-----|----------|----------|----------|----------|--------|--------|------|-------|
|     |   |     |      |     |          |          |          |          |        |        |      |       |
| 60  | 1 | 44  | 5498 | 0.5 | 0.008003 | 0.001202 | 0.007971 | 0.001197 | 100000 | 0      | 797  | 99601 |
| 61  | 1 | 57  | 5454 | 0.5 | 0.010451 | 0.001377 | 0.010397 | 0.00137  | 99203  | 120    | 1031 | 98687 |
| 62  | 1 | 58  | 5397 | 0.5 | 0.010747 | 0.001404 | 0.010689 | 0.001396 | 98172  | 180    | 1049 | 97647 |
| 63  | 1 | 61  | 5339 | 0.5 | 0.011425 | 0.001455 | 0.01136  | 0.001446 | 97122  | 225    | 1103 | 96570 |
| 64  | 1 | 59  | 5278 | 0.5 | 0.011178 | 0.001447 | 0.011116 | 0.001439 | 96019  | 263    | 1067 | 95485 |
| 65  | 1 | 60  | 5219 | 0.5 | 0.011496 | 0.001476 | 0.011431 | 0.001467 | 94951  | 295    | 1085 | 94409 |
| 66  | 1 | 76  | 5159 | 0.5 | 0.014732 | 0.001677 | 0.014624 | 0.001665 | 93866  | 323    | 1373 | 93180 |
| 67  | 1 | 74  | 5083 | 0.5 | 0.014558 | 0.00168  | 0.014453 | 0.001668 | 92493  | 354    | 1337 | 91825 |
| 68  | 1 | 82  | 5009 | 0.5 | 0.016371 | 0.001793 | 0.016238 | 0.001779 | 91157  | 382    | 1480 | 90416 |
| 69  | 1 | 88  | 4927 | 0.5 | 0.017861 | 0.001887 | 0.017703 | 0.00187  | 89676  | 409    | 1588 | 88883 |
| 70  | 1 | 118 | 4839 | 0.5 | 0.024385 | 0.002218 | 0.024091 | 0.002191 | 88089  | 435    | 2122 | 87028 |

**Appendix Figure 1.** Age-Specific Mortality, NLMS vs, Human Mortality Database (HMD) (Birth Cohort 1923-24, Conditional on Survival to Age 60)

