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Abstract 

Life history data are generally incomplete. Respondents enter observation late (left 

truncation) or leave early (right censoring). In survival analysis, these limitations are 

considered in the estimation of hazard rates. Rates are estimated from data on 

different respondents with different observation periods (observation windows). In 

multistate modeling, transition rates also integrate information on different 

individuals.  

 

By combining data from different but similar individuals, life histories can be 

modeled. The life history that results is a synthetic life history.  It is not observed and 

it does not tell anything about a particular individual. It tells something about the 

population the individual is part of. A synthetic biography summarizes information on 

several individuals. The collective experience is summarized in transition rates. The 

individual is a fictitious individual, referred to as virtual individual or statistical 

individual (Courgeau, 2012). A population of virtual individuals is a virtual 

population. The life history of such an individual is not directly observed but is an 

outcome of a probability model, the parameters of which are estimated from empirical 

data. Life histories are generated from models using microsimulation in continuous 

time. 

 

Several life course indicators may be derived from transition rates. They include 

probabilities of significant transitions, probabilities of having reached particular 

stages in life, expected durations of stages of life, and expected ages at significant 

transitions.  

 

The methods are illustrated using data from the German Life History Survey (GLHS). 

It is a subsample also used by Blossfeld and Rohwer (2002) in their book Techniques 

of Event History Modeling. In the paper, references are made to R packages for 

multistate modelling and analysis, in particular mvna, etm, msm, mstate, ELECT and 

Biograph.  
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Life histories: real and synthetic 
 

1. Introduction 

 

Life history data are generally incomplete. Usually, they do not cover for each 

individual in the study the entire life span or the life segment of interest. If data are 

collected retrospectively, observation ends at interview date and no information is 

available on events and experiences after the date. Data collected prospectively are 

incomplete because events and other experiences are recorded during a limited period 

of time only. To deal with data limitations, models are introduced. The model that is 

considered in this chapter describes life histories. The model is based on the premise 

that life histories are realizations of a continuous-time Markov process. A Markov 

process is a stochastic process that describes a system with multiple states and 

transitions between the states. The time at which a transition occurs is random but the 

distribution of the time to transition is known. In the continuous-time Markov 

process, the transition time has an exponential distribution. The rate of transition out 

of the current state (exit rate) is the parameter of the exponential distribution. It 

depends on the current state only and is independent of the history of the stochastic 

process. In a system with multiple states, an individual who leaves the current state 

may enter one of several states. In competing risks models, states in the state space 

are viewed as competing destinations and transition rates are destination-specific. The 

Markov process is a first-order process: the destination state depends on the current 

state only and is independent of states occupied previously. 

 

The Markov model predicts
1
 the probability that an individual of a given age occupies 

a given state. The Markov model may also be used to predict the number of 

transitions during a given interval and the number of times an individual occupies a 

given state. The stochastic process that describes the transition counts or the state 

occupancy counts is a Markov counting process (see below). It belongs to the class of 

counting processes. The most elementary counting process is the Poisson process. It is 

a stochastic process that counts the number of transitions without considering origin 

and destination states. In a Poisson process, the time between two consecutive 

transitions has an exponential distribution.   

 

The parameters of the Markov model are estimated from data. By pooling data on 

different but similar individuals, models can be estimated that describe the entire life 

histories. The life history that is based on pooled data is a synthetic life history.  It is a 

virtual life history; it is not observed. It does not say anything about a specific 

individual in a sample but tells something about the sample the individual is part of. A 

synthetic biography summarizes information on several individuals. It is the life 

course that would result if an individual lives a life prescribed by the collective 

experience of similar individuals under observation. The collective experience is 

summarized in transition rates. These rates play a key role in generating synthetic 

biographies. Transition rates are estimated from life history data and used to generate 

synthetic biographies. Maximum likelihood estimates of transition rates are used to 

                                                 
1
 Prediction is used in the statistical meaning. Prediction is a statement about an outcome. A model is 

often used to predict an outcome, e.g. an event that occurs in a population or that is experienced by an 

individual in a population. The parameter(s) of the model are estimated from observations on a 

selection of individuals. Prediction is part of statistical inference. It should not be confused with 

forecasting.  
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generate expected life histories and expected values of life history indicators. 

Individual life histories are distributed randomly around an expected life path. 

Microsimulation is used to generate individual life histories from empirical transition 

rates. 

 

In life history analysis and life history modelling, age is the main time scale. Age is a 

proxy for stage of life. Other useful time scales are calendar time and time since a 

reference event. Birth, marriage, labour market entry, and entry into observation are 

examples of reference events. The standard approach in survival analysis is to use 

time since the baseline survey or (first) entry into the study (time-on-study). Time-on-

study has no explanatory power, which is acceptable if time dependence of a 

transition rate is not of interest, such as in the Cox model with free baseline hazard. 

Korn et al. (1997) argue that time-on-study is not appropriate for predicting transition 

rates. They recommend age as the time scale (see also Pencina et al., 2007 and Meira-

Machado et al., 2009). Rates of transition between states generally vary with age. The 

Markov process that accommodates changing rates is the time-inhomogeneous 

Markov process. The model of that process is discussed in this chapter.  

 

To characterize life histories, a set of indicators is usually used, including state 

occupancies at consecutive ages, durations of stages of life, and ages at significant 

transitions. The indicators are sometimes combined in a table, known as the multistate 

life table. The multistate life table originated in demography (Rogers, 1975), but it is 

currently used across disciplines. The model that produces the values of the indicators 

summarized in the multistate life table is the Markov process model.  

 

Two examples may clarify the concept of synthetic biography. The first relates to the 

length of life and the second to marriage and fertility. 

a. Suppose we are interested in the life expectancy of a 60-year old. The 

empirical evidence consists of a 10-year follow-up of 1000 individuals aged 

60 and over. At the beginning of the observation period, some individuals are 

relatively young (60 years, say) while others are already old (over 90, say). 

During the observation period of 10 years, some individuals die. The oldest 

old are more likely to die than other individuals under observation. To 

determine the expected remaining lifetime for a 60-year old, one could 

calculate the mean age at death of those who die during the observation 

interval. The observed mean age at death provides a wrong answer, however. 

It depends on the age composition of the population under observation. If the 

group under observation consists of many old persons, the mean age at death 

will be higher than for a group that consists mainly of persons in their sixties 

and seventies. To remove the effect of the age composition, death rates are 

calculated by age. The distribution of ages at death is obtained by applying a 

piecewise exponential survival model, with parameters the age-specific 

mortality rates. The expected age at death is 60 plus the expected remaining 

lifetime or life expectancy. The life expectancy of a 60-year old is the number 

of years that the individual may expect to live if at each age over 60 he 

experiences the age-specific mortality rate estimated during the 10-year 

follow-up of 1000 individuals. At young ages, he experiences the mortality 

rates of individuals who were 60 recently. At older ages the mortality rates are 

from old persons who turned 60 many years ago. The life expectancy is 

adequate if the age-specific mortality rates do not vary in time.  
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b. The second illustration considers marriage and fertility. Suppose we want to 

know at what age women start marriage and at what duration of marriage they 

have their first child. It is not possible to follow all women until they have 

their first child since some will remain childless. Suppose the data are from a 

5-year follow-up survey of girls and women aged 15 to 35 at the onset of 

observation. At the end they are 20 to 40. During the follow-up, the age at 

marriage and the age at birth of the first child are recorded. At the start of 

observation, some individuals are already married. Other individuals remain 

unmarried during the entire period of observation. They may marry after 

observation is ended or they may not marry at all. To determine the age at 

marriage and the duration of marriage at time of birth of the first child, 

marriage and childbirth are described by a continuous-time Markov process 

with transition rates the empirical marriage rates and marital first birth rates. 

The model describes the marriage and first birth behaviour of hypothetical and 

identical individuals of age 15 assuming that at consecutive ages they 

experience the empirical rates of marriage and first birth. Transition rates may 

depend on covariates and other factors.  

 

This chapter consists of two parts. The first part (Section 2) is devoted to the 

estimation of transition rates from data. The second part (Sections 3 to 5) focuses on 

synthetic biographies. Section 3 shows how transition probabilities and state 

occupation probabilities are computed from transition rates. The computation of 

expected occupation times is covered in Section 4. The generation of synthetic life 

histories is discussed in Section 5. Section 6 is the conclusion.  

 

The methods presented in this chapter are illustrated using employment data from a 

subsample of 201 respondents of the German Life History Survey (GLHS) (see 

Chapter 1). Two states are distinguished: employed (Job) and not employed (Nojob). 

Transitions are from employed to not employed (JN) and from not employed to 

employed (NJ). Dates of transition are given in months; it is assumed that transitions 

occur at the beginning of a month. In the chapter, references are made to R packages 

for multistate modeling and analysis, in particular mvna (Allignol, 2012; Allignol et 

al., 2008), etm (Allignol, 2013; Allignol et al., 2011), msm (Jackson, 2011, 2013), 

mstate (Putter et al., 2012; de Wreede et al., 2010, 2011), dynpred (Putter, 2011), 

ELECT (van den Hout, 2013) and Biograph (Willekens, 2013).  

 

2. Transition rates 

 

Transition rates are the parameters of the Markov process that underlies the multistate 

life history model. In this section, two broad approaches for estimating transition rates 

are covered. Age, which is the time scale, is treated as a continuous variable. 

Transitions may occur at any age. Transition rates are estimated by relating transitions 

to exposures. In the first approach, transition rates may vary freely with age. The age 

profile is not constrained in any way. In the second approach, transition rates are 

restricted to follow an age profile described by a parametric model. The first approach 

is non-parametric; the second is parametric. The two approaches are covered by e.g. 

Aalen et al., (2008).  

 

In the non-parametric analysis of life history data, cumulative transition rates are 

estimated for ages at which transitions occur. Without any parametric assumptions, 
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the transition rate can be any nonnegative function, and this makes it difficult to 

estimate. The cumulative transition rate is easy to estimate. This is akin to estimating 

the cumulative distribution function, which is easier than estimating the density 

function (Aalen et al., 2008, p. 71). At ages at which transitions occur, the cumulative 

transition rate jumps to a higher value. Therefore, the function that describes 

cumulative transition rates is a step function. It implies that between observations the 

cumulative transition rate is the one estimated at the last observation. The shape of the 

function is entirely free, not influenced by an imposed age dependence. The 

cumulative transition rate is said to be empirical. In the second approach the age 

dependence is restricted to follow an imposed pattern. A convenient and simple 

restriction is a constant transition rate. If the transition rate is constant, the cumulative 

transition rate increases linearly with age and the survival function is exponential. The 

restriction of constant rate may be relaxed by keeping the rate constant within 

relatively narrow age intervals and let the rate vary freely between age intervals. 

Because of the imposed age dependence, there is no need to estimate the cumulative 

transition rate each age a transition occurs. It suffices to estimate the cumulative 

transition rate at the end of each age interval. The cumulative hazard function is not a 

step function. It is a piecewise-linear function: linear within age intervals with slopes 

varying between intervals. The two approaches differ but at the limit when the age 

interval becomes infinitesimally small, they coincide. The first approach is common 

in biostatistics, while the second is common in the life-table method of demography, 

epidemiology and actuarial science. Covariates may be introduced in each approach. 

The cumulative transition rates may be estimated at each level of covariate or a 

regression model may be used. A (piecewise) constant transition rate is only one of 

the many possible restrictions imposed on the age dependence of transition rates. In 

demography, biostatistics, epidemiology and other fields, a large number of models 

are used to describe age dependencies of rates. These models are beyond the scope of 

this chapter. 

 

A few software packages in R implement the non-parametric method. They include 

mvna and mstate. The packages eha, msm and Biograph implement the parametric 

method, more particularly the piecewise-constant transition rate model: the transition 

rate varies freely between age intervals and is constant within age intervals.  

 

Transition rates are estimated by relating transitions to exposures. At a given age, the 

rate of transition is estimated by dividing the number of transition and the risk set, 

which is the population under observation and at risk just before a transition occurs. 

In multistate modelling, a risk set is the number of individuals under observation and 

occupying a given state. That basic principle allows complex observation schemes. 

Individuals may be at risk but not under observation. It is not practical to track every 

individual from birth to death to record occurrences and monitor risk sets and periods 

at risk. When the period of observation does not cover the entire life span, 

observations are incomplete. Individuals may enter and leave the population at risk 

during the observation period. They may leave the population at risk because the 

transition of interest occurs or another, unrelated, transition removes them from the 

population at risk. Individuals who leave the population at risk may return later and be 

at risk again. Counting transitions and tracking exposures necessarily take place 

during periods of observation. Transitions and exposures outside the observation 

period are not recorded. The non-occurrence of a transition during a period of 

observation to persons at risk of that transition is however useful information that 
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should not be omitted. The proportion of individuals under observation and at risk 

that experiences a transition is an estimator of the likelihood of a transition. The 

proportion that does not experience a transition is an estimator of the survival 

probability.  

 

Dates of transition are usually measured in the Gregorian calendar. For reasons of 

computation, calendar dates are often converted into Julian dates, which are days 

since a reference date. Sometimes, calendar months are coded as number of months 

since a reference month. The Century Month Code (CMC) is a coding scheme with 

reference month January 1900. The reference month is month 1. In life history 

analysis, dates are often replaced by ages. In this chapter, dates (in CMC) and ages 

age used, but age is the main time scale. Hence, most of the time reference is made to 

age. Transitions may occur at any time and age. Hence time at transition and age at 

transition are random variables. T will be used to denote time and age, and X will be 

used to denote age only.  A realization of T is t and a realization of X is x. Continuous 

time is approximated by dividing a period in very small time intervals. A small 

interval following time t is denoted by [t,t+dt), where dt is the length of the interval, [ 

means that t is not included in the interval and ) that t+dt is included. A small interval 

following age x is [x,x+dx). When is an interval small? An interval is considered 

small when at most one transition occurs in the interval.  

 

In the employment data used for illustrative purposes (GLHS), two states are 

distinguished (J and N) and two transitions: NJ and JN. In this chapter, transitions 

between jobs are not considered. Individuals in state N are at risk of the NJ transition 

and individuals in J are at risk of the JN transition. Labour-market entry (first jobs) 

is selected as onset of the observation. The original GLHS data include transitions 

between jobs and dates at transition are expressed in CMC. Two Biograph 

functions are used to prepare the desired data file from the original data. The 

function Remove.intrastate is used to remove transitions between jobs. The 

function ChangeObservationWindow.e is used to select observation periods 

between labour market entry and survey date. Table 2.1 shows the data for a 

selection of 10 respondents. Two variants are presented. The first shows calendar 

dates at transition. The second shows ages, except for the birth date, which is 

given in CMC. Calendar dates and ages are derived from CMC using Biograph’s 

date_b function.  
 

d <- Remove.intrastate(GLHS) 

dd <- ChangeObservationWindow.e (Bdata=d, 

    entrystate="J", 

    exitstate=NA) 

d3.a <- date_b (Bdata=dd, 

    selectday=1, 

    format.out="age") 

 

The 10 individuals experience 33 episodes (20 job episodes and 13 episodes without a 

job). They experience 23 transitions during the observation period (13 JN transitions 

and 10 NJ transitions). Individual 2 is born in September 1929 and enters the labour 

market (first job) in May 1949 at age 19. She leaves the first job in May 1974 at age 

44 and remains without a paid job until the end of the observation period in 

November 1981, when she is age 52. Individuals 1,5 and 7 are employed throughout 
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the observation period. They move between jobs but they do not experience a period 

without a job. Individuals 3, 4, 6, 8, 9 and 10 have several jobs, separated by periods 

without a job. Observation periods differ between individuals. In this chapter, we 

estimate transition rates for the JN and NJ transitions, transition probabilities, state 

occupation probabilities and expected state occupation times for the subsample of 201 

respondents. For illustrative purpose, a selection of the 10 respondents shown in 

Table 2.1 is also used. The focus is on the method and not on the application.  

