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Abstract

The lives and potential years of life lost due to death are presented as
a metric for describing the population impacts of death and for comparing
causes of death. Lost lives and years of life may be classified by the ages in
which deaths occurred, by the ages to which deaths would be postponed
were they saved, by the ages through which the lost years would have been
lived, or by the distribution of lost remaining lifespans. These temporal
perspectives define the potential impacts of death and causes of death on
population size and structure, and on the distribution of lifespans within
populations. We illustrate these concepts using 2010 all-cause and cause-
specific death data for the USA from the Human Mortality Database.

Introduction

A core task of demography is to account for and predict the population pyramid
and the forces that shape it. The pyramid represents population size and age-sex
structure, and it is shaped by the flows of births, deaths, and migrations1. Of
these flows, births are usually regarded as the primary driver of variation in the
profile of the pyramid,2 whereas the pattern of survival exerts a gentler influence
on the overall tapering and height of the pyramid. Year to year variation in the
number of deaths tends to deduct smoothly from a wide range of ages, making
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1We are guilty of omitting migration from the following exposition, although some of the
methods presented here would translate cleanly to emigration.

2This is true to the extent that wars, epidemics, and other mortality shocks effect broad
age ranges rather than abrupt age groups.
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all but the most severe mortality shocks illegible in the pyramid. This could be
one of the reasons why relationships between mortality and age structure have
been less charted than those between births and age structure.

Demographers most often quantify death in terms of age-specific rates via
the lifetable and its summary indices because these are considered purged of
accidental distortions from population age structure. Moreover, public health
institutions and news media often also report trends in absolute numbers of
deaths from particular causes and the total potential years of life lost (YPLL)
due to these deaths.3 The notion of YPLL dovetails with population size over
time. In either of these treatments, mortality and deaths are isolated from age
structure.

The point of departure for this article is to treat deaths analytically as
population stocks through the notion of potentially saveable life. A potentially
saveable life is a life that has been lost, a death, and a set of lost lives is a kind
of population. The population of lost lives has static characteristics observed at
the moment of death, such as age and sex structure. Were the population still
living, it would still be subject to a continued force of mortality and therefore
retain a structure of remaining lifespans. Observed mortality patterns may
be used to project remaining lifespan structure onto the lost population as an
approximation of what would happen were the population to be resurrected
simultaneously. In other words, we may estimate the vital momentum lost due
to death. By hypothetically saving a life, we also save its momentum. By
defining a universe of saveable lives in this way, we make no statement on the
feasibility of lifesaving, but wish rather to make statements on the quantitative
importance of lifesaving, wherein years of life are the universal currency. This
step is a counterfactual exercise, in line with the formal treatment given in
Vaupel and Yashin (1987).4 Saveable life and lifetime can be quantified under
various demographic perspectives on age and lifespan. These perspectives refine
and supplement YPLL when assessing the population impacts of causes of death,
and we think that they would provide useful information for the targetting and
planning of public health interventions and the comparison of mortality burdens
between populations and subpopulations.

We first formally define what is meant by age and lifespan perspectives,
illustrating on the example of all-cause mortality before proposing an extention
to causes of death. Concepts are illustrated based on the population of the
United States in 2010 based on pre-release data newly collected by the Human
Mortality Database (HMD). We propose a selection of strategies for visualizing
and arranging results for purposes of reporting or making comparisons. Finally
we discuss the limits of these methods and the utility of the information gained
by them. All mortality data used in the following comes from the HMD.

3Gardner and Sanborn (1990) review commonly used methods of calculating YPLL. The
Global Burden of Disease reports refer to YPLL as YLL. As a news media example, in 2013
the Guardian ran a data blog entry visualizing the years of life lost in the USA due to gun
violence (Rogers 2013).

4Vaupel (2008) follows in a similar vein, but aims at the effects of lifesaving on period
distortions.
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Temporal relationships: Age and lifespan per-
spectives

Population stock in a given year, t, can be structured by birth cohorts or age,
the way we typically make population pyramids. If an entire lifespan is denoted
by the random variable X, then the remaining lifespan, y, of a still-alive person
aged a, y = X − a. Figure 1 gives a schematic representation of this simple

Figure 1: A lifeline, where chronological age (years lived) is indexed by a and
thanatological age (years left) is indexed by y.
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relationship between age and the lifespan for a single person-life. The lived
part we call “age” and the yet-unlived part has no common name. Both a
and y are placemarkers on the lifeline and could therefore be called “age”.
We refer to these indices as chronological and thanatological age, respectively.5

The chronological and thanatological age perspectives are applicable to state
durations in general, but in this paper we focus on the full lifespan.

