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Abstract 

We discuss different approaches to work with rich data available in modern longitudinal studies 

of aging, health, and longevity that started collecting genetic information in addition to follow-up 

data on events and longitudinal measurements of biomarkers. Such methods provide a possibility 

to improve the power of genetic analyses by joint analysis of data for genotyped and non-

genotyped sub-samples of the study. We describe results of simulation studies in the longitudinal 

genetic-demographic model illustrating that inclusion of information on ages at biospecimen 

collection in addition to follow-up data improves power in analyses of genetic effects on 

mortality/morbidity risks. We present simulation studies in the genetic stochastic process model  

illustrating the increase in power in joint analyses of genotyped and non-genotyped participants 

compared to analyses of non-genotyped participants alone in different scenarios testing relevant 

biologically-based hypotheses. We illustrate applications of these approaches to analyses of 

genetic data in the Framingham Cohorts. 

 

1. Introduction 

The modern era of revolutionary advances in genetics provides great opportunities and 

challenges for the field of biodemography and the need to integrate the principles of genetics and 

genomics into biodemography is apparent so that this field would continue to be on the forefront 

of the demographic analyses [1, 2]. The importance of “genetic biodemography” will continue to 

grow in the coming years because many studies that collected data on biomarkers will include 

(or already have included) genetic information. The ongoing incorporation of genetic 

information into longitudinal studies is considered potentially “the most revolutionary element of 

the addition of biological data in large-scale surveys” [3] and such studies will “increasingly 

provide analyses of the interactions of genetic, biological, social, economic, and demographic 

characteristics” [4]. 

To get the full advantage of such rich data, a special attention should be paid to the 

analytic approaches to work with this diverse information. Consider, for example, the situation 

when the research interest is in the evaluation of the genetic effect on some time-to-event 

outcome, e.g., risk of death or onset of a disease. Comparison of the age patterns of incidence or 

mortality rates for carriers of different alleles/genotypes can help understand the role of genetic 
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factors in survival or development of aging-associated diseases. Traditional methods to estimate 

the effect of genetic markers in such cases can be enhanced if we complement them with the 

demographic approach taking into account the demographic structure of the population under 

study. Specifically, when genetic data are included in longitudinal studies of aging, we have 

several relevant sources of information for analyses of genetic influence on lifespan (or onset of 

diseases), in addition to genetic data themselves.  

First, it is follow-up data on the outcome of interest (e.g., mortality). Second, usually 

genetic data are collected in longitudinal studies from participants at different ages. Therefore, 

this provides information on age structure of the population at the time of biospecimen 

collection. Along with follow-up data, such population age structure also contains information 

about the effect of genetic variants on lifespan and the full potential of the data is underused 

when this information is ignored in analyses, especially when genotyping is performed at 

advanced ages with noticeable attrition due to mortality. Indeed, in order to be genotyped, an 

individual has to survive until the age at biospecimen collection. Hence, if the proportion of 

carriers of some genetic variant increases with age (here we mean the age at biospecimen 

collection) then this variant should favor longevity. This implies that we can associate genetic 

variants with lifespan even without the follow-up data using the “gene frequency” method [5, 6]. 

We can expect therefore that if we use both follow-up data and data on population age structure 

then this would provide us with more accurate estimates of parameters and additional power 

compared to the use of follow-up data alone. Such data can be analyzed jointly using appropriate 

methods [7, 8].  

The third source of information in longitudinal studies of aging that is relevant for genetic 

analyses stems from the history of incorporation of genetic information into such studies. While 

in some modern longitudinal studies the genetic data can be collected at the baseline, it is a 

common situation that many older long-established longitudinal studies started before the genetic 

data collection began. Hence, in such studies genetic data are available only for a sub-sample of 

participants of the longitudinal study (i.e., for those who survived until the time of biospecimen 

collection). It is also possible that genetic data were collected only for a sub-sample of 

participants due to, for example, budgetary restrictions. However, in both such cases information 

on the outcome of interest (e.g., follow-up on mortality) can be available for all (genotyped and 

non-genotyped) participants of the longitudinal study. This information should not be neglected 

in genetic analyses because it provides an additional reserve for increasing power and improving 

the accuracy of the estimates. Indeed, the group of non-genotyped individuals is a mixture of 

carriers/non-carriers of the same alleles/genotypes collected in the genetic data  and a similar 

functional form of mortality rate can be assumed for the entire sample. Therefore, this 

information can be appropriately combined in the likelihood function with information for 

genotyped individuals [8].  

Incorporation of genetic information in the studies that collect longitudinal measurements 

of biomarkers along with follow-up data opens new perspectives for analyses of genetic 

influence on aging, health and longevity. Participants of a longitudinal study for whom genetic 

information was not collected but other outcomes (longitudinal measurements of biomarkers, 

follow-up data, and possibly some other relevant covariates) are still available, provide an 

additional source to increase the accuracy and power in analyses of genetic effects on 

longitudinal and time-to-event outcomes. The approach to jointly analyze longitudinal 

measurements of biomarkers and time-to-event outcomes for genotyped and non-genotyped 
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participants of longitudinal studies has been developed recently within the framework of the 

stochastic process model (SPM) of aging [9, 10]. Such a model, named the “genetic stochastic 

process model,” or the “genetic SPM,” is especially relevant in the context of biodemographic 