 

Table 2.1 Subsample of German Life History Survey (GLHS) 
a. Calendar dates 

    ID  born start   end    sex  path   Tr1   Tr2   Tr3   Tr4 

1    1 Mar29 Mar46 Nov81   Male     J  <NA>  <NA>  <NA>  <NA> 

2    2 Sep29 May49 Nov81 Female    JN May74  <NA>  <NA>  <NA> 

3   67 Dec39 Feb55 Nov81 Female  JNJN Sep58 Aug70 Mar80  <NA> 

4   76 Jun51 Oct69 Nov81   Male JNJNJ Apr70 May72 Jan76 Apr76 

5   82 Jun51 Aug74 Nov81 Female     J  <NA>  <NA>  <NA>  <NA> 

6   96 Feb39 Apr57 Nov81 Female JNJNJ Apr62 Apr64 Feb65 Nov68 

7   99 May40 Sep58 Nov81   Male     J  <NA>  <NA>  <NA>  <NA> 

8  180 Aug40 Aug54 Nov81   Male JNJNJ Apr56 Apr59 Jul61 Jan63 

9  200 Nov50 Sep68 Dec81   Male JNJNJ Apr70 Jan72 Jan74 Jan79 

10 208 May40 Jul59 Nov81 Female  JNJN May61 Nov61 Dec62  <NA> 

 

b. Ages 

    ID born  start    end    sex  path    Tr1    Tr2    Tr3    Tr4 

1    1  351 17.000 52.667   Male     J     NA     NA     NA     NA 

2    2  357 19.667 52.167 Female    JN 44.667     NA     NA     NA 

3   67  480 15.167 41.917 Female  JNJN 18.750 30.667 40.250     NA 

4   76  618 18.333 30.417   Male JNJNJ 18.833 20.917 24.583 24.833 

5   82  618 23.167 30.417 Female     J     NA     NA     NA     NA 

6   96  470 18.167 42.750 Female JNJNJ 23.167 25.167 26.000 29.750 

7   99  485 18.333 41.500   Male     J     NA     NA     NA     NA 

8  180  488 14.000 41.250   Male JNJNJ 15.667 18.667 20.917 22.417 

9  200  611 17.833 31.083   Male JNJNJ 19.417 21.167 23.167 28.167 

10 208  485 19.167 41.500 Female  JNJN 21.000 21.500 22.583     NA 

 

Individual 4 (with ID 76) will be singled out for a detailed description. He gets his 

first job in October 1969 at age18 and remains employed until April 1970. He is not 

employed for about two years, until he gets another job in May 1972. From January to 

April 1976 he experiences another period without employment. At the end of the 

observation, i.e. at survey date, the person is 30 years of age and employed. The 

employment career is JNJNJ. The lifeline is shown in Figure 2.1. The figure is a Lexis 

diagram, which is a diagram with calendar time on the x-axis and age on the y-axis. 

The transitions are displayed, as well as the job and no-job episodes. The Lexis 

diagram is discussed in detail in Chapter 5. During the observation period, the 

individual experiences the JN transition two times, in April 1970 at age 18 and in 

January 1976 at age 24. Transitions are assumed to occur at the beginning of a month. 

From 1
st
 October 1969 to 31

st
 March 1970 he is at risk of the first occurrence of the 

JN transition and from 1
st
 May 1972 to 31

st
 December 1975 he is at risk of the second 

occurrence. From 1
st
 April 1976 he is at risk of a third occurrence but does not 

experience the JN transition before the end of the observation on 1
st
 November 1981. 

The individual experiences three job episodes, two end in a JN transition and one ends 

because observation is terminated (censored). In addition, the respondent experiences 

two episodes without a job. They end with a new job.  
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Figure 2.1 Employment career of respondent with ID 76 

 

 
 

 

The estimation of transition rates involves counting transitions and persons at risk. Let 

k denote an individual. Transitions are denoted by origin state and destination state. 

The number of states is I and any two states are denoted by i and j. Let kNij(t1,t2) 

denote the number of (i,j)-transitions individual k experiences during a period of 

observation from t1 to t2. Without loss of generality, in this section I assume that t1=0 

and represent t2 by t. The observation interval is therefore from 0 to t. The variable 

kNij(0,t) is denoted by kNij(t). Data on numbers of transitions are count data. 

Transition counts cannot be predicted with certainty, hence kNij(t) is a random 

variable. The distribution of transition counts is described by a stochastic process 

model. A widely used model is the Poisson process model, where changes (‘jumps’) 

occur randomly and are independent of each other (Çinlar, 1975). The sequence of 

random variables {kNij(t); t0} is a random process, known as a counting process 

(Aalen et al., 2008, p. 25). The counting process is a continuous process. The 

increment in kNij(t) during the small interval between t and t+dt is denoted by dkNij(t). 

It is a binary variable with possible values 0 (no transition) and 1 (transition). 
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Individual counting processes are aggregated to obtain the aggregated process: 

, where K is the number of individuals in a (sample) population. 

If dt is sufficiently small to make the counting process absolutely continuous, at most 

one transition occurs in the interval dt.  

 

A main issue in survival analysis, and in multistate modelling in particular, is to 

determine who is at risk or exposed at time (age) t and who is not. Individuals may 

experience a transition between t and t+dt if and only if they are at risk at t, i.e. just 

before the interval [t,t+dt). If individual i is at risk at t, he/she is at risk during the 

infinitesimally small interval from t to t+dt. To be at risk of the (i,j)-transition, an 

individual should be in state i. Let kYi(t) be a binary variable, which takes the value of 

1 if individual k is in state i at t and 0 if the individual is not. The binary random 

variable kYi(t) indicates the exposure status. The number of individuals in state i just 

before t, and at risk of the (i,j)-transition, is . It is the risk set. The 

sequence of risk sets{Yi(t), t0}  is the at risk process or exposure process. The risk 

set in state i at time (age) t, Yi(t), changes when an individuals enters state i or leaves 

the state, and when the observation starts or ends. In many studies, Yi(t) is large 

relative to the numbers of (i,j)-transitions. That empirical observation will be used for 

estimating the variance of the transition rate.  

 

During the observation period from 0 to t, individual k is at risk of experiencing the 

(i,j)-transition during the time (age) segments he occupies state i. The state occupation 

time measures the duration at risk. It is . The total duration at risk 

may be spread over multiple ‘at risk’ episodes. This approach, in which a counting 

process and an at risk process are distinguished, is known as the counting process 

approach to the study of life histories and event histories. The approach is very 

flexible. It allows late entry, exit and re-entry in state i during the observation period.  

 

The counting process is a random process. It can be modelled by a Poisson process. 

The parameter of the model is the transition rate. The transition rate in the small time 

(age) interval [t,t+dt) is referred to as the instantaneous transition rate and is denoted 

by kij(t). The counting process approach to the Poisson process describes the 

intensity of the process in terms of the instantaneous transition rate and exposure 

status. It adds exposure status to the conventional description of the Poisson process 

in probability theory. Aalen et al. (2008) write the intensity at t as the product of the 

instantaneous transition rate and the indicator function kYi(t), which is equal to 1 if 

individual k is at risk just before t and 0 otherwise: . The 

intensity function is the transition rate function weighted by the exposure status. If 

individual k is not at risk at t, the intensity is zero although the transition rate may be 

positive. The product kij(t)dt is the probability that individual k experiences the (i,j)-

transition during the small time (age) interval to to t+dt, provided that just prior to the 

interval k is at risk of the (i,j)-transition, i.e. is in state i. It is the product of the 

intensity and the length of the interval. The probability is conditioned on being at risk. 

In survival analysis, that condition is usually imposed by the statement ‘provided that 

the event has not occurred yet’. That condition applies in case of a single event, 

because an individual is at risk as long as (1) the event has not occurred yet and (2) 

the individual is under observation. In the case of repeatable transitions or different 
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types of transitions, an individual may be under observation but not at risk. In the 

example of employment, an individual in state N is under observation but not at risk 

of the JN transition.  

 

If at most one transition occurs during the interval dt, the probability of occurrence 

may be expressed in different but equivalent ways. It is the probability that kNij(t) 

changes to kNij(t)+1; the probability that the transition occurs at t, Pr(d kNij (t)=1); and 

the probability that the transition time (age) kTij is in the [t,t+dt) interval: Pr(t  kTij < 

t+dt). The probability that dkNij(t) is one, Pr(d kNij (t)=1), is equal to the expected 

value of dkNij(t), hence kij(t) dt = E[dkNij(t)]. Note that kNij(t) and its increment 

dkNij(t) are observations, whereas kij(t) is a model of the increment dkNij(t) (Poisson 

process model that satisfies the two conditions listed above). kij(t) is the intensity 

process of the counting process kNij(t).  

 

If individuals are independent of each other, the intensity process of the aggregated 

counting process Nij(t) is . If in addition all individuals are 

assumed to have the same hazard rate, i.e. for all k, then the survival 

times are independent and identically distributed. The aggregate intensity process may 

be written as: , where Yi(t) is 

the number of individuals in state i just before t. It is the population at risk. The model 

 is the multiplicative intensity model for a counting process (Aalen 

et al., 2008, p. 34). In the multiplicative intensity model, the at risk process Yi(t) does 

not depend on unknown parameters (Aalen et al., 2008, p. 77). That condition is 

satisfied if the population at risk is large relative to the number of transitions. The 

same condition was introduced by Holford (1980) and Laird and Olivier (1981) in the 

context of estimating (piecewise-constant) transition rates with log-linear models. The 

transition rates ij(t) are key model parameters and a main aim of statistical analysis is 

to determine how they vary over time (age) and depend on covariates.  

 

The observed increment dNij(t) of the counting process Nij(t) generally differs from 

the model estimate ij(t)dt because observations do not meet the conditions imposed 

by the Poisson process. Aalen et al. (2008, p. 27) refer to the difference as noise and 

to the probability of a transition during the interval dt as signal. The noise cumulated 

up to time (age) t is the martingale Mij(t) and dMij(t) is the increment in noise during 

the small interval following t: dMij(t) = dNij(t) - ij(t) dt. The intensity process and the 

noise process are stochastic processes, whereas Nij(t) represents observations. Note 

that ,  and , where ij(t) is 

the cumulative intensity process, that is the expected number of transitions up to t, 

predicted by the Poisson model. The martingale is the difference between the 

counting process and the cumulative intensity process. It can be interpreted as 

cumulative noise. The intensity process is central to the statistical modelling of event 

occurrences and transitions between states. Note that the intensity process depends on 

the transition rate and the at risk process.  

 

A frequently used measure in multistate modelling is the cumulative hazard 

, where  is equal to the increment in the cumulative hazard 
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during an infinitesimally small interval. In case of a continuous process, 

. The reason for using the cumulative hazard is given above. The 

transition rates ij(t) and the cumulative transition rates Aij(t) are estimated from the 

data. The estimation method is determined by the assumed underlying stochastic 

process. In this chapter, two methods are described. In the first method, no 

assumption is made about the process. The method is knows as the non-parametric 

method, because of the absence of a parametric model that described the time (age) 

dependence of transition rates. The second method assumes that transition rates are 

(piecewise) constant. As a consequence, the duration to the next transition and the 

time between two consecutive transitions follow a (piecewise) exponential 

distribution. In the remainder of this chapter, I use age as time scale. 

 

a. Non-parametric method 

 

Recall that Nij(t) is the number of (i,j)-transitions experienced by individuals in the 

(sample) population during the observation interval from 0 to t and Tij is the age of an 

(i,j)-transition. For the estimation of empirical transition rates (non-parametric), 

transitions are ordered by age of occurrence. Let  denote the age of the n-th 

occurrence of the (i,j)-transition experienced in the (sample) population. The number 

of individuals at risk just before  is . Consider the age interval [t,t+dt). If in a 

population no event occurs in the interval, the natural estimate of  is zero. If 

a transition is recorded during the interval, the natural estimate is 1 divided by the 

number of individuals at risk, that is 1/Yi(t) or the proportion of individuals at risk 

that experiences a transition. Aggregating these contributions over all age intervals at 

which transitions occur, up to age t, gives the estimator  of Aij(t). A natural 

estimator of the cumulative transition rate at age t is , where 

numerator and denominator are aggregations over all individuals. If transition ages 

are , then the estimator is , where  is the age at the n-th 

occurrence of the (i,j)-transition. The estimator is known as the Nelson-Aalen 

estimator. The estimator was initially developed by Nelson and extended to event 

history models and Markov processes by Aalen, who adopted a counting process 

formulation (see Aalen et al., 2008, pp. 70ff). The Nelson-Aalen estimator 

corresponds to the cumulative hazard of a discrete distribution, with all its probability 

mass concentrated at the observed ages at transition. The matrix  is a matrix of 

step functions with jumps at ages at transition. 

 

The variance of the Nelson-Aalen estimator is  (Aalen 

variance). The variance increases with t. The increment is . In 

large samples, the Nelson-Aalen estimator at age t is approximately normally 

distributed. Therefore the 95 percent confidence interval is . If the 

sample size is small, the approximation to the normal distribution is improved by 

using a log-transformation giving the confidence interval  
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(Aalen et al., 2008, p. 72).  

 

Consider the employment careers of the 10 individuals, shown in Table 2.1. To track 

individuals at risk, ages at entry into observation and exit from observation, and ages 

at transition should be ordered. Individual 8 enters observation at age 14.00, followed 

by individual 3 at age 15.16. The first transition occurs at age 15.67 when individual 8 

enters a period without a job. At that age, 2 individuals are at risk of the JN transition 

(3 and 8). The Nelson-Aalen estimator of the cumulative transition rate at that age is 

½. The next event is at age 17.00 when individual 1 enters observation. Just before 

that age, individual 3 is at risk in J and individual 8 in N. At age 17.00, individual 1 

joins 3 in J. The next event is at age 17.83 when individual 9 enters observation. 

When individual 6 enters observation at age 18.17, three individuals are in J and one 

in N. Individuals 4 and 7 enter observation at age 18.33. At age 18.67, individual 8 

enters J again. Just before that age, he is the only person in N and at risk of the NJ 

transition, while 6 individuals are in J. Hence the estimator of the hazard is 1. The 

next event is at age 18.75,when individual 3 leaves J and enters a period without a 

job. At that age 7 individuals are in J and at risk of the JN transition (1,3,4,6,7,8,9). 