For a cohort, the distribution of X is given by f(X), which is equal to the
lifetable death distribution, d(a), for a = X, when the lifetable is specified with
a radix equal to unity (l(0) = 1). The definition of the survival-conditioned
distribution of remaining lifetime f(y|a) can be summarized in words as the
probability of surviving y years in the future given survival to current age a,
and then dying at the exact age a + y.6 Figure 2 shows selected cross-sections
of the f(y|a) surface calculated from the 2010 US male period lifetable (HMD).
The area under each chronological age-conditioned curve is equal to one. In all
cases where the underlying mortality pattern is fixed, the central mass of the
curve approaches zero, moving one year down per year lived. In these data, the
shape of the center of the curve does not change much until after chronological
age 60, where conditional rescaling drives up death probabilities more and more.
Upward scaling continues beyond those ages shown here, with y = 0 becoming
the greatest single value in all ages beyond the modal chronological age at death.

f(y|a) can be used to calculate the population having survived to age a and
with y remaining years of life as P (a, y) = P (a)f(y|a), where the total popu-
lation with y remaining years of life, P (y), is simply

∫∞
a=0

P (a, y) da (Brouard
1986; 1989), a single death cohort with members from many birth cohorts. This
decomposition sorts the lifeline segments of a living population by the part

5Thanatos was the Greek god of death, which marks the end of the lifeline to which y
relates. By this token, one could just call chronological age aphrodesian age, but this would
probably confuse things.

6A more explicit defintion is provided in the appendices.
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Figure 2: Probability of surviving y years given survival to current age a, US
males, 2010
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yet-unlived (years left, y) rather than by the part lived. The indices a and y
differentiate between the past and future parts of a lifeline, respectively, and by
extension of populations when so structured. As Brouard (1986), when compar-
ing the lived and to-be-lived part of a population, we refer to P (a) and P (y).
Is it so clear that the dead are no longer part of the population? If a life is
completely saved, this life stays in the living population and is not counted as
a death, but we (in common thinking) often imagine saved lives as a transient
state classification. For demographers, however, among the living there are no
saved lives but only lived lives. Still we can quantify hypothetically saveable
life, and for this we must look to deaths. It is nice, and often realistic, to think
that many of the lives taken by death are or will one day be saveable, but it
is difficult to know what mortality rates would apply to a population of saved
individuals. Consider the hypothetical population of lives saved a single time
from death and subject to the same mortality as the population at large.

Figure 3a (left) shows US 2010 period deaths (the universe of lives that we
counterfactually save) by age and sex (males on the left, females on the right).
Over 1.23 million deaths each were recorded for US males and females in 2010.
Deaths have been decomposed into discrete categories of remaining years of life
(see appendix equation (1)), under the assumption that saved lives are subject
to the same mortality schedule as the rest of the population and that all 2010
deaths get saved (just once). The results of this decompositon are represented
by color bands in Figure 3a. The average chronological age at death observed
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Figure 3: Potentially saveable lives (deaths) in the US by sex, 2010

(a) Classified by age (years lived) and sex,
and decomposed by hypothetical remain-
ing years of life (years left).
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Ds(a) from appendix equation (2)

(b) Classified by hypothetical remaining
years of life (years left) and sex, and de-
composed by age (years lived).
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for males was a full seven years lower than that for females: 69.9 versus, 76.3,
respectively.7 Figure 3b (right) displays the same decomposition after swapping
the y axis and color gradient from Figure 3a. Now thanatological age (years
left) of hypothetically saved lives are the primary y axis, while chronological
age groups (years lived) are displayed with color. Figure 3b communicates that
most saveable lives would live short remaining lifespans once saved and granted
the same lifetable mortality. This is so in this data because most saveable lives
are already in chronological ages subject to high mortality rates. In general,
the only saveable lives that might live very long remaining lifespans are the few
deaths that occur in young ages.

Randomly selected saveable males from this population would have on av-
erage longer remaining lifespans than randomly selected saveable females (16.3
versus 13.7 years, respectively). This is a paradox because females have lower
mortality rates in nearly all ages, and have longer remaining life expectancies in
all ages. Female mortality advantage is in this case more than offset by the rela-
tive youth of male deaths. Untangling the paradox further becomes a recursive
exercise, since the relative youth of male deaths is due to an interaction between
mortality schedules and population structure, itself a result of past vital forces.