The cumulative JN transition rate 1/2 +1/7=0.64. The Aalen variance is (1/2)
2
 + (1/7)

 

2
 =0.270. At that age, three individuals have not yet entered observation and do not 

contribute to the cumulative hazard estimation (2,5 and 10). The cumulative transition 

rate increases to age 44.67 when individual 3 enters a period without a job. At that 

age, the cumulative transition rate is 2.696 and the Aalen variance is 0.764. Table 2.2 

shows the Nelson-Aalen estimator based on data of the 10 respondents. The columns 

are: (1) age at entry into observation, exit from observation or transition, (2) the 

population at risk just prior to the transition (nrisk), (3) occurrence of a transition 

(nevent), (4) censoring (ncens), (5) the Nelson-Aalen estimator of the cumulative 

transition rate (cumhaz) at the indicated age, (6) the Aalen estimator of the variance 

(var)and (7) increment in the cumulative hazard (delta). The information is 

shown each time a transition occurs or a respondent enters or leaves observation. The 

number of events is less than the number of entries (10) + the number of exits (10) + 

the number of JN transitions (13) + the number of NJ transitions (10), because 

individuals 3 and 7 enter observation at the same time, individual 5 enters observation 

when individuals 6 and 9 experience a JN transition, and individuals 4 and 5 leave 

observation at the same age, as do individuals 7 and 10. The table is produced by the 

mvna function of the mvna package. The last column is produced by the etm 

function of the etm package (see below). The object d.10 is the Biograph object for a 

selection of 10 respondents and D$D is an object with data of 10 respondents in mvna 

format.  The following code is used: 

 
# Select 10 respondents and create Biograph object 

idd <- c(1,2,67,76,82,96,99,180,200,208) 

d.10 <- d3.a[d3.a$ID%in%idd,] 

D<- Biograph.mvna (d.10) 

library (mvna) 

library (etm) 

tra <- matrix(ncol=2,nrow=2,FALSE) 

tra[1, 2] <- TRUE 

tra[2,1] <- TRUE 

na <- mvna(data=D$D,c("J","N"),tra,"cens") 
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etm.0 <- etm(data=D$D,c("J","N"),tra,"cens",s=0) 

 

gg.1 <- data.frame ( 

  round(na$"J N"$time,4), 

na$n.risk[,1], 

unname(aperm(na$n.event,c(3,2,1))[,2,1]), 

na$n.cens[,1], 

round(na$"J N"$na,4),  

round(na$"J N"$var.aalen,3), 

round(aperm (etm.0$delta.na,c(3,2,1))[,2,1],4)) 

dimnames (gg.1) <- list 

(1:37,c("age","nrisk","nevent","ncens","cumhaz","var

","delta")) 

gg.2 <- data.frame ( 

round(na$"N J"$time,4), 

na$n.risk[,2][na$time %in% na$"N J"$time], 

unname(aperm(na$n.event,c(3,2,1))[,1,2])[na$time 

%in% na$"N J"$time], 

na$n.cens[,2][na$time %in% na$"N J"$time], 

round(na$"N J"$na,4),  

round(na$"N J"$var.aalen,3), 

round(aperm 

(etm.0$delta.na,c(3,2,1))[,1,2][na$time %in% 

na$"N J"$time],4)) 

dimnames (gg.2) <- list 

(1:nrow(gg.2),c("age","nrisk","nevent","ncens","cumh

az","var","delta")) 

 

The 10 respondents enter observation at ages 14.00 (ID 180), 15.67 (ID 67), 17.00 (ID 

1), 17.83 (ID 200), 18.17 (ID 96), 18.83 (ID 99), 19.17 (ID 208), 19.67 (ID 2) and 

23.17 (ID 82) (see Table 2.1). They experience 13 JN transitions and 10 NJ 

transitions. At time of survey, 7 respondents had a job and 3 were without a job. The 

youngest age at job exit is 15.67 years (ID 180). The youngest age at survey is 30.42 

(ID 76 and 82) and the highest is 52.67 (ID 1). Two respondents are 41.50 years at 

survey date, one (ID 99) has a job and one (ID 208) is without a job.  
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Table 2.2 Nelson-Aalen estimator and Aalen variance of cumulative transition rates. 

GLHS, subsample of 10 respondents.   
Transition JN 

       age nrisk nevent ncens cumhaz   var  delta 

1  14.0000     1      0     0 0.0000 0.000 0.0000 

2  15.1667     1      0     0 0.0000 0.000 0.0000 

3  15.6667     2      1     0 0.5000 0.250 0.5000 

4  17.0000     1      0     0 0.5000 0.250 0.0000 

5  17.8333     2      0     0 0.5000 0.250 0.0000 

6  18.1667     3      0     0 0.5000 0.250 0.0000 

7  18.3333     4      0     0 0.5000 0.250 0.0000 

8  18.6667     6      0     0 0.5000 0.250 0.0000 

9  18.7500     7      1     0 0.6429 0.270 0.1429 

10 18.8333     6      1     0 0.8095 0.298 0.1667 

11 19.1667     5      0     0 0.8095 0.298 0.0000 

12 19.4167     6      1     0 0.9762 0.326 0.1667 

13 19.6667     5      0     0 0.9762 0.326 0.0000 

14 20.9167     6      1     0 1.1429 0.354 0.1667 

15 21.0000     6      1     0 1.3095 0.382 0.1667 

16 21.1667     5      0     0 1.3095 0.382 0.0000 

17 21.5000     6      0     0 1.3095 0.382 0.0000 

18 22.4167     7      0     0 1.3095 0.382 0.0000 

19 22.5833     8      1     0 1.4345 0.397 0.1250 

20 23.1667     7      2     0 1.7202 0.438 0.2857 

21 24.5833     6      1     0 1.8869 0.466 0.1667 

22 24.8333     5      0     0 1.8869 0.466 0.0000 

23 25.1667     6      0     0 1.8869 0.466 0.0000 

24 26.0000     7      1     0 2.0298 0.486 0.1429 

25 28.1667     6      0     0 2.0298 0.486 0.0000 

26 29.7500     7      0     0 2.0298 0.486 0.0000 

27 30.4167     8      0     2 2.0298 0.486 0.0000 

28 30.6667     6      0     0 2.0298 0.486 0.0000 

29 31.0833     7      0     1 2.0298 0.486 0.0000 

30 40.2500     6      1     0 2.1964 0.514 0.1667 

31 41.2500     5      0     1 2.1964 0.514 0.0000 

32 41.5000     4      0     1 2.1964 0.514 0.0000 

33 41.9167     3      0     0 2.1964 0.514 0.0000 

34 42.7500     3      0     1 2.1964 0.514 0.0000 

35 44.6667     2      1     0 2.6964 0.764 0.5000 

36 52.1667     1      0     0 2.6964 0.764 0.0000 

37 52.6667     1      0     1 2.6964 0.764 0.0000 

 

Transition NJ 

       age nrisk nevent ncens cumhaz   var  delta 

1  17.0000     1      0     0 0.0000 0.000 0.0000 

2  17.8333     1      0     0 0.0000 0.000 0.0000 

3  18.1667     1      0     0 0.0000 0.000 0.0000 

4  18.3333     1      0     0 0.0000 0.000 0.0000 

5  18.6667     1      1     0 1.0000 1.000 1.0000 

6  18.8333     1      0     0 1.0000 1.000 0.0000 

7  19.1667     2      0     0 1.0000 1.000 0.0000 

8  19.4167     2      0     0 1.0000 1.000 0.0000 

9  19.6667     3      0     0 1.0000 1.000 0.0000 

10 20.9167     3      1     0 1.3333 1.111 0.3333 
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11 21.0000     3      0     0 1.3333 1.111 0.0000 

12 21.1667     4      1     0 1.5833 1.174 0.2500 

13 21.5000     3      1     0 1.9167 1.285 0.3333 

14 22.4167     2      1     0 2.4167 1.535 0.5000 

15 22.5833     1      0     0 2.4167 1.535 0.0000 

16 23.1667     2      0     0 2.4167 1.535 0.0000 

17 24.5833     4      0     0 2.4167 1.535 0.0000 

18 24.8333     5      1     0 2.6167 1.575 0.2000 

19 25.1667     4      1     0 2.8667 1.637 0.2500 

20 26.0000     3      0     0 2.8667 1.637 0.0000 

21 28.1667     4      1     0 3.1167 1.700 0.2500 

22 29.7500     3      1     0 3.4500 1.811 0.3333 

23 30.4167     2      0     0 3.4500 1.811 0.0000 

24 30.6667     2      1     0 3.9500 2.061 0.5000 

25 31.0833     1      0     0 3.9500 2.061 0.0000 

26 40.2500     1      0     0 3.9500 2.061 0.0000 

27 41.2500     2      0     0 3.9500 2.061 0.0000 

28 41.5000     2      0     1 3.9500 2.061 0.0000 

29 41.9167     1      0     1 3.9500 2.061 0.0000 

30 52.1667     1      0     1 3.9500 2.061 0.0000 

 

The time-continuous model of the counting process {Nij(t), t0} assumes that not 

more than one transition occurs in an interval. In practice and in particular in large 

samples, more than one individual may experience a transition in the same time 

interval (e.g. same day). If multiple transitions occur in the same interval, their times 

of occurrence are referred to as tied transition times. Tied transition times may be a 

consequence of (a) grouping and rounding or (b) time (age) intervals that are 

genuinely discrete. For instance, if instead of days or months, seconds are used as 

time units, it is unlikely that more than one transition occurs at the same time (age). If 

tied transition times are due to grouping and rounding, the interval may be divided in 

even smaller intervals and the transition times (ages) ordered. The increment in the 

Nelson-Aalen estimator of the cumulative hazard at age  may be written as 

 (Aalen et al., 2008, p.84). If the age intervals are 

genuinely discrete, the increment in the Nelson-Aalen estimator at age 

is , where  is the population at risk just prior to the interval 

and dn is the number of transitions recorded at age . In the presence of tied 

transition times, the variance of the Nelson-Aalen estimator needs to be adjusted. 

When tied event times are a consequence of grouping or rounding, the increment in 

the variance is . In case of discrete age intervals, the 

increment in the variance is estimated by . Aalen et al. 

(2008, p. 85) report that the numerical difference between the two approaches to tie 

correction is usually quite small, and it is not very important which of the two one 

adopts.  
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b. Parametric method: exponential and piecewise exponential models 

 

The Nelson-Aalen estimator is nonparametric. The shape of the hazard function is not 

constrained in any way. In a parametric counting process model, the age dependence 

of the transition rate is constrained and consequently the waiting times to a transition 

are constrained. It is assumed that there is a continuous-time process underlying the 

data. In addition, the transition rate may depend on covariates. Covariates are not 

considered in this chapter. Two models are considered in this chapter. The first is the 

exponential model, which imposes a constant transition rate and an exponential 

waiting time distribution. The second model is a piecewise exponential model, which 

imposes piecewise-constant transition rates. Transitions rates are assumed to be 

constant in age intervals of usually one year. The transition rates of consecutive age 

groups are unrelated, i.e. no restrictions are imposed on how the piecewise-constant 

rates vary with age. The estimation method therefore combines a parametric approach 

(within intervals) and a non-parametric approach (between intervals). Individuals are 

assumed to be independent and to have the same instantaneous transition rate. In other 

words, transition times of the individuals in the (sample) population are assumed to be 

independent and identically distributed. The estimation of piecewise exponential 

models and occurrence-exposure rates received considerable attention in the literature 

(see e.g. Hoem and Funck Jensen, 1982, Tuma and Hannan, 1984, Hougaard, 2000, 

Blossfeld and Rohwer, 2002, Aalen et al., 2008, Van den Hout and Matthews, 2008, 

Li et al., 2012). Mamun (2003) and Reuser et al. (2010), who study the effect of 

covariates on disability and mortality, impose the restriction that the piecewise-

constant transition rates (occurrence-exposure rates) increase exponentially with age. 

The result is a Gompertz model with piecewise constant transition rates. The choice 

of model is determined by the age profile of transition rates (exponential increase) and 

data limitations. Parametric models of transition rates covering the entire age range in 

multistate models have been estimated too. Van den Hout and Matthews (2008) 

estimate a multistate model in which the age dependence of transition rates is 

described by a Weibull model and Van den Hout et al. (2014) use a Gompertz model. 

In demography, a variety of models are specified to describe age profiles of transition 

rates in multistate models. For an overview of models, see Rogers (1986).  

 

In the counting process approach, the likelihood function is written in terms of the 

counting process kNij(t) and the intensity process kij(t), where t represents age. The 

intensity process at age t is . The indicator function kYi(t) is 1 if 

individual k is under observation and in state i at t and 0 otherwise. The total 

occupation time in state i is , with  the highest age. If individuals 

are independent, the intensity process at age t is  and  is 

the number of (i,j)-transitions between t and t+dt, given the instantaneous transition 

rate ant the exposure function. If in addition all individuals have the same hazard rate, 

i.e. for all k, then the survival times are independent and identically 

distributed. The aggregate intensity process may be written as: 

, where Yi(t) is the number of 

individuals under observation and in state i just before t. If the transition rate is 

constant, then kij(t)= kij for all t and the intensity process at t is . If 
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the transition rate is piecewise-constant during the age interval from x to x+1, kij(t)= 

kij(x) for x  t < x+1 and the intensity process at t is  for x  t < 

x+1. The intensity of leaving state i at age t, irrespective of destination, is 

, which may be written as , with 

.  

 

Let  denote the highest age in the study. A transition is observed if it occurs before 

. Individual k experiences kNij() occurrences of the (i,j)-transition from 0 to . In 

addition, the observation is censored in state i or in another state. Hence, the number 

of episodes of exposure is the number of transitions plus one. The contribution of 

individual k to the likelihood function is  

 

 

 

where  is the age at the n-th occurrence of the (i,j)-transition. Since the intensity 

depends on the instantaneous transition rate and exposure, the likelihood function is 

written in terms of the counting process kNij(t) and its intensity process kij(t)  (Aalen 

et al., 2008, p. 210). Notice that , with the at risk function 

equal to one if individual k is in state i just before the transition and 0 otherwise, and 

, with the at risk function equal to one if k is in i at . The last term 

is the probability of surviving in state i between the age at last entry and age at 

censoring. The intensity  depends on the instantaneous rate of leaving i and the 

at risk function, which is zero except for  larger than or equal to the age of the last 

transition and less than the age at censoring. In the traditional approach, integration is 

from the beginning of the period during which individual k is at risk of the (i,j)-

transition to the end of that period. In the first term, the end is the age at the next 

occurrence; in the last term, it is the age at censoring. Hougaard (2000, p. 181) derives 

the likelihood function following the traditional approach: 

 

 

where  is one if the at risk period ends in an (i,j)-transition and zero if it ends 

because the observation is discontinued (censored). The counting process approach to 

the likelihood function is (Aalen et al., 2008, p. 210): 

 

  

with kNij(t) the increment of kNij at age t.  

 

The full likelihood is 
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with i() the intensity process of the aggregated process Ni(t).  

 

The log-likelihood is . The 

maximum likelihood estimator of ij is the value of ij for which the score function is 

zero: . The score function is the first-order condition for maximizing 

the likelihood that the model predicts the data. In the exponential model, 

 and the first term of the log-likelihood is    

. The second term is 

 , with Ri() the total exposure time in state i for all 

individuals in the (sample) population. The score function is 

. The solution of the equation  gives the 

maximum likelihood estimator of the transition rate: . The estimator 

is the observed number of transitions (occurrences) divided by the total duration at 

risk (exposure). The estimator is an occurrence-exposure rate.  