Figure 4a shows the person years of life potentially won by saving all the
deaths in each age (see appendix equation (3)) for the same US data, which is
essentially a reweighting of Figure 3a by the standard age-pattern of remaining
life expectancy that these lives would hypothetically be subject to. Color bands

7This differs from period life expectancy (76.4 versus 81.2, respectively) because the pop-
ulation structure is not stationary.
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Figure 4: Potentially person years of life won in the U.S. by sex, 2010*

(a) Classified by age at hypothetical sav-
ing and sex, W s(a), and decomposed by
future ages to be lived.
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(b) Classified by cumulative ages to be
lived through and sex, and decomposed
by age at saving.
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W s(a + y|a) from appendix equation 6

*Note different x scale from Figure 3.

are assigned by decomposing the total life to be lived into the ages through
which it will be lived. For example, if we save all 11700 of the 50-year-old US
males that died in 2010, they would live a total of 349000 combined years (under
a fixed 2010 mortality schedule), spread out over ages 50 and higher according

to l(50+y)
l(50) . In Figure 4a we decompose these gained years of life according to

the survival-conditioned distribution of remaining lifetime (see appendix equa-
tion (5)) and highlight this decomposition with color, while in Figure 4b, gained
ages become the primary y axis, and color bands represent the ages in which
populations in each age group were saved.

Figure 4b represents the cumulative contribution to the population pyramid
that would result from saving all lives in 2010 and then surviving them forward
according to 2010 mortality conditions. The chronological age axis indexes ages
that are lived through at some point in the future, in sequence rather than
simultaneously. Under the same assumption of fixed schedules, one could multi-
ply this cumulative age structure with other age-schedules, such as age-specific
fertility rates, or the economic age profiles produced by the NTA project, to
benchmark the cumulative impacts of mortality on other quantities of interest.
For instance, the females who died in 2010 would have given birth to 54122
babies cumulatively over their remaining lifetime assuming they were subject
to constant 2010 period fertility (HFD) and mortality. In the present work, we
only treat age structure, and we do not examine secondary consequences of this
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kind.

Causes of death

These basic relationships carry over when deaths and survival are adjusted to
account for the hypothetical elimination of particular causes (in the case of
independence). In this case, the total number of deaths observed, D, is the
sum of the deaths from n causes. To speak of eliminating cause c (for instance,
deaths from pancreatic cancer) from the lifetable is to speak of saving Dc lives
and then subjecting them to mortality after having deducted cause c from the
lifetable. This is problematic in that causes are not independent, and in that
reductions in cause-specific mortality are not so thorough and immediate, but it
serves as a basis for comparing the relative impacts of different causes on a given
population structure. Humans have succeeded in eradicating certain causes of
death in the past, and it is not so audacious to imagine that we may do so
yet. While these eliminations may not deduct 100% of their magnitude from
all-cause mortality due to substitution, there is an undeniable all-cause benefit,
and at least we know its bounds. For some causes of death, independence is
easier to imagine, such as deaths due to needless violence or particular kinds of
accidents. We demonstrate concepts using large cause groupings.

Table 1: Major causes of death in the U.S. by sex, 2010 (HMD)

Cause Female Male Total
count % count % count %

Cardiovascular 395200 32.0 383077 31.1 778277 31.5
Cancer* 369411 29.9 366373 29.7 735785 29.8

Infectious 156086 12.6 149139 12.1 305226 12.4
External 60673 4.9 125733 10.2 186405 7.6

Mental 76270 6.2 41413 3.4 117683 4.8
Infant* 10368 0.8 12119 1.0 22487 0.9

Other 167995 13.6 154577 12.5 322572 13.1
Total 1236003 100.0 1232432 100.0 2468435 100.0

*The “cancer” group includes diseases of the nervous system. The “infant” category
includes all congenital conditions, including those that result in death after infancy.

Table 1 lists a selection of grouped causes of death for the United States in
2010. The cardiovasclar category listed here combines various diseases of the
heart, blood, and circulatory system. Cardiovascular diseases are the largest
killer of both males and females, followed closely by the broad cancer category.
Together, these two categories, which include most degenerative diseases, ac-
counted for over 60% of deaths in the United States in 2010. For the following
illustrations, we focus on cardiovascular diseases.

Now Figures 3 and 4 can be repeated for any particular cause of death,
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and the profile of each of the four perspectives characterizes the population im-
pact of the given cause of death. Figures 5 and 6 depict the same temporal
viewpoints, respectively, but now the deaths decomposed are only deaths to
cardiovascular causes, and cardiovascular causes have been eliminated from the
lifetable functions used for decomposition and redistribution. Causes differ in
their impact profiles, and this forms a basis for comparison. As with standard
population pyramids, one may prefer the use of percent scales to facilitate com-
parisons between causes or countries. These figures for cardiovascular causes
give visual form to the intuition that demographers have about cardiovascular
causes of death. Cardiovascular causes are important in older ages, and kill
similar numbers of males and females. Saving a randomly selected death from
a cardiovascular cause will on average have a slightly lower payoff in terms of
expected years of life gained than does preventing a death in general. Further, a
typical life saved will traverse many working ages, and reach well into old ages.
The age groups with the most to gain by eliminating external causes are males
between ages 55 and 65 and females in their 80s (clearest in Figure 6).

The average chronological age of deaths to cardiovascular causes in the USA
in 2010 was 74.4 for males and 81.8 for females. Their cause-deleted mean
remaining lifetimes would have been 16.0 and 13.0 years, respectively. This
version of mean remaining lifetime refers to observed deaths, as depicted in
Figure 5b, not the stationary lifetable measures. The same means from the sta-
tionary population would be 12.5 and 10.9, for males and females, respectively,
and these latter figures can be treated as hypothetical expectancies. The mean
age-at-saving of all the person-years hypothetically won under these same condi-
tions becomes 65.1 for males and 72.4 for females, whereas the mean of the ages
enjoyed by these hypothetically saved people are 78.0 and 83.7, respectively.
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Figure 5: Deaths from cardiovascular causes in the USA, 2010

(a) Classified by age (years lived) and sex,
and decomposed by hypothetical remain-
ing years of life (years left).
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(b) Classified by hypothetical remaining
years of life (years left) and sex, and de-
composed by age (years lived).
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Figure 6: USA, 2010 Deaths from cardiovascular causes, years of life potentially
won*

(a) Classified by age at hypothetical sav-
ing and sex, W s(a), and decomposed by
future ages to be lived.
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(b) Classified by cumulative ages to be
lived through and sex, and decomposed
by age at saving.

200 150 100 50 0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

100

110

Years gained (1000s)

Ages gained

0

10

20

30

40

50

60

70

80

90

100

110

Age Saved at

W s car(a+y|a) from appendix equation 6

*Note different x scale from Figure 5.
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Means do not tell the story as well as images, but they allow for easy com-
parisons. Table 2 gives a summary of the same measures for males and females
for each of the seven causes of death listed in Table 1, where āc is the observed
mean chronological age at death for cause c, ȳc is the mean thanatological age
for cause c were all deaths of this cause to be saved, W (a)c is mean age-at-
saving of all of the person years of life that would be gained by saving all deaths
of cause c, and W (a+ y|a)c is the mean age lived-through after saving, under
these same assumptions. From Table 2, we learn that immediate elimination
of infant and genital causes of death would tend to produce individuals with
long lives, and we intuit that most of the remaining lifespan won would be lived
through working ages. External causes are also relatively “youthful” in that
they occur in you chronological ages, and preventing an external death in 2010
(and thereafter) would have implied on average three decades of remaining life,
with most years of life won being centered on chronological ages that nowadays
are considered active.

Table 2: Summary of four time perspectives for the U.S. by sex, 2010 (HMD)

Cause āc ȳc W (a)c W (a+ y|a)c

Male Female Male Female Male Female Male Female
Cardiovascular 74.4 81.8 16.0 13.0 65.1 72.4 78.0 83.7

Cancer* 72.3 74.7 16.4 16.7 63.6 64.6 76.4 78.0
Infectious 74.2 77.9 14.1 13.4 62.5 66.4 75.2 78.6
External 47.9 57.1 34.0 29.8 36.7 40.3 59.7 63.3

Mental 80.0 87.2 10.2 7.5 67.7 79.5 78.2 86.8
Infant* 9.2 10.7 68.4 71.7 3.7 4.0 41.6 43.7

Other 69.3 75.9 17.5 15.3 55.5 60.2 71.0 75.2
All 69.9 76.9 16.3 13.7 54.4 60.8 69.9 75.0

*The “cancer” group includes diseases of the nervous system. The “infant” category
includes all congenital conditions, including those that result in death after infancy.