 

In large samples, the estimator  is approximately normally distributed around the 

true value of ij, with the variance estimator . To improve the 

distribution for , the logarithmic transformation is used. Only 10 transitions are 

needed for  to be approximately normally distributed around  with 

variance estimator  (Aalen et al., 2008, p. 215).  

 

The cumulative transition rate under the exponential model (occurrence-exposure 

rate) increases linearly with duration. The empirical cumulative transition rate 

(Nelson-Aalen estimator) is a step function (Andersen and Keiding, 2002, p. 100). 

The two estimators are usually close. To improve the approximation, the age interval 

from 0 to  may be partitioned in subintervals and the occurrence-exposure rate 

estimated for each subinterval. The exponential model turns into a piecewise 

exponential model with piecewise-constant transition rates. That is the common 

approach in demography, where an age intervals is usually one year. The estimator of 

the transition rate and the variance, given above, are applied to each subinterval. 

Consider the aggregate counting processes Nij(t) and Yi(t), and subintervals from 

exact age x to exact age y (y not included). Age intervals are usually one year, but a 

more general interval is chosen here. The transition rate, which is constant in the 

interval, is denoted by . The observed number of (i,j)-transitions during the 

interval is  and the observed exposure time in state i is . Following 

Aalen et al. (2008, pp. 220ff), the score function is solved. The score function is 

, where  
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and  with  an indicator function taking the value of one 

in the interval from x to y and a value of zero otherwise.  

 

The maximum likelihood estimator of the transition rate from i to j during the interval 

from x to y is the occurrence-exposure rate . Occurrence-

exposure rates are approximately independent and normally distributed around their 

true values, and the variance of  can be estimated by  or the 

logarithmic transformation . In demography, 

epidemiology and actuarial science, transition rates are usually occurrence-exposure 

rates and are determined by dividing occurrences by exposures. In the absence of 

exposure data, exposure is approximated by the product of the mid-period population 

and the length of the period, a method also used by Aalen et al. (2008, p. 222).  

 

By way of illustration of the method, aggregate transition rates and age-specific 

transition rates are estimated from the subsample of 201 individuals, entering 

observation at labour market entry. The analysis focuses on transitions between job 

episodes and episodes without a job. Transitions between jobs are omitted. Biograph 

and some additional calculations produced the main results reported in this section. 

The results are compared to those generated by the msm package for multistate 

modelling. The 201 individuals experience 504 episodes (323 job episodes and 181 

episodes without a job). The total observation time between first job entry and survey 

is 4,668 person-years (3,397 person-years in J and 1,271 person-years in N). The 

sample population experienced 303 transitions during the observation period (181 JN 

transitions and 122 NJ transitions). The JN transition rate is 181/3397 = 0.0533 per 

year and the NJ transition rate is 122/1271=0.0960 per year. To determine the 95 

percent confidence interval of the occurrence-exposure rate. The log-transformation 

of the estimator is used: . The confidence interval around 

the JN transition rate is , which is (0.0461, 0.0617). 

The confidence interval around the NJ transition rate is 

, which is (0.0804, 0.1146). Bootstrapping, i.e. 

sampling the original 201 observations with replacement, with 100 bootstrap samples, 

produces a JN transition rate of 0.0535 with confidence interval (0.0452, 0.0636) and 

a NJ transition rate of 0.0977 with confidence interval (0.0701, 0.1264). 500 bootstrap 

samples yield a JN transition rate of 0.0534 with confidence interval (0.0.0451, 

0.0629) and a NJ transition rate of 0.0973 with confidence interval (0.0729, 0.1254). 

Bootstrapping produces confidence intervals that are somewhat larger than the 

analytical method.  

 

The package msm produces the same estimates and confidence intervals. The code is: 

 
library (msm) 

d <- Remove.intrastate(GLHS) 

dd <- ChangeObservationWindow.e       

   (Bdata=d,entrystate="J",exitstate=NA) 

data <- date_b (Bdata=dd,selectday=1,format.out="age", 
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   covs=c("marriage","LMentry")) 

Dmsm <-  Biograph.msm(data)    

twoway2.q <- rbind(c(-0.025, 0.025),c(0.2,-0.2))  

crudeinits.msm(state ~ date, ID, data=Dmsm,     

   qmatrix=twoway2.q)  

GLHS.msm.y <- msm( state ~ date,  

   subject=ID,  

   data = Dmsm, 

   use.deriv=TRUE, 

   exacttimes=TRUE, 

   qmatrix = twoway2.q,  

   obstype=2, 

   control=list(trace=2,REPORT=1, 

     abstol=0.0000005), 

   method="BFGS") 

 

The first line removes transitions between jobs. The second line changes the 

observation window: observation starts at labour market entry (first job) and ends at 

interview. The third line converts dates in CMC into ages. The fourth line converts 

the Biograph object data to the long format required by the msm package. The fifth 

and sixth lines generate initial values for transition rates. The next line calls the msm 

function for estimating the transition rates.  Object GLHS.msm.y contains the 

estimates and the 95% confidence intervals, with the row variable denoting origin 

and the column variable destination. State 1 is J and state 2 is N. 

 
                     State 1                      State 2                     

State 1 -0.05328 (-0.06164,-0.04606) 0.05328 (0.04606,0.06164)   

State 2 0.09602 (0.08041,0.1147)     -0.09602 (-0.1147,-0.08041) 

 

As expected, the 95% confidence intervals produced by the msm package are the 

same as computed above. The msm package includes a function (boot) that uses 

bootstrapping to produce estimates, standard errors and confidence intervals. 

Bootstrapping, with 100 bootstrap samples, produces the following estimates and 

confidence intervals: 0.0532 for the JN transition rate, with 95% confidence interval 

(0.0453, 0.0621), and 0.0988 for the NJ transition rate, with 95% confidence interval 

(0.0755, 0.1294).   

 

Consider the piecewise constant exponential model with age intervals of one year. 

The input data are transition counts (occurrences) and exposures by single year of age 

for the 201 respondents. Transition counts and exposure times are shown in Table 2.3. 

Column JN shows the number of transitions from J to N and PY is the exposure time. 

The table also shows the state occupancies at birthdays (Occup) and the number of 

observations censured by age (cens). The estimate of the transition rate is r.est and 

the 95% confidence interval is (r.L95, r.U95). The estimate and the confidence 

interval are obtained using the analytical method. Bootstrapping produces the estimate 

b.est and the confidence interval (b.L95, b.U95). The cumulative transition rate 

is cumrate. Consider age 30. Of the 201 individuals, 198 are under observation at 

that age; 138 have a job on their 30
th

 birthday and 60 are without a job. For 3 

individuals, the information is missing. Two did not reach age 30 yet when 

observation ended at age at interview (ID 45 and 115) and one entered labour force 

and observation after age 30 (ID 49). Together the individuals spent 127.75 years in 
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state J and 56.58 years in state N between the 30
th

 and 31
st
 birthdays.  Notice that an 

individual in state J on his 30
th

 birthday may spend some time in state N before 

reaching age 31. At age 30, 2 individuals experienced a JN transition and 3 a NJ 

transition. At that age, the JN transition rate is 2/127.75=0.0157 and the NJ transition 

rate is 3/60.25=0.0530. In Table 2.3, r.est denotes the estimator of the transition 

rate. The 95 percent confidence interval around the JN transition rate at age 30 is 

, which is (0.0039, 0.0626). The confidence around the 

NJ transition rate at age 30 is , which is 

(0.0171,0.1644). In the table, r.L95 denotes the lower bound and r.U95 the upper 

bound. The table also shows estimated transition rates (b.est) and confidence 

intervals (b.L95 and b.U95) obtained by bootstrapping with 100 bootstrap samples. 

The bootstrap standard errors are generally larger than the asymptotic standard errors, 

but it is not always the case in the table because of the relatively small number of 

bootstrap samples.  

 

The cumulative JN transition rate at age 30 is 1.3455 and the cumulative NJ transition 

rate is 3.2957.  

 

Table 2.3 Piecewise-constant exponential model: occurrences, exposures and 

transition rates. GLHS, 201 respondents. 
State J 

Occup     PY JN cens  r.L95  r.est  r.U95  b.L95  b.est  b.U95 cumrate 

13     0   1.83  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 

14     6  20.42  2    0 0.0245 0.0979 0.3916 0.0000 0.0941 0.2255  0.0000 

15    28  33.83  3    0 0.0286 0.0887 0.2750 0.0254 0.0893 0.2043  0.0979 

16    37  43.17  6    0 0.0624 0.1390 0.3094 0.0480 0.1494 0.2830  0.1866 

17    52  78.25  1    0 0.0018 0.0128 0.0907 0.0000 0.0125 0.0438  0.3256 

18    95 111.67  9    0 0.0419 0.0806 0.1549 0.0344 0.0828 0.1332  0.3384 

19   123 137.83 11    0 0.0442 0.0798 0.1441 0.0299 0.0763 0.1273  0.4190 

20   146 138.17 24    0 0.1164 0.1737 0.2592 0.1022 0.1739 0.2409  0.4988 

21   138 143.42 17    0 0.0737 0.1185 0.1907 0.0629 0.1157 0.1696  0.6725 

22   141 150.17  9    0 0.0312 0.0599 0.1152 0.0294 0.0618 0.0933  0.7910 

23   151 151.33 10    0 0.0356 0.0661 0.1228 0.0279 0.0669 0.1049  0.8510 

24   151 145.00 15    0 0.0624 0.1034 0.1716 0.0536 0.1095 0.1668  0.9170 

25   143 139.00 11    0 0.0438 0.0791 0.1429 0.0374 0.0811 0.1292  1.0205 

26   135 134.25 14    0 0.0618 0.1043 0.1761 0.0588 0.1050 0.1660  1.0996 

27   129 131.58  6    0 0.0205 0.0456 0.1015 0.0142 0.0453 0.0831  1.2039 

28   135 133.75  8    0 0.0299 0.0598 0.1196 0.0264 0.0594 0.1062  1.2495 

29   134 138.08  5    2 0.0151 0.0362 0.0870 0.0069 0.0343 0.0682  1.3093 

30   138 127.75  2   19 0.0039 0.0157 0.0626 0.0000 0.0143 0.0335  1.3455 

31   120 108.83  5   18 0.0191 0.0459 0.1104 0.0088 0.0483 0.0926  1.3612 

32   102  90.33  4   14 0.0166 0.0443 0.1180 0.0104 0.0461 0.0977  1.4071 

33    84  85.08  3    0 0.0114 0.0353 0.1093 0.0052 0.0335 0.0688  1.4514 

34    86  84.83  3    0 0.0114 0.0354 0.1097 0.0000 0.0379 0.0915  1.4867 

35    84  86.08  1    0 0.0016 0.0116 0.0825 0.0000 0.0138 0.0424  1.5220 

36    87  86.83  1    0 0.0016 0.0115 0.0818 0.0000 0.0103 0.0368  1.5337 

37    86  87.58  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.5452 

38    88  88.08  2    0 0.0057 0.0227 0.0908 0.0000 0.0241 0.0573  1.5452 

39    90  89.75  1    1 0.0016 0.0111 0.0791 0.0000 0.0101 0.0361  1.5679 

40    88  83.17  1   17 0.0017 0.0120 0.0854 0.0000 0.0120 0.0448  1.5790 

41    74  68.08  0   12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.5910 

42    62  57.17  2    8 0.0087 0.0350 0.1399 0.0000 0.0406 0.1301  1.5910 

43    53  53.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.6260 

44    53  52.00  2    0 0.0096 0.0385 0.1538 0.0000 0.0415 0.1085  1.6260 

45    51  52.33  1    0 0.0027 0.0191 0.1357 0.0000 0.0180 0.0595  1.6645 

46    52  52.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.6836 

47    52  52.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.6836 

48    52  52.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.6836 

49    52  51.92  0    1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.6836 
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50    51  37.25  2   26 0.0134 0.0537 0.2147 0.0000 0.0544 0.1249  1.6836 

51    24  15.67  0   17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.7373 

52     7   3.33  0    7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.7373 

53     0   0.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.7373 

 

State N  

Occup    PY NJ cens  r.L95  r.est  r.U95  b.L95  b.est  b.U95 cumrate 

13     0  0.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 

14     0  0.33  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 

15     2  3.67  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 

16     5  8.25  2    0 0.0606 0.2424 0.9693 0.0000 0.2412 0.6905  0.0000 

17     9  8.08  3    0 0.1197 0.3713 1.1512 0.0000 0.4121 1.0889  0.2424 

18     7  9.92  3    0 0.0975 0.3024 0.9377 0.0000 0.2947 0.6461  0.6137 

19    13 13.67 10    0 0.3936 0.7315 1.3596 0.3920 0.7578 1.1739  0.9161 

20    14 26.83  6    0 0.1005 0.2236 0.4978 0.0928 0.2296 0.4226  1.6477 

21    32 33.50 11    0 0.1818 0.3284 0.5929 0.1760 0.3322 0.5461  1.8713 

22    38 33.75  9    0 0.1387 0.2667 0.5125 0.1203 0.2764 0.4944  2.1996 

23    38 41.17  6    0 0.0655 0.1457 0.3244 0.0455 0.1488 0.2946  2.4663 

24    42 48.92  6    0 0.0551 0.1226 0.2730 0.0421 0.1317 0.2440  2.6121 

25    51 55.00  3    0 0.0176 0.0545 0.1691 0.0000 0.0564 0.1292  2.7347 

26    59 60.42  6    0 0.0446 0.0993 0.2210 0.0449 0.1014 0.1646  2.7892 

27    67 65.17  9    0 0.0719 0.1381 0.2654 0.0648 0.1457 0.2569  2.8886 

28    64 66.00  6    0 0.0408 0.0909 0.2024 0.0297 0.0911 0.1569  3.0267 

29    66 61.75 11    0 0.0987 0.1781 0.3217 0.0882 0.1783 0.2794  3.1176 

30    60 56.58  3    6 0.0171 0.0530 0.1644 0.0000 0.0523 0.1221  3.2957 

31    53 50.83  4    9 0.0295 0.0787 0.2097 0.0198 0.0824 0.1614  3.3487 

32    45 45.75  0    3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.4274 

33    46 44.92  5    0 0.0463 0.1113 0.2674 0.0281 0.1060 0.1873  3.4274 

34    44 45.17  1    0 0.0031 0.0221 0.1572 0.0000 0.0219 0.0730  3.5387 

35    46 43.92  4    0 0.0342 0.0911 0.2427 0.0203 0.0917 0.2204  3.5609 

36    43 43.17  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.6519 

37    44 42.42  2    0 0.0118 0.0471 0.1885 0.0000 0.0458 0.1160  3.6519 

38    42 41.92  4    0 0.0358 0.0954 0.2542 0.0085 0.0938 0.2038  3.6991 

39    40 40.17  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.7945 

40    41 36.25  4    5 0.0414 0.1103 0.2940 0.0263 0.1130 0.2514  3.7945 

41    33 30.50  0    5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.9048 

42    28 24.50  1    7 0.0057 0.0408 0.2898 0.0000 0.0463 0.1723  3.9048 

43    22 22.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.9457 

44    22 23.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.9457 

45    24 22.67  2    0 0.0221 0.0882 0.3528 0.0000 0.1051 0.3614  3.9457 

46    23 23.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0339 

47    23 23.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0339 

48    23 23.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0339 

49    23 22.92  0    1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0339 

50    22 17.92  1   10 0.0079 0.0558 0.3962 0.0000 0.0570 0.1755  4.0339 

51    13  8.83  0    8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0897 

52     5  2.00  0    5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0897 

53     0  0.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0897 

 

Biograph produced several of the figures in Table 2.3. The state occupancied at 

birthday are produced by the Occup function, the transitions by the Trans function, 

and the transition rates and cumulative rates by the Rates.ac function.  