Discussion

There are many perspectives under which demography can account for the re-
lationships between stocks and flows, but not all form part of the collective
practice of demography. Our objective in these exercises has been to offer a
novel quantitative and visual basis to assess the impact of mortality on pop-
ulation stocks. This is done by calculating the lifespan distributions foregone
due to death and indexing the results based on various aspects of the lifespan.
Practical suggestions have included both chronological and thanatological age
perspectives, as well as two ways of accounting for years of lifespan gained: (i)
The years would be won by saving the deaths in age a, and (ii) the ages saved
individuals would pass through if survived forward.

The reader may choose to interpret this exercise as we have narrated it:
“what would have happened if these lives had been saved?”. We wish to point
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out that believing this statement is not necessary in order for the measures to
be useful, just as common uses of period life expectancy require a certain degree
of suspended disbelief. For clarity, we list the most important assumptions to
be aware of when treating data as we have.

1. Unchanging period rate schedules. Note that the same formulas apply
when data in the cohort perspective are used, but some care must be taken
to allocate past deaths according to observed mortality within the cohort,
and then complete non-extinct cohorts’ mortality experience according to
projection. Brouard (1986) combined history and projection in this way
in his original study of population structure. In any case, period measures
are the best barometer of the present that we have, and all calculations
done in this paper fall under the period umbrella. The researcher is not
limited to the use of static age schedules, and f(y|a) could be calculated
for age schedules that vary by birth cohort.

2. Homogenous populations. In using rate schedules derived from the pop-
ulation at large in order to describe a hypothetical population of saved
individuals, we may neglect that saved individuals may be a frailer than
the general population, and so subject to higher mortality rates going for-
ward. We offer to remedy for this shortcoming, except to note that this
possibility may hold truer for some causes than for others, and in general
the degree of bias is unknown.

3. Independence of causes. As discussed in the text, all causes of death
compete to be first, and removing the first cause may not reduce the
all cause rate by the same amount we have partitioned, µc. The final
reduction will lie somewhere between 0 and µc, and may depend on the
cause and overall level of mortality. We think that this possible unsolvable
limitation ought not keep the researcher from exploring in this direction.
With respect to survival after lifesaving, the researcher may choose to
delete the cause in question or not. In practice, this choice makes little
difference even for large causes, due to the constraints of lifetable entropy.

—————————————
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Appendix A Formulas

The probability of surviving exactly y years into the future given survial to age
a, f(y|a) is given by:8

f(y|a) = µ(a+ y)
l(a+ y)

l(a)
, (1)

where µ(a) is the force of mortality at exact age a, and l(a) is the value of the
survival function at exact age a, proportional to the probability of surviving
from birth to age a.

Assume that all the deaths recorded in a year are saved and brought back
to life. One may ask much more than the number and age structure of these
saved lives, Ds(a),

Ds(a) = µ(a)P (a) , (2)

8This definition is identical to that used in Brouard (1989), Vaupel (2009) or Rao and
Carey (2014) in proving the equality of chronological and thanatological age structure in
stationary populations. Brouard apparently had proven this earlier than 1989, since he cites
the relationship in Brouard (1986). Equation (1) is easily modifiable to account for mortality
schedules that change over time.
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but also how many years the people saved at age a would live, W s(a)9? The
simplest calculation is to multiply the number of gained survivors by remaining
life expectancy at each age, e(a):

W s(a) = Ds(a)e(a) = P (a)µ(a)
1

l(a)

∫
l(a+ y) dy . (3)

Ds(a)e(a) classifies potentially saved person-years by the ages in which they
were saved. One may also wish to know the distribution of remaining lifespans
of saved lives, which is quite different from (3):

Ds(a)f(y|a) = P (a)µ(a)µ(a+ y)
l(a+ y)

l(a)
. (4)

Equation (4) aggregates up to the thanatological age distribution of saved lives,
Ds(y):

Ds(y) =

∫
Ds(a)f(y|a) da . (5)

Or one might ask through which chronological ages the gained years of life would
be lived, W s(a+ y|a),

W s(a+ y|a) = Ds(a)
l(a+ y)

l(a)
. (6)

Define the force of mortality, µ(a) =
∑n
c=1 µ

c(a), as the sum of n categori-
cally separable causes. The people that will die from cause c are:

Dc =

∫ ∞
0

Dc(a) da (7)

=

∫ ∞
0

µc(a)P (a) da , (8)

and to hypothetically save all these people is to remove cause c from mortality,
retaining Dc lives in the population. It makes sense to calculate the distribution
of remaining lifespans of the Dc people that would have died of this cause using
l(a) removed of the cause in question, so we define l−c(a),

l−c(a) = e−
∫ a
0
µ(a)−µc(a) da , (9)

which is hopefully more legible to render as

l−c(a) = e−
∫ a
0
µ−c(a) da . (10)

9A mnemonic for W could be won years. This is essentially an age at death breakdown of
YPLL.
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This is a stronger supposition than the idea of repeated resuscitation from Vau-
pel and Yashin (1987), but the idea is to separate out the impacts of particular
causes. Let us continue with the same notational concept of −c to define re-
maining life expectancy assuming survival to age a and no more death from
cause c after age a, e−c(a):

e−c(a) =
1

l−c(a)

∫ ∞
y=0

l−c(a+ y) dy . (11)

and so on, repeating equations (3) and (5) for the case of cause-specific saveable
lives and their cause-deleted remaining lifespans.

In these equations, all quantities are derived on the basis of a mortality
schedule and a given population structure, P (a). Note that P (a) can also be
defined as the stationary population structure implied by the given mortality
conditions. In this case the interpretations are essentially the same, but im-
pacts on population structure derived in this case would refer to a theoretical
population that itself is completely a function of mortality. Summary results
comparable to those given in the main text are reproduced in an appendix for
the case of a stationary population.

Appendix B Stationary-equivalent summary re-
sults

Table 3 provides the same mean statistics as table 2, except that now instead
of calculating on the basis of the mortality and population of the United States
in 2010 we use the 2010 mortality conditions in conjunction with the stationary
population they imply. These means have the same interpretation as those pre-
sented in the text, except that they are relevant for the theoretical stationary
population, and are therefore entirely the product of the vital force of mortality.
All results are therefore different than those relevant for the case of 2010, but
not remarkably so, because the 2010 US population structure was coincidentally
close to stationary. The cause of death that is most similar between the station-
ary and observed populations is infant and congenital conditions. This cause
is highly concentrated in age 0 and youth, which means that thanatological re-
distributions of this cause approximate redistributing a lifetable radix, pulling
patterns close to the stationary state. Other causes and measures differ by as
much as %35 in this case between the observed and stationary populations. We
report observed patterns in the main text because these are of more immediate
relevance.
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Table 3: Summary of four time perspectives for the U.S. 2010 stationary popu-
lation by sex, 2010 (HMD)

Cause āc ȳc W (a)c W (a+ y|a)c

Male Female Male Female Male Female Male Female
Cardiovascular 79.8 85.0 12.5 10.9 70.9 77.0 81.7 86.6

Cancer* 76.8 78.5 13.3 13.9 68.2 68.8 79.2 80.4
Infectious 79.2 81.3 11.0 11.1 68.4 71.0 78.9 81.4
External 54.9 64.8 28.9 24.0 38.8 43.2 61.0 65.0

Mental 84.9 89.2 7.6 6.5 75.0 83.2 83.0 89.3
Infant* 11.3 13.0 66.7 69.7 3.8 4.1 41.7 43.8

Other 75.9 80.5 13.3 12.1 61.4 65.9 74.6 78.6
All 76.4 81.2 12.2 10.9 60.8 66.5 73.9 78.5

*The “cancer” group includes diseases of the nervous system. The “infant” category
includes all congenital conditions, including those that result in death after infancy.

Note that in the stationary population the mean age at death for all-cause
mortality is equal to life expectancy at birth, shown in this table as 76.4 and
81.2 for males and females, respectively. These figures are slightly off from the
Human Mortality Database estimates of 76.60 and 81.37, respectively, because
we have used simplified lifetable assumptions, such as assuming Lx is the linear
average of lx and lx+1, even for age zero. Further, we have not smoothed older
ages, as does the HMD. The majority of the difference in these two figures is due
to our not having given special treatment to a0, the mean age of infant deaths.
This error is a small artifact, and it is more trivial for causes of death that tend
to concentrate in older ages. Further details can be found by examining the R
code provided in an online repository for this work.10

10See https://github.com/timriffe/YearsLost
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