 

Biograph tracks individual transitions and state occupancies (exposure times). The 

purpose of tracking individuals is to show an individual’s contribution to transition 

counts and exposure times. Consider individual with ID 76. The data are shown in 

Table 2.1 and the employment career in Figure 2.1. Table 2.4 shows the states 

occupied at all birthdays between first job and survey date, and the exposure times by 

age. At exact age 18, the individual is not under observation yet (state -). He enters 

observation at age 18.333, when he gets his first job. Between the 18
th

 and 19
th

 

birthday, respondent with ID 76 spends 0.333 years before observation (in state -), 0.5 

years in J and 0.167 years in N. At age 30, he spends 0.417 years in J and 0.518 years 
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in the state ‘censored’. The tracking of individual transitions and exposures is 

necessary for a correct estimation of transition rates and is a central aspect of the 

counting process approach. If  is an estimate of the rate of transition from i to j 

between exact ages x and x+1, then the contribution of the individual to the likelihood 

function is  if the individual experiences a transition between x 

and x+1, and  if he experiences no transition. The best estimate of 

 is the one that maximizes the likelihood function for all individuals combined.  

 

Table 2.4 State occupancies and state occupation times. Individual with ID 76.  
   - J N +     -     J     N     + 

18 1 0 0 0 0.333 0.500 0.167 0.000 

19 0 0 1 0 0.000 0.000 1.000 0.000 

20 0 0 1 0 0.000 0.083 0.917 0.000 

21 0 1 0 0 0.000 1.000 0.000 0.000 

22 0 1 0 0 0.000 1.000 0.000 0.000 

23 0 1 0 0 0.000 1.000 0.000 0.000 

24 0 1 0 0 0.000 0.750 0.250 0.000 

25 0 1 0 0 0.000 1.000 0.000 0.000 

26 0 1 0 0 0.000 1.000 0.000 0.000 

27 0 1 0 0 0.000 1.000 0.000 0.000 

28 0 1 0 0 0.000 1.000 0.000 0.000 

29 0 1 0 0 0.000 1.000 0.000 0.000 

30 0 1 0 0 0.000 0.417 0.000 0.583 

31 0 0 0 1 0.000 0.000 0.000 1.000 

 

3. Transition probabilities and state occupation probabilities 

 

In multistate modelling, distinct types of probabilities have been identified (see e.g. 

Schoen, 1988, pp. 81ff). Survival probabilities, transition probabilities, and state 

occupation probabilities are well-known. They relate to the state occupied at a given 

age or at given ages. An event probability is the probability that a given transition 

occurs at least once during a given period. The cumulative incidence, which is 

frequently used in epidemiology and health sciences, is an event probability. If the 

destination state is an absorbing state, e.g. dead, the transition probability and the 

event probability are the same. Otherwise they differ. The probability types are 

discussed in some detail. In this section and the following sections, age is denoted by 

x and y. State and transition probabilities are denoted by p and event probabilities by 

. The matrix of transition probabilities between ages x and y is P(x,y) and the vector 

of state probabilities at x is p(x). The probability of a continuous stay in a state 

between ages x and y will be denoted by S(x,y). It is the survival probability in the 

state; it is the probability of non-occurrence of an event (exit from the state).   

 

The survival probability at age x is the probability of being alive at that age. In some 

fields, such as demography, dead is usually not a separate state in the state space. It is 

an absorbing state that is integrated in the diagonal of the transition matrix. The 

probability of being alive is the probability of being in any of the states of the state 

space. In medical statistics, the absorbing state of dead is usually a separate state of 

the state space. In that case, the survival probability is the probability of being in a 

transient state. Unless specified otherwise, the state occupation probability at age x is 

the probability of occupying a given state at age x, conditional on being in any of the 
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states of the state space at x, i.e. conditional on still being part of the population. The 

transition probability is the probability of occupying a given state at age y, conditional 

on occupying a given state at age x with y  x. All probabilities are derived from 

transition rates. Before deriving probabilities from rates, probability types are 

discussed. Probabilities are defined for periods. A period may be delineated by two 

ages, two transitions or by an age and a transition. The delineation results in periods 

of fixed or variable length. Probabilities may be conditional on being in a given state 

or having experienced a transition.  

 

Probabilities are computed at a reference age. The reference age indicates the position 

of the observer in the life course. The reference age is particularly relevant in the 

presence of mortality or when the probability is conditional on the state occupied at 

the reference age. For instance, the probability of experiencing a period without a job 

between ages 30 and 40 is likely to differ between persons employed at age 30 and 

persons employed at age 25, but not necessarily at age 30. At age 30, the latter 

category may have a job or may be without a job. The difference is due to competing 

events between ages 25 and 30. In medical statistics, the reference age x from which a 

transition probability is estimated is known as the landmark time point or age and the 

method to select a range of reference ages as the landmark method. Individuals who 

experience the transition of interest before the landmark time point or who leave the 

population at risk for another reason (e.g. censoring) are removed from the data (Van 

Houwelingen and Putter, 2008; Beyersmann et al., 2012, p. 187). The landmark 

method is used for dynamic prediction (van Houwelingen and Putter, 2011). The 

central idea of dynamic prediction is that, by increasing the reference age, time-

varying covariates may be updated with more recent values and predictions adjusted. 

 

If a period is delineated by two ages, the first age is denoted by x and the second by y 

(y > x). The probability of a transition, an event or a continuous stay in a given state 

between ages x and y depends on competing events before and during the period. To 

exclude the effect of competing events before x, the probability is computed at age x. 

If the impact of competing events before x need to be accounted for, the probability is 

computed at an age lower than x. For instance the probability of impairment after age 

65 depends on the likelihood of surviving to 65. It is higher if computed at 65 than at 

age zero. Probabilities are computed for individual k, but the reference to k is omitted 

for convenience.  

 

The probability that an individual who is in state i on his x-th birthday, will be in state 

j at age y is the transition probability . It may be written as 

, where  is a random variable denoting the state 

occupied at age x. The transition probability depends on the life history. If the life 

history is represented by , that dependence is denoted by 

. That dependence is omitted in this section on the 

derivation of probabilities. The time scale is continuous (t is a continuous variable). 

The process is time-homogeneous if the transition probability  only depends 

on the age difference y-x and not on age x. In life-history data analysis with age as the 

time scale, the process is time-inhomogeneous. Age matters. Transition probabilities 

defined for the age interval from x to y are combined in a matrix of transition 

probabilities: 

 



 26 

 

 

 

 

 

 

 

 

where  is the probability that an individual who is in state i at age x will also 

be in state i at age y. Between x and y, the individual may move out of i and return 

later but before y. The reason for using matrices is that, except for a few simple cases, 

transition probabilities depend on all transition intensities and that requires systems of 

equations, which are conveniently written as matrix equations.  

 

The interval from x to y may be partitioned into smaller intervals: x = x0 < x1 < x2 . . . 

. < xP = y. The transition probability matrix P(x,y) may be written as a matrix product: 

 
 

 

The equation is the Chapman-Kolmogorov equation for the Markov process. If the 

number of time points increases and the distance between them goes to zero in a 

uniform way, the matrix product approaches a limit termed a (matrix-valued) product-

integral. The product integral is a counterpart of the usual integral in classical 

calculus.  

 

State occupation probabilities at age y are derived from transition probabilities P(x,y) 

and state probabilities at age x. Let p(x) denote the vector of state probabilities at 

exact age x. The state probabilities at age y is P(x,y) p(x).  

 

To show the link between transition probability and (cumulative) transition rate, 

consider the infinitesimally small interval from  to +d with x   < y. The 

transition probability may be expressed in terms of increments of cumulative 

transition rates. The cumulative transition rates at age  may be arranged in a matrix: 

 

 

 

 

 

 

 

 

An element  denotes the cumulative rate at age  of the transition from i to j. 

The diagonal element  is the cumulative rate at age  of leaving i: 

. The cumulative transition rate can be a step function, with a 

jump each age a transition occurs, or a continuous function. The increment of  

during the interval from  to +d is . The probability that the individual who 

is in i at  will be in j at +d is . The probability that an 

individual who is in i at  will be in i at  + d is 
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. The matrix of transition 

probabilities between ages x and y, expressed in terms of the transition probabilities 

in small subintervals, is: 

 

 

The equation is the solution to the Chapman-Kolmogorov equation. No assumption is 

made on the nature of the distribution of the transition probability (Aalen et al., 2008, 

p. 470). The distribution can be discrete or continuous. The product integral is a 

restatement of the Chapman-Kolmogorov equation.  

 

If transition rates are continuous functions of age, then  and 

. The quantity  is the probability that an individual who is in i 

at  will move to j during the interval of length d: . Since the 

interval is sufficiently small to ensure not more than one transition, a move from i to j 

implies that the individual will be in j at +d. The probability of remaining in i 

during the interval of length d is . The matrix 

expression linking the matrix of transition probabilities during the interval from  to 

+d to the matrix of instantaneous transition rates is: 

, where I is the identity matrix and 

 

 

 

 

  

 

 

 

 

 

with . If the instantaneous transition rates are continuous functions 

of age, . 

 

In the literature, the instantaneous transition rate matrix has different configurations. 

The configuration used in this chapter; is common in demography. The first subscript 

denotes the origin and the second the destination. In statistics, the off-diagonal 

element is the transition rate instead of minus the transition rate, and the matrix is the 

transpose of the matrix shown here. The reasons for choosing the configuration 

become clear later.  

 

If the transition probability is a continuous function of age, a system of differential 

equations links transition probabilities and transition rates. The differential equations 

are derived from the Chapman-Kolmogorov equation. Recall that we may write 

 
 

 



 28 

Subtraction of P(,y) from both sides of the equation and dividing by -x yields 

 

 

 

and  

 

 

 

Since , we obtain the differential equation  

 

.  

 

The differential equation describes continuous-time non-homogeneous Markov 

processes. In physics the equation is known as the master equation. In the social 

sciences, the master equation is less well-known but some important applications 

(under that name) exist (see e.g. Weidlich and Haag, 1983, 1988; Aoki, 1996; 

Helbing, 2010). Aoki summarizes the significance of the master equation as follows: 

“The master equations describe time evolution of probabilities of states of dynamic 

processes in terms of probability transition rates and state occupancy probabilities” 

(Aoki, 1996, p. 116).  

 

To solve the matrix differential equation, we may try to generalize the solution of the 

scalar differential equation . The solution, given the interval 

from x to y, is  ,with p(x,y) the probability that an 

individual who is alive at age x will be alive at age y and () the instantaneous death 

rate at age . The generalization  does usually not work, 

however. It works only if the matrices of instantaneous transition rates commute, i.e. 

if the matrix multiplication  for all .  

 

To solve the system of differential equations, it is replaced by a system of integral 

equations: 

 

 

 

This equation is essentially a system of flow equations of the multistate model. The 

element  of  is: 
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 represents the number of moves or direct transitions from state j to state q 

between the ages x and y by an individual in state i at exact age x. The sum is the 

number of exits from state j by persons in i at x. The last term is the number of entries 

into state j by persons in i at x. 

 

To derive an expression involving transition rates during the interval from x to y, we 

write 

 

 

  

 

where m(x,y) is the matrix of transition rates. An element mij(x,y) (ji) is the average 

transition rate during the interval from x to y and the diagonal element is the rate of 

leaving i:  .  Schoen (1988, p. 66) shows the same matrix 

equation and points to the link with the flow equations commonly used in 

demography.   

 

Transition probabilities serve as input in the computation of state occupation 

probabilities. Let pi(y) denote the probability that an individual who is alive at age y is 

in state i at that age and let p(y) denote the vector of state occupation probabilities at 

age y. The state probabilities at age y depend on state probabilities at an earlier age 

and transition probabilities, e.g. . This equation may be applied 

recursively to determine state occupancies at consecutive ages. Consider age intervals 

of one year. If the state occupation probabilities at birth are given and the transition 

probabilities  are known for 0  x < z-1, with z the start of the highest, 

open-ended age group, then a recursive application of  with 

0  x < z-1 produces state occupation probabilities by single years of age from birth to 

the highest age.  

 

The estimation of transition probabilities from data relies on the Nelson-Aalen 

estimator if the waiting-time distribution of a transition is not constrained and on the 

occurrence-exposure rate if the waiting-time distribution is (piecewise) exponential. 

The two approaches are considered in the remainder of this section. Some packages 

for multistate modelling, e.g. etm and mstate, adopt the non-parametric method 

assuming that the multistate survival function is a step function and estimate the 

empirical transition matrix, while other packages, e.g. msm and Biograph, adopt the 

parametric method assuming that the underlying multistate process is continuous but 

transition rates are (piecewise) constant.  

 

a. Non-parametric method 

 

A logical estimator of P(x,y) is . Since the estimator  

is a matrix of step functions with a finite number of increments in the (x,y)-interval, 

the product-integral is the finite matrix product 
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The matrix  is the empirical transition matrix, often denoted as the Aalen-

Johansen estimator. It is a non-parametric estimator, which generalizes the Kaplan-

Meier estimator to Markov chains (Aalen et al., 2008, p. 122). The diagonal element 

is generally not equal to the Kaplan-Meier estimator. The i-th diagonal element is the 

probability that an individual who is in i at age x will also be in i at age y. The state 

may be left and re-entered during the interval. The Kaplan-Meier estimator is an 

estimator of the probability that an individual who is in i at age x will remain in i at 

least until age y. The state may not be left during the interval. The Kaplan-Meier 

estimator is . 

 

For the covariance of the empirical transition matrix, see Aalen et al. (2008). 

 

Consider the selection of the GLHS data on 10 individuals. The Aalen-Johansen 

estimator of the transition probabilities are derived from the Nelson-Aalen estimator 

of the cumulative transition rates shown in Table 2.2. Consider the transition 

probability between ages 14 and 18.833. At age 14, individual 8 (ID=180) enters his 

first job and enters observation. He leaves the first job at age 15.667 (see Table 2.1, 

JN transition). At that age, individual 3 (ID=67) had entered observation (at age 

15.167). The empirical probability of transition from J to N between ages 14 and 

15.667 is (1-1/2)=0.5. The probability that the individual is without a job at age 

18.833 is 28.57 percent. It is computed by the matrix multiplication:  

 

 

 

 

 

Table 2.5 shows the results. The column etm.est gives the probability of an 

occurrence before t and etm.var gives the variance. The probability of no 

occurrence is surv. It is the empirical survival function or Kaplan-Meier estimator of 

the survival function. Both the Nelson-Aalen estimator and the Kaplan-Meier 

estimator are discrete distributions with their probability mass concentrated at the 

observed event times. The link between the cumulative hazard estimator and the 

Kaplan-Meier estimator relies on the approximation of the product integral. The 

product integration is the key to understanding the relation between the Nelson-Aalen 

and the Kaplan-Meier estimators (Aalen et al., 2008, p. 99 and p. 458). The column 

delta shows the increments of the cumulative hazard. The probability that an 

individual who is in state J at age 14 will be in state N at age 25 is 43.27 percent. The 

estimate is based on all transitions before age 25, the last one at age 24.833. The 

probability of being in J at age 25 is the same as the probability of being in J at age 

24.833, since in the sample population no transition occurred between ages 24.833 

and 25. Recall that the elements of the empirical transition matrix are step functions 

with constant values between transition times. The probability that a 20-year old 

individual who is in state J will be in N at age 25 is 41.52 percent.  
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The etm function of the etm package computes the Aalen-Johansen estimator of the 

transition probability matrix of any multistate model. The entries of the Aalen-

Johansen estimator are empirical probabilities. The etm package is used to produce 

the results shown in Table 2.5. The results are for a selection of the 10 respondents 

used for illustration of the Nelson-Aalen estimator. The code is: 

 
library (etm) 

D<- Biograph.mvna (d.10) 

tra <- attr(D$D,"param")$trans_possible 

etm.0 <- etm(data=D$D,c("J","N"),tra,"cens",s=0) 

 

The covariance matrix of the empirical transition matrix is derived using martingale 

theory (Aalen et al., 2008, pp. 124ff). The Aalen-Johansen estimator along with event 

counts, risk set, variance of the estimator and confidence intervals can be obtained 

through the summary function of the etm package: 

 
summary(etm.0)$"J N" 

summary(etm.0)$"N J" 

 

The confidence interval is computed without transformation of the data. 

Transformations can be specified, however (see Beyersmann et al., 2012, p. 185).  

 

Respondents enter observation when they start their first job. The probability of being 

employed at the highest age in the sample population (53) depends on the 

employment status at lower ages. An individual with a job at age 14 has a 37 percent 

chance of also having a job at age 53. The percentage is the same for a person with a 

job at age 18. An individual with a job at age 30 has a 42 percent chance of having a 

job at age 53. Because employment status varies with age the probability of being in a 

given state at a given higher age varies with age too. By varying the reference age, the 

changes in probabilities can be assessed. The selection of a range of reference ages is 

the basic idea of the landmark method. In this example, the end state is a transient 

state. In the landmark method, the end state is an absorbing state. In multistate life-

table analysis, the method of selecting different reference ages and to estimate 

transition probabilities conditional on states occupied at a reference age is known as 

the status-based life table (Willekens, 1987). 
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Table 2.5 Aalen-Johansen estimator of transition probabilities. GLHS subsample of 

10 individuals. 
JN transition 

        age nrisk nevent   etm.est     etm.var      surv 

1  14.00000     1      0 0.0000000 0.000000000 1.0000000 

2  15.16667     1      0 0.0000000 0.000000000 1.0000000 

3  15.66667     2      1 0.5000000 0.125000000 0.5000000 

4  17.00000     1      0 0.5000000 0.125000000 0.5000000 

5  17.83333     2      0 0.5000000 0.125000000 0.5000000 

6  18.16667     3      0 0.5000000 0.125000000 0.5000000 

7  18.33333     4      0 0.5000000 0.125000000 0.5000000 

8  18.66667     6      0 0.0000000 0.000000000 1.0000000 

9  18.75000     7      1 0.1428571 0.017492711 0.8571429 

10 18.83333     6      1 0.2857143 0.029154519 0.7142857 

11 19.16667     5      0 0.2857143 0.029154519 0.7142857 

12 19.41667     6      1 0.4047619 0.032056473 0.5952381 

13 19.66667     5      0 0.4047619 0.032056473 0.5952381 

14 20.91667     6      1 0.3690476 0.028351420 0.6309524 

15 21.00000     6      1 0.4742063 0.028903785 0.5257937 

16 21.16667     5      0 0.3556548 0.026799238 0.6443452 

17 21.50000     6      0 0.2371032 0.021280425 0.7628968 

18 22.41667     7      0 0.1185516 0.012347346 0.8814484 

19 22.58333     8      1 0.2287326 0.020075818 0.7712674 

20 23.16667     7      2 0.4490947 0.027585427 0.5509053 

21 24.58333     6      1 0.5409123 0.026181931 0.4590877 

22 24.83333     5      0 0.4327298 0.026119191 0.5672702 

23 25.16667     6      0 0.3245474 0.023469628 0.6754526 

24 26.00000     7      1 0.4210406 0.025223801 0.5789594 

25 28.16667     6      0 0.3157805 0.022498163 0.6842195 

26 29.75000     7      0 0.2105203 0.017385650 0.7894797 

27 30.41667     8      0 0.2105203 0.017385650 0.7894797 

28 30.66667     6      0 0.1052602 0.009886262 0.8947398 

29 31.08333     7      0 0.1052602 0.009886262 0.8947398 

30 40.25000     6      1 0.2543835 0.025396927 0.7456165 

31 41.25000     5      0 0.2543835 0.025396927 0.7456165 

32 41.50000     4      0 0.2543835 0.025396927 0.7456165 

33 41.91667     3      0 0.2543835 0.025396927 0.7456165 

34 42.75000     3      0 0.2543835 0.025396927 0.7456165 

35 44.66667     2      1 0.6271917 0.075842235 0.3728083 

36 52.16667     1      0 0.6271917 0.075842235 0.3728083 

37 52.66667     1      0 0.6271917 0.075842235 0.3728083 

 

NJ transition 

        age nrisk nevent   etm.est     etm.var      surv 

1  14.00000     0      0 0.0000000 0.000000000 1.0000000 

2  15.16667     0      0 0.0000000 0.000000000 1.0000000 

3  15.66667     0      0 0.0000000 0.000000000 1.0000000 

4  17.00000     1      0 0.0000000 0.000000000 1.0000000 

5  17.83333     1      0 0.0000000 0.000000000 1.0000000 

6  18.16667     1      0 0.0000000 0.000000000 1.0000000 

7  18.33333     1      0 0.0000000 0.000000000 1.0000000 

8  18.66667     1      1 1.0000000 0.000000000 0.0000000 

9  18.75000     0      0 0.8571429 0.017492711 0.1428571 

10 18.83333     1      0 0.7142857 0.029154519 0.2857143 
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11 19.16667     2      0 0.7142857 0.029154519 0.2857143 

12 19.41667     2      0 0.5952381 0.032056473 0.4047619 

13 19.66667     3      0 0.5952381 0.032056473 0.4047619 

14 20.91667     3      1 0.6309524 0.028351420 0.3690476 

15 21.00000     3      0 0.5257937 0.028903785 0.4742063 

16 21.16667     4      1 0.6443452 0.026799238 0.3556548 

17 21.50000     3      1 0.7628968 0.021280425 0.2371032 

18 22.41667     2      1 0.8814484 0.012347346 0.1185516 

19 22.58333     1      0 0.7712674 0.020075818 0.2287326 

20 23.16667     2      0 0.5509053 0.027585427 0.4490947 

21 24.58333     4      0 0.4590877 0.026181931 0.5409123 

22 24.83333     5      1 0.5672702 0.026119191 0.4327298 

23 25.16667     4      1 0.6754526 0.023469628 0.3245474 

24 26.00000     3      0 0.5789594 0.025223801 0.4210406 

25 28.16667     4      1 0.6842195 0.022498163 0.3157805 

26 29.75000     3      1 0.7894797 0.017385650 0.2105203 

27 30.41667     2      0 0.7894797 0.017385650 0.2105203 

28 30.66667     2      1 0.8947398 0.009886262 0.1052602 

29 31.08333     1      0 0.8947398 0.009886262 0.1052602 

30 40.25000     1      0 0.7456165 0.025396927 0.2543835 

31 41.25000     2      0 0.7456165 0.025396927 0.2543835 

32 41.50000     2      0 0.7456165 0.025396927 0.2543835 

33 41.91667     1      0 0.7456165 0.025396927 0.2543835 

34 42.75000     0      0 0.7456165 0.025396927 0.2543835 

35 44.66667     0      0 0.3728083 0.075842235 0.6271917 

36 52.16667     1      0 0.3728083 0.075842235 0.6271917 

37 52.66667     0      0 0.3728083 0.075842235 0.6271917 

 

The following code computes the Aalen-Johansen estimators of the transition 

probabilities for reference ages 18, 25, 30 and 35 (see Beyersmann et al., 2012, p. 

187): 

 
age. points <- c(18,25,30,35) 

landmark.etm <- lapply (age.points,  

  function (reference.age) 

   {etm(data=D$D, 

   state.names=c("J","N"), 

   tra=tra,"cens", 

   s=reference.age) }) 

 

 

The landmark method is also implemented in the dynpred package (Putter, 2012). It is 

the companion package of Van Houwelingen and Putter (2011).  

 

State occupation probabilities are derived from transition probabilities. Because all 

individuals are initially in J, the probability of being in state N is the transition 

probability JN with the youngest age as reference age (compare with Beyersmann et 

al., 2012, p. 190). In the subsample of 10 individuals, the probability of occupying 

state J at age 30 is 78.95 percent and the probability of being in N is 21.05 percent 

(Table 2.5).  The 95 percent confidence intervals are (0.531, 1.000) 

( ) and (0.000, 0.469) ( ), respectively. The 

following code produces these results: 
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 dd=Biograph.mvna(d.10) 

etm(data=dd$D,c("J","N"),tra,"cens",s=0) 

summary(etm.0)$"J N"[26, c("P","lower","upper")] 

summary(etm.0)$"N J"[26, c("P","lower","upper")] 

 

where dd is the data for the 10 selected individuals (Biograph object) and 26 is the 

age index associated with the age at the last transition before 30 (age 29.75).  

 

Consider now the subsample of 201 respondents. Of the 201 respondents, 160 enter 

the labour market (first job) before age 20 and 41 enter after age 20. The ages at 

labour market entry are obtained by the code 

 
 table (trunc(d3.a$start)) 

 

Of those who entered the labour market before age 20, 146 are in state J (91 percent) 

and 14 in state N (9 percent) at age 20. In the observation plan considered, they are 

under observation at age 20. Some entered observation at young ages while others 

entered just before age 20. The empirical transition probabilities take into account 

durations under observation and durations spent in J and N. The transition 

probabilities condition the state occupancy on the state occupied at a reference age. A 

person with a job at age 14 (lowest age) has a 85.6 percent chance of having a job a 

age 20 and 14.4 percent chance of having no job. A person without a job at age 14 has 

a probability of 75.1 percent to have a job at age 20 and 24.9 percent to have no job at 

that age. The state probabilities at age 20 are produced by the code: 
 

D=Biograph.mvna(d3.a)  

tra <- Parameters (d3.a)$trans_possible 

etm.0 <- etm(data=D$D,c("J","N"),tra,"cens",s=0,t=20) 

 

where d3.a is the Biograph object with ages at transition.  

 

To display the results for age 20, use the code 
 

 summary(etm.0)$"J N"[81:84,] 

 summary(etm.0)$"N J"[81:84,] 

 

The state probabilities at age 30 are obtained from the state probabilities at age 20 and 

the empirical transition probabilities between ages 20 and 30,  

 

  

 

The following code produces the transition matrix : 
 etm.20_30 <- 

 etm(data=D$D,c("J","N"),tra,"cens",s=20,t=30) 
 

The product of and  is: 

 
t(etm.20_30$est[,,99])%*% 

t(etm.0$est[,,dim(etm.0$est)[3]])[,1] 
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The state occupation probabilities at age 30, can be obtained by the code:   

  
 etm(data=D$D,c("J","N"),tra,"cens",s=0,t=30) 

 

The probability of being employed at age 30 is 68.5 percent if the person is employed 

at the lowest age and 67.5 percent if the person is not employed. Table 2.6 shows the 

state probabilities at selected ages. The table shows the probabilities of occupying 

state J (J_est) and state N (N_est) at selected ages, and the 95 percent confidence 

intervals (J_lower, J_upper) and (N_lower, N_upper) who are employed at 

the lowest age. The confidence intervals are computed by the summary.etm 

function of the etm package. 

 

 

Table 2.6 Probabilities of being with/without a job at selected ages: non-parametric 

method. GLHS, 201 respondents.  
  age J_lower J_est J_upper N_lower N_est N_upper 

1  15   0.827 0.926   1.000   0.000 0.074   0.173 

2  20   0.786 0.856   0.926   0.074 0.144   0.214 

3  25   0.641 0.707   0.774   0.226 0.293   0.359 

4  30   0.618 0.684   0.749   0.251 0.316   0.382 

5  40   0.624 0.699   0.774   0.226 0.301   0.376 

6  50   0.600 0.688   0.775   0.225 0.312   0.400 

 

b. Parametric method: piecewise exponential model 

 

If the instantaneous transition rates are constant the distribution of the waiting time to 

the next transition is exponential. Assume that the instantaneous transition rates are 

constant in the age interval from x to y:  for x   < y, with mij(x,y) 

the transition rate during the (x,y)-interval. The matrix of transition probabilities is 

. If transition rates are age-specific with age intervals of 

one year, then the transition probabilities between reference age x and age y are 

obtained by the matrix expression 

 
 

 

with .  

 

To determine the value of exp[-m(x,y)], I use the Taylor series expansion. Note that 

for matrix A, exp(A) may be written as a Taylor series expansion: 

 

. . . + 
3!
1 + 

2!
1 +  + = )exp 32 AAAI A(  

Hence 

 

 

(see also Schoen, 1988, p. 72).  
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The estimator of the transition matrix is:  with  

the matrix of empirical occurrence-exposure rates in the (x,y)-interval: 

, where Nij(x,y) is the observed number of moves from i to 

j during the interval and Ri(x,y) is the exposure time in i.  

 

In case of two states, the rate equation may be written as follows: 

 

 

 

where  and . In matrix notation: 

 

 

Consider the example with 201 respondents. The age-specific transition rates are 

shown in Table 2.3. The first state is J and the second N. The JN transition rate for 18-

year old individuals is 0.0806 and the NJ transition rate is 0.3024. They are obtained 

by dividing the number of transitions by the exposure time in each state between ages 

18 and 19. The one-year transition probability matrix is: 

 

 

 

The probability that an individual in the sample population who on his 18
th

 birthday 

has a job, will be without a job on his 19
th

 birthday is 6.7 percent. The probability that 

an 18-year old without a job will be with a job one year later is 25.1 percent. 

Bootstrapping is used to generate confidence intervals. The mean transition 

probability produced by 100 bootstrap samples is 0.0665 for the JN transition, with 95 

percent confidence interval (0.0294, 0.1043) and 0.2583 for the NJ transition, with 95 

percent confidence interval (0.0000, 0.4611). The retention probabilities are 0.9335 

for J, with confidence interval (0.8957, 0.9706) and 0.7417 for N, with confidence 

interval (0.5389, 1.0000).  

 

The state occupation probabilities at age 30 are obtained as the product of the 

transition probability matrix  and the state probabilities . In the 

subsample, 86 percent is employed at age 20 and 14 percent is without a job (Table 

2.6). The state probabilities at age 30 are: 

. It is equal to: 

 

. 

 

The 95 percent confidence intervals of the state occupation probabilities at age 30, 

obtained from 100 bootstrap samples, is (0.6173, 0.7556) for J and (0.2444, 0.3827) 

for N. The estimates and their confidence interval are close to the figures produced by 

the non-parametric method (Table 2.6).  
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4. Expected waiting times and state occupation times 

 

State occupation times, also denoted as sojourn times and exposure times, are 

durations of stay in a state or stage during a given period. They indicate the lengths of 

episodes and are expressed in days, weeks, months or years if measured for a single 

individual or in person-days to person-years if measured for a population. Observed 

sojourn times are used to determine the exposure to the risk of a transition. In this 

section the focus is on expected sojourn times. The fundamental question is: given a 

set of transition rates, what is the expected sojourn time in a state? Questions on 

durations of stay are omnipresent. What is the expected lifetime (life expectancy)? 

What is the health expectancy, i.e. how many years may a person expect to live 

healthy? What is the expected age at disability for those who ever become disabled? 

What is the expected duration of marriage at time of divorce? What is the expected 

duration of unemployment for someone who becomes unemployed? What is the 

expected number of years of working life for persons who retire early? What these 

questions have in common is that they are about the length of periods between two 

reference points. The reference points may be transitions such as in the question on 

duration of marriage at divorce. Marriage and divorce are the two transitions. The 

reference point may be any point in time. When the second reference point is a 

transition, the expected sojourn time is equivalent to the expected waiting time to the 

transition.  

 

Expected occupation times depend on transition rates between two reference ages. 

They also depend on the location of the observer. Suppose we want to know the 

number of years a person may expect to live with cardiovascular disease between ages 

60 and 80. It depends on the transition rates between ages 60 and 80, including rates 

of death from cardiovascular disease or other causes. It also depends on the reference 

age because the reference age introduces dependencies on intervening transitions. The 

expected number of years with the disease is larger for 60-year old individuals than 

for 0-year old children because the latter category may not reach age 60.  
 

The sojourn time between ages x and y spent in each state of the state space, by state 

occupied at age x is . The configuration of  is: 

 
 

 

 

 

 

 

The marginal state occupation times give the total expected sojourn time in the system 

by state occupied at age x (column total).  

 

The time spent in state j between ages x and y by an individual who is in state i at 

exact age x is 
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and for all states of origin and states of destination:  

 

In the above formulation, the expected occupation time in state j is conditional on 

being in state i at age x. The occupation time is said to be status-based; it is estimated 

for individuals in a given state at the reference age x. The population-based 

occupation time is the expected occupation time in state j beyond age x, irrespective 

of the state occupied at age x. It is the sum of status-based occupation times between 

x and y, weighted by state probabilities at age x:  

 

, where  is the 

probability that an individual is in state i at age x.  

 

The expected state occupation times are derived from transition rates. Two 

approaches are considered: the non-parametric approach and the (piecewise-constant) 

exponential model.  

 

a. Non-parametric approach  

 

Beyersmann and Putter (2014) present a non-parametric method for estimating the 

expected state occupation time. Divide the period between age 0 and the highest age 

 in intervals. Intervals of one year are considered, but the method can be applied to 

intervals of any length. Let  denote the state occupation probability at age x.  A 

natural estimate of the expected occupation time in i beyond age x, irrespective of the 

state occupied at age x, is  

 

 

 

The method assumes that an individual who is in state i at age x stays in i during the 

entire year preceding x and an individual who leaves i between x-1 and x leaves at the 

beginning of the interval (at x-1). The assumption can be relaxed by reducing the 

length of the interval or by making alternative assumptions about ages at entry and 

exit. A plausible assumption is that transitions take place in the middle of the interval. 

That assumption is valid if the interval is sufficiently short so that at most one 

transition occurs during the interval. Multiple transitions during an interval (tied 

transitions) require an assumption about the sequence of transitions. 

 

b. Parametric approach: exponential model 

 

A distinction is made between expected state occupation times between two ages 

(closed interval) and expected state occupation times beyond a given age (open 

interval). The reference age may be any age at or before the start of the interval. For 

instance, the expected number of years in good health beyond age 65 may be 

computed for persons aged 65 or for persons of an age below 65, e.g. at birth or at 

labour market entry. The expected state occupation time may be conditioned on the 

state occupied (and other characteristics) at the reference age or the first age of the 

closed or open interval. The expected state occupation time may also be conditioned 

on a future transition. Consider an employment career. The age at which a person may 
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experience a first episode without work after a period with employment is lower for 

those who will ever experience an episode without work than for the average 

population. The expected occupation time during an age interval, conditioned on a 

transition occurring with certainty during that interval, is less than the expected 

occupation time that is not conditioned on a transition occurring. For instance, the 

expected duration of marriage at divorce is lower for those who ever divorce than for 

the average married population. The latter includes those who never divorce.  

 

The time spent in state j between ages x and y by an individual who is in state i at 

exact age x is , where an element  denotes the time 

an individual in i at age x may expect to spend in j between ages x and y. If the 

transition rates are constant in the (x,y)-age interval (exponential model), the 

integration of the equation leads to: 

 

, 

 

which is equal to: 

 

,  

 

provided m(x,y) is not singular. The expression is also shown by Namboodiri and 

Suchindran (1987, p. 145), Schoen (1988, p. 101) and van Imhoff (1990). If m(x,y) is 

singular, a very small value may be added to the diagonal elements of the matrix. 

Izmirlian et al. (2000, p. 246), who consider the case with an absorbing state (death), 

suggest to replace by one the zero diagonal element corresponding to the absorbing 

state. I choose to add a small value (10
-8

) to the diagonal. It may be viewed as a rate 

of a fictitious attrition. It is too small to occur between x and y but it is large enough 

to make m(x,y) non-singular.  

 

Taylor series expansion of  results in the following equivalent 

expression for the state occupation times (Schoen, 1988, p. 73): 

 

 

When the interval is short, the sojourn time may be approximated by the linear 

integration hypothesis, which implies the assumption of uniform distribution of events 

(linear model): 

 

 ),(
2

),(x yxxyyx PIL   

 

The linear method is usually used in demography and actuarial science. It is often 

referred to as the actuarial method.  
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The reference age may be any age at or before the start of the interval. Consider the 

reference age zero. The expected time newborns may expect to spend in each state 

between ages x and y, by state at birth, is  

 
      

 

where P(0,x) represents the transition probabilities between ages 0 and x. When the 

reference age changes from age 0 to age x, the expected length of stay in the various 

states between ages x and y changes from an unconditional measure to a conditional 

measure. It becomes conditional on being present in the population at x. The measure 

is 

 

, 

 

provided the inverse of P(0,x) exists. The state occupation times between ages x and 

y, a new-born may expect, irrespective of the state occupied at birth is .   

 

The estimation of the expected state occupation times beyond a given age requires the 

state occupation time beyond the highest age group. If at high ages few transitions 

occur, the ages are often collapsed in an open-ended age group with constant 

transition rates. Demographers use that approach to close the life table. Let z denote 

the first age of the highest open-ended age group. The sojourn time in the various 

states beyond age z by individuals present at z is 

 

, where  denotes infinity.  

 

The life expectancy at age x is the number of years an individual aged x may expect 

to spend in each state beyond age x, by state occupied at x or irrespective of the state 

occupied at x. It is . An element  of  is the 

number of years an individual who is in state i at age x may expect to spend in state j 

beyond age x.  is a matrix with the state at age x as the column variable and 

the state occupied beyond age x the row variable. It gives the expected remaining 

lifetime conditional on the state occupied at age x. In multistate demography, it is 

known as the status-based life expectancy at age x. The population-based life 

expectancy is the time an individual aged x may expect to spend in each of the states 

beyond age x, irrespective of the state occupied at age x. It is  multiplied by 

the vector of state occupation probabilities at age x.  

 

If transition rates are age-specific, i.e. piecewise-constant, and the length of an age 

interval is one year, then the expected state occupation times at reference age x is 

 

 

 

with  and . 

 

The expected occupation time in state i depends on the rate of leaving i. If the exit 

rate between ages x and y is zero, an individual in i at age x will remain in i at least 
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until age y. If a departure from i occurs during the (x,y)- interval, it will occur at an 

occupation time which is less than the expected occupation time. In other words, the 

expected occupation time, conditioned on a transition occurring, is less than the 

expected occupation time that is not conditioned on a transition occurring. Consider 

an individual in state i at age x. The expected waiting time to leaving i between x and 

y consists of two parts. The first is the state occupation time for stayers. It is equal to 

y – x. The probability of staying in i during the entire interval from x to y is the 

survival probability . The second part is the waiting time 

to an exit from i that occurs before y. It is denoted by . Hence the occupation 

time equation is  and 

. It is the time an individual aged x in i spends 

in i on a continuous basis before leaving, provided the exit occurs before y. The 

occupation time equation distinguishes stayers and leavers.  

 

The fraction of an interval spent in a given state if a transition occurs with certainty is 

frequently referred to as Chiang’s “a”, after the statistician Chiang who introduced it. 

Chiang, who developed the measure in the context of mortality, called “a” the fraction 

of the last year of life (Chiang, 1968, pp 190ff; 1984, pp. 142ff). Schoen (1988, p. 8 

and p. 71) uses the concept of mean duration at transfer to denote the expected 

number of years before the transition. It is the product of Chiang’s “a” (fraction of the 

interval) and the length of the interval. If transitions are uniformly distributed during 

the interval, the survival function is linear and “a” is half the length of the interval. If 

the transition rate is constant during an interval, the waiting time to the event is 

exponentially distributed. Consequently, the expected time to an event that occurs 

with certainty is less than half the interval length. The probability that an exit from 

state i during the (x,y)-interval occurs during the first half of the interval, provided it 

occurs with certainty during the interval, is a ratio of two distribution functions: 

. 

 

Consider the 201 respondents and age 18. The expected occupation times in each of 

the states of the state space (J and N) by state on the 18
th

 birthday is  

 

 

A person of exact age 18 with employment may expect to spend 0.036 years (less 

than half a month) without employment before reaching age 19. The 95 percent 

confidence interval, produced by bootstrapping, is (0.0136, 0.0635). A person of the 

same age without a job may expect to be employed during 0.134 years (1.6 months) 

before his 19
th

 birthday, with confidence interval (0.0323, 0.2663). A small figure (10
-

8
) has been added to the diagonal to prevent m(18,19) from being singular. A person 

aged 18 with employment, who leaves employment before age 19, may expect to 

leave employment after  years or 5.6 months. The Taylor 
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series expansion gives about the same result. A sum of four terms plus the identity 

matrix gives .  

 

The number of years between the lowest age (14) and the highest age (54) is 40 years. 

Since states J and N are transient states, the total numbers of years spent in the 

employment career between ages 14 and 54 is 40. If a hypothetical individual starts at 

age 14 with a job and the employment career is governed by the occurrence-exposure 

rates estimated from the GLHS subsample of 201 subjects, then the expected number 

of years with a job is 28.66 and the number of years without a job is 11.34. The 

average of the 100 bootstrap samples is 28.55 and 11.45, respectively. The 95 percent 

confidence intervals are (26.65, 30.28) and (9.72, 13.35).  

 

5. Synthetic life histories 

 

The methods presented in the previous sections produce state probabilities and 

expected occupation times that are consistent with empirical transition rates. The state 

probabilities and the occupation times describe the expected life history, given the 

data. The confidence intervals around the expected values indicate the degree of 

uncertainty in the data. Transition rates are differentiated by age to capture the age 

patterns of transitions. In this section, age-specific transition rates are considered, 

with age intervals of one year. Transition rates are piecewise constant: they vary 

between age groups but they are constant within age groups. Individual life histories 

differ from the expected life history because of observed differences between 

individuals with different personal attributes, unobserved differences and chance. The 

chance mechanism is the subject of this section. Observed and unobserved differences 

are disregarded because they are beyond the scope of this chapter. Synthetic 

individual life histories are generated using longitudinal microsimulation (Willekens, 

2009; Zinn, 2011; Zinn et al., 2013; Zinn, 2014). The method is consistent with 

Discrete Event Simulation (DEV) methods.  

 

To explain the chance mechanism, a single transition rate will do and to explain the 

basic principle of generating synthetic biographies, a single transition rate matrix is 

sufficient. To generate more realistic synthetic biographies, age-specific transition 

rates are used. Consider the 201 respondents of the GLHS sample and the observation 

period between labour market entry and survey date. In Section 2.2, the aggregate NJ 

transition rate was estimated at 0.096 per year (using msm). An individual who 

previously had a job (the nature of the sample) and who is currently without a job, 

may expect to get another job in 10.4 years (1/0.096) on average. The expected 

waiting time during the first year is  years. It is high 

because at the time the data were collected a relatively large number of respondents, 

in particular women, left the labour force and did not return. The probability of 

experiencing the event in the first year is 9.154 percent [100*(1-exp(-0.096))]. An 

individual without a job, who gets a job within one year, waits 0.4920 years, on 

average. This is a little less than 6 months. Individual waiting times are random 

variables; the values are distributed around these expected value. Since the transition 

rate is constant at 0.096, individual waiting times are exponentially distributed with a 

mean of 10.4 years and a variance of 108 years, assuming no competing transition 
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intervenes in the labour market transitions. The median waiting time is 7.2 years 

[ln(2)]/0.096.  

 

To obtain individual waiting times that are consistent with these expected values, 

waiting times are drawn randomly from an exponential distribution with a hazard rate 

0.096 or, alternatively, a mean waiting time of 10.4 years. A random draw is 

implemented in two steps. First, a random number is drawn from the standard uniform 

continuous distribution U[0,1]. Every value between zero and one is equally likely to 

occur. The random number drawn represents the probability that the waiting time to 

the transition is less then or equal to t, where t needs to be determined. Let  denote 

the probability. Hence: . Suppose =0.54. The value of t is 

derived from the inverse distribution function of the exponential distribution. It is 

  years. N draws from the uniform distribution 

result in N individual waiting times. If N is sufficiently large, the sample mean is 

close to the expected value of 10.4 years and the sample variance is close to 108 

years. One experiment of 1000 draws resulted in a mean waiting time of 10.11 years 

and a variance of 116.5 years. Another experiment resulted in a mean waiting time of 

9.89 years and a variance of 87.4 years.  

 

The transition rate estimated from data, in this example 0.096, is subject to sample 

variation. The rate is itself a random variable. If the number of observations is 

sufficiently large, the rate is a normally distributed random variable with the expected 

value as its mean. The 95 percent confidence interval of the NJ transition rate was 

estimated at (0.0804, 0.1146). To incorporate the degree of uncertainty in the data in 

the generation of synthetic life histories, a transition rate may be drawn from a normal 

distribution with mean ln(0.096) and standard deviation .  The 

standard deviation of the NJ transition rate was computed in Section 2.2 of this 

chapter. If the value drawn from a normal distribution is denoted by m, then the 

transition rate is exp(m). An alternative to drawing a transition rate from a normal 

distribution is to resample the data (with replacement) and to estimate the transition 

rate from the new sample. In this approach, the distribution of the transition rate is the 

distribution generated by bootstrap samples. Consider 100 bootstrap samples and 100 

transition rates, one from each sample. Each of these transition rates is used to 

generate 1000 individual waiting times. The collection of waiting time incorporates 

the effects of sample variation and the exponential distribution of waiting times. For a 

person without a job, the overall average waiting time to a job is 10.54 years and the 

variance is 115.00 years. The NJ transition rates estimated in the bootstrap samples 

vary from 0.073 to 0.140, with mean rate 0.0967. 

 

The aggregate transition rates may be used to generate employment histories. The JN 

transition rate is 0.0533 and the NJ transition rate is 0.0960. Recall that observations 

started at labour market entry (first job). Hence N refers to being without a job, after 

having had at least one job. The transition rate matrix is . 

Everyone starts the employment history in J.  The starting time is zero, meaning that 

the time is measured as time elapsed since labour market entry. The employment 

history is simulated for 30 years (simulation stop time). The transition rates are 
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assumed to remain constant during that period. In this example, employment histories 

are sequences of transitions and waiting times to transitions. They are assumed to be 

outcomes of a continuous-time Markov model with constant rates. The simulation 

runs as follows. Let t denote time. An individual starts in J at time 0. A random 

number is drawn from an exponential distribution with transition rate 0.0533 to 

determine the time to transition from J to N. One draw results in a transition at t=8.29 

years. To determine how long the individual stays in N, a random number is drawn 

from an exponential distribution with transition rate 0.096. The randomly selected 

time to NJ transition is 4.30 years. Hence the individual starts a second job 12.59 

years after labour market entry (8.29+4.30). A new random waiting time is drawn 

from an exponential distribution with transition rate 0.0533 to determine the time of 

the second JN transition. The number is 24.00, which means that the transition would 

occur 36.59 years after labour market entry. The transition time exceeds the time 

horizon of 30 years and is not considered. When the simulation is discontinued, the 

individual is in state J. The function sim.msm of the msm package is used to 

generate the life history of a single individual. The code is: 

 
m <- array(c(0.0533,-0.0533,-0.096,0.096), 

  dim=c(2,2),dimnames=list(destination=c("J","N"), 

  origin=c("J","N"))) 

bio <- sim.msm (-t(m),mintime=0,maxtime=30,start=1) 

 

where m is the transition rate matrix shown above, mintime is the starting time of 

the simulation, maxtime is the ending time and start is the starting state (J is state 

1 and N is state 2). The object bio has two components. The first contains the state 

sequence and the second the transition times.  

 

The distribution of employment histories that are consistent with the transition rates 

may be obtained by simulating a large number of employment histories. In this simple 

illustration, the transition rates are assumed not to depend on age and to remain 

constant during the period of 30 years. Simulation of 1,000 employment histories 

results in the distribution shown in Table 2.7. The most frequent trajectory is JNJ, 

about one third of all trajectories. The trajectories JN and J cover about one fifth each. 

These 3 trajectories account for 68 percent of all trajectories during a period of 30 

years. For each trajectory, the median ages at transition are also shown. The table is 

produced by the Sequences function of Biograph. The results of the simulation are 

stored in a Biograph object, which facilitates analysis of the simulated life histories.  

 

Table 2.7 Employment histories in virtual population, based on GLHS aggregate 

transition rates. 
ncase    % cum%     path     tr1     tr2     tr3     tr4 

1   305 30.5 30.0    JNJ  9.12>N 19.95>J                 

2   194 19.4 49.9    JN  20.35>N                         

3   185 18.5 68.4     J                                 

4   130 13.0 81.4 JNJNJ   4.81>N 10.42>J 18.86>N 24.91>J 

5   121 12.1 93.5  JNJN   6.53>N 13.28>J 25.83>N         

 

 

Constant transition rates have been used for illustrative purposes only. Usually, age-

specific transition rates are used to generate synthetic life histories. Suppose an 

individual enters his first job at age 21.3 (decimal year). He experiences the 

employment exit rate from age 21.3 onwards until (a) he enters a period without a job, 
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(b) he experiences a competing transition, or (c) the ‘observation’ is censored, i.e. 

simulation is discontinued. In this illustration, no competing transition is considered. 

Hence the waiting time to the JN transition depends on the age-specific transition 

rates between age 21.3 and the age at which simulation is discontinued, which in the 

sample of 201 respondents is 52. Age-specific transition rates are weighted by 

exposure time. The transition rate at age 21 is multiplied by the duration of exposure, 

which is 0.7 years (22.0 – 21.3). The transition rates at age 22 and higher are 

multiplied by one. The sum of the age-specific transition rates beyond age 21 is the 

cumulative transition rate, computed at age 21. The waiting time to the JN transition 

is determined by a random draw from an exponential waiting time distribution 

associated with the cumulative transition rate computed at age at labour market entry. 

The age at the JN transition is the current age plus the waiting time to the JN 

transition. Suppose a waiting time of 3.4 years is drawn. The individual will enter a 

period without a job at age 24.4. If the waiting time is such that the age at transition 

exceeds the highest age in the observation scheme, then the observation is censored at 

the highest age.  

 

If the number of states exceeds two, the destination state must be determined in 

addition to the time to transition. A multinomial distribution is used. The distribution 

is derived from the origin-destination specific transition rates. If mij(x,y) is the (i,j)-

transition rate between ages x and y, then the probability of selecting state j, 

conditional on leaving i, is: , with . The 

probability is an event probability, not a transition probability. The probabilities are 

used to partition the interval between the minimum probability (0) and the maximum 

probability (1): . A random number is drawn 

from a standard uniform distribution and the interval that corresponds to its value 

determines the destination state. The method is implemented in the msm package.  

 

The method of estimating time to transition and destination state consists of two steps. 

The first uses the exit rate from the current state, i say, to determine the time to 

transition (exit from i). The exit rate is taken from the diagonal of the transition rate 

matrix. The second step is to determine the destination, conditional on leaving the 

current state. This method was suggested by Wolf (1986). An alternative but 

equivalent method relies on the destination-specific transition rates.  Consider an 

individual in state i at age x. For each possible destination j random waiting times are 

drawn from exponential distributions with parameters the cumulative (i,j)-transition 

rates between x and the highest age: . If transition rates are 

piecewise constant (age-specific), the cumulative hazard is piecewise linear. The 

smallest random waiting time determines the destination. The two methods rely on the 

theory of competing risks and assume that the waiting times corresponding to the 

distinct destinations are independent. Zinn (2011, pp. 177ff) shows that the two 

methods give similar results. Notice that the two methods are also consistent with 

discrete event simulation (DEVS), although only the second method stores randomly 

drawn waiting times in event queues before selecting the shortest waiting time. The 

LifePaths (Statistics Canada
2
) and MicMac microsimulation models (Gampe and 

                                                 
2
 http://www.statcan.gc.ca/microsimulation/lifepaths/lifepaths-eng.htm 

http://www.statcan.gc.ca/microsimulation/lifepaths/lifepaths-eng.htm
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Zinn, 2008) use event queues. The msm package uses exit rates and conditional 

destination probabilities.  

 

For illustrative purposes, the transition rates in Table 2.3, are used to generate 

synthetic employment histories for 2010 individuals, 10 for each observation in the 

GLHS subsample of 201 respondents. For each individual in the GLHS sample, 10 

employment histories are simulated to reduce the Monte Carlo variation. The 

employment career is simulated between a low age and a high age. The ages are 

determined by individual observation periods in the GLHS subsample of 201 

respondents. For instance, individual 1 enters the labour market at age 17 and is 52 at 

interview. In the virtual population, 10 individuals enter the labour market at age 17 

and are interviewed at age 52.  Individual 4 is 22 at labour market entry and 31 at 

interview. The ages of labour market entry and interview of that respondent are 

imposed on 10 individuals in the virtual population. The simulated employment 

histories cover the same age intervals as the observed employment histories. 

Differences between simulated and observed employment trajectories are due to 

sample variation affecting the estimated transition rates and Monte Carlo variation in 

the simulation. Table 2.8 shows the main employment trajectories in the observed and 

the simulated population. For a given trajectory, the number of simulated trajectories 

should be about 10 times the observed trajectories because 10 simulations were 

performed for each observation. The table also shows the median ages at transition. 

The results differ considerably because in the GLHS, which was organized in 1981, 

women and men report very different employment histories and the transition rates 

are not differentiated by sex. If the transitions rates are estimated separately for males 

and females, and employment trajectories are produced for the two sexes separately, 

the simulated trajectories are much closer to the observations (Table 2.8). Among 

females, JN is the most frequent trajectory, whereas it is quite rare among males. For 

both men and women the model accurately estimates the proportion of persons 

employed continuously throughout the observation period. For women, it 

underestimates permanent withdrawal from the labour market after a single 

employment episode and overestimates re-entry. That may be due to a cohort effect 

with younger cohorts more likely to re-enter the job market after a period of absence. 

The sample size is too small to estimate age-specific transition rates by sex and birth 

cohort.   

 

Table 2.8 Employment histories in observed population and virtual population, based on 

age-specific GLHS transition rates. 
A. Observed trajectories: males and females combined 

  ncase     %   cum%   case     tr1     tr2     tr3     tr4      

1    67 33.33  33.33      J                                                         

2    54 26.87  60.20    JNJ 21.71>N 26.17>J                                         

3    44 21.89  82.09     JN 24.88>N                                                 

4    16  7.96  90.05  JNJNJ 20.83>N 23.96>J 25.62>N 29.62>J                         

5    10  4.98  95.02   JNJN 20.12>N 21.21>J 29.62>N     

 

B. Simulated trajectories: males and females combined 

   ncase     %   cum% case     tr1     tr2     tr3     tr4      

1    627 31.19  31.19     J                                                         

2    531 26.42  57.61   JNJ 22.99>N 27.33>J                                         

3    294 14.63  72.24    JN  27.2>N                                                 

4    245 12.19  84.43  JNJN 21.21>N  24.3>J 30.31>N                                 

5    218 10.85  95.27  NJNJ 20.66>N 22.31>J 26.92>N 32.43>J                         

 

C. Observed trajectories: males 

  ncase     %   cum%      case     tr1     tr2     tr3     tr4     tr5    tr6     
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1    52 49.06  49.06         J                                                                                   

2    41 38.68  87.74       JNJ 21.92>N 25.33>J                                                                   

3     6  5.66  93.40     JNJNJ 18.42>N 20.17>J 22.71>N 24.04>J                                                   

4     3  2.83  96.23        JN  27.5>N                                                                           

5     3  2.83  99.06   JNJNJNJ 18.17>N 19.67>J  21.5>N 22.08>J 33.17>N 35.75>J 

 

D. Simulated trajectories: males 

  ncase     %   cum%      case     tr1     tr2     tr3     tr4     tr5     tr6      

1   518 48.87  48.87         J                                                                

2   314 29.62  78.49       JNJ  21.5>N 24.93>J                                                

3   131 12.36  90.85     JNJNJ 20.54>N 22.54>J 26.81>N 28.85>J                                

4    35  3.30  94.15      JNJN  21.3>N 23.37>J  34.4>N                                        

5    23  2.17  96.32   JNJNJNJ  20.4>N 21.65>J 22.52>N 23.85>J  28.4>N 30.62>J                

 

E. Observed trajectories: females 

  ncase     %   cum%    case     tr1     tr2     tr3     tr4     tr5     tr6  

1    41 43.16  43.16      JN 24.67>N                                                                     

2    15 15.79  58.95       J                                                                             

3    13 13.68  72.63     JNJ  21.5>N 29.58>J                                                             

4    10 10.53  83.16    JNJN 20.12>N 21.21>J 29.62>N                                                     

5    10 10.53  93.68   JNJNJ 23.21>N 26.29>J 27.62>N 32.25>J                                             

6     5  5.26  98.95  JNJNJN  18.5>N 19.67>J 27.17>N 28.42>J 32.58>N                                     

7     1  1.05 100.00 JNJNJNJ 21.92>N 22.08>J 33.83>N 35.08>J 39.83>N 40.17>J 

 

F. Simulated trajectories: females 

   ncase     %   cum%       case     tr1     tr2     tr3     tr4      

1    337 35.47  35.47         JN 25.32>N                                                                

2    183 19.26  54.74       JNJN 21.13>N  25.5>J 30.11>N                                                

3    174 18.32  73.05        JNJ 24.43>N 31.99>J                                                        

4    139 14.63  87.68          J                                                                        

5     62  6.53  94.21      JNJNJ 20.91>N 24.31>J  28.8>N 37.05>J 

  

6. Conclusion 

 

Life histories are operationalised as state and event sequences. Synthetic life histories 

describe sequences that would result if individual life courses are governed by 

transition rates estimated from life history data. Transition rates link real and synthetic 

life histories. If transition rates are accurate, synthetic biographies mimic observed 

life paths. Life history data are generally incomplete. They do not cover the entire life 

span. By combining data from similar individuals, the transition rates may cover the 

entire life span. The estimation of transition rates is crucial. In this chapter, two 

estimation methods are described. The first is non-parametric and the second is 

parametric, or more appropriate, partial parametric. The non-parametric approach is 

common in biostatistics. The Nelson-Aalen estimator of transition rates is 

distribution-free, it does not rely on an assumption that the data are drawn from an 

underlying probability distribution. The partial parametric method is common in 

demography, epidemiology and actuarial science. The occurrence-exposure rate 

computed for an age interval assumes that the transition rate is constant within the 

interval. Occurrence-exposure rates vary freely between intervals. The two methods 

converge when the interval gets infinitesimally small.  

 

Transition rates are used to generate synthetic biographies. Synthetic biographies 

describe life histories in terms of state occupation probabilities and expected state 

occupation times. Life expectancies, healthy life expectancies and active life 

expectancies are examples of state occupation times. Life histories generated by the 

most likely transition rates, given the data, are expected life histories. They apply to a 

population. Few individuals have a life path that coincides with the expected life 

history. Microsimulation is used to determine the distribution of individual life 
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histories around expected life histories. The method presented in this chapter involves 

drawing individual waiting times to transitions from piecewise-exponential waiting 

time distributions. Sequences of waiting times are obtained by joining randomly 

drawn waiting times. The method, which is referred to as longitudinal 

microsimulation, is described in the chapter. The added value of synthetic individual 

life paths is the information they provide on the distribution of (1) state and event 

sequences and (2) state occupation times around expected values. Synthetic individual 

biographies describe life paths in a virtual population. The virtual population closely 

resembles the real population if (1) transition rates are accurately estimated and (2) 

the observation plan applied to the real population is also applied to the virtual 

population, i.e. simulated life segments fully coincide with observed life segments.  

 

The variation of individual life histories indicates uncertainties in the data and 

uncertainties associated with drawing random numbers from probability distributions. 

The uncertainties translate into uncertainties in transition rates, transition and state 

probabilities and expected state occupation times. Uncertainties in transition rates can 

be measured assuming that transition rates or transformations of transition rates are 

normally distributed (asymptotic theory). The distributions of probabilities and 

occupation times are more complicated and cannot always be expressed analytically. 

In the chapter, bootstrapping is used to estimate the uncertainties in transition 

probabilities, state probabilities and occupation times. If the cohort biography 

(expected life path) is computed for each bootstrap sample, the distribution of cohort 

biographies can be determined. By combining bootstrapping and longitudinal 

microsimulation, synthetic individual biographies can be produced that incorporate 

uncertainties in the data and uncertainties introduced by the microsimulation (Monte 

Carlo variation). The latter results from drawing random numbers from probability 

distributions. The precision of the method of computing synthetic biographies from 

real data is measured by comparing summary statistics of virtual and real populations.  

 

The methods described in this chapter are implemented in Biograph and other 

packages discussed in this book. The packages have in common that they adopt a 

counting process point of view (Aalen et al., 2008). 
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