research. The particular advantage of the genetic SPM for biodemographic applications is that it 

is based on biological theory and this model incorporates several essential mechanisms of aging-

related changes in organisms and it allows for evaluating genetic effects on such characteristics 

and their influence on mortality or onset of a disease. Such “hidden components” of aging-

related changes incorporated into this model include: adaptive capacity, resistance to stresses, 

physiological norm, and effects of allostatic adaptation. As known from the literature, all these 

variables play important roles in the processes of aging. Therefore, their inclusion in the model is 

crucial for better understanding of regulatory mechanisms driving observed aging-related 

changes in physiological variables and their influence on risks of death or getting a disease, as 

well as for evaluating the genetic component in such processes. However, relevant variables 

associated with such “hidden components of aging” are typically not directly measured in 

longitudinal data and, hence, they cannot be directly estimated from the data using, for example, 

joint models. The genetic SPM thus provides a useful approach to work with such “hidden 

components of aging” indirectly. Importantly, it also provides an additional possibility to 

improve the power of genetic analyses by joint analysis of data for genotyped and non-genotyped 

sub-samples of the study [9]. 

The rest of the paper is organized as follows. Section 2 presents results of simulation 

studies in the longitudinal genetic-demographic model [8] illustrating that inclusion of 

information on ages at biospecimen collection in addition to follow-up data improves power in 

analyses of genetic effects on mortality or morbidity risks (see also [11]). Section 3 presents 

modified version of the genetic SPM [9] that includes the dependence of the model’s 

components on the vector of observed (time-independent) covariates available at baseline and 

describes simulation studies illustrating the increase in power in joint analyses of genotyped and 

non-genotyped participants of a longitudinal study compared to analyses of non-genotyped 

participants alone in different scenarios to test relevant biologically-based hypotheses. Section 4 

discusses some applications of the approaches to real data. Section 5 discusses the results and 

possible generalizations of the approaches. 

 

2. Simulation Studies in Longitudinal Genetic-Demographic Model 

The longitudinal genetic-demographic model (or the genetic-demographic model for 

longitudinal data) is described in Arbeev et al. [8]. The full model combines three sources of 

information in the likelihood function: 1) follow-up data on survival (or, generally, on some 

time-to-event) for genotyped individuals; 2) (cross-sectional) information on ages at biospecimen 

collection for genotyped individuals; and 3) follow-up data on survival for non-genotyped 

individuals. In the simulation study presented in this section, we utilize only the first two 

sources. Of course, follow-up information for non-genotyped individuals provides an additional 

reserve for improving the power of genetic analyses but this simulation study illustrates that, 

even for the studies where genetic data are collected for all participants, the use of information 

on ages at biospecimen collection still makes a difference for the power of genetic analyses. 
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Let 0

kx , k = 1…K, be the ages at baseline (entry to the study) of individuals from the 

genotyped subsample of the data and let 0, kxm
x , m = 1…Mk, be their ages at the time of 

biospecimen collection. Denote by )()()( 000 ,0,1, kkk xmxmxm
xNxNxN   the number of individuals 

in the genotyped subsample who were aged 0, kxm
x  at the time of biospecimen collection and aged 

0

kx  at baseline. Here )( 0, kxmg xN  are the numbers of non-carriers (g = 0) and carriers (g = 1) of 

some allele/genotype. Let   denote the life span (it may be censored). Denote by )|( gGx   

the hazard rate for carriers/non-carriers and by ),|1()|( 0

,

0

, 00 kxmkxm
xxGPxx

kk

   the 

proportion of carriers at age 0, kxm
x  given that the individuals were aged 0

kx  at baseline. Denote by 

)|()( gGxPxSg    the survival functions for carriers/non-carriers and by )1(1  GPP  

the initial proportion (at birth) of carriers of the allele/genotype in a population, which is 

assumed here to be the same for different birth cohorts represented in the study. The total 

(population) survival function is then )()1()()( 0111 xSPxSPxS  . Conditional survival 

functions for the individuals aged 0

kx  at the baseline are ),|()|( 00

kkg xgGxPxxS   . The 

hazard rates for carriers/non-carriers can be of any parametric form, e.g., the Gompertz curves as 

in our simulations presented below. The proportions )|( 0

, 0 kxm
xx

k

  are: 

)|())|1(1()|()|1(

)|()|1(
)|(

0

,0

00

,1

0

0

,1

0

0

,
00

0

0

kxmkkxmk

kxmk

kxm xxSxGPxxSxGP

xxSxGP
xx

kk

k

k 


 ,  (1) 

where )(/)()|1( 00

11

0

kkk xSxSPxGP  .  

The likelihood function of the data on the ages at biospecimen collection ( AL ) and the 

likelihood function of the follow-up data ( FUL ) are [8]:  
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and  

 
   


K

k

M

m g

xN

i
xmigiFU

k k
xmg

k

i xSgGL
1 1

1

0

)(

1
,

0,

0 )|()|(~   ,    (3) 

where i  is a censoring indicator. The total likelihood function of the data relevant for genetic 

analyses of the genotyped subsample is the product of these two likelihood functions:  

AFUAFU LLL ~ .      (4) 

In our simulation studies we compared two methods of estimating parameters of the 

allele- or genotype-specific hazard rates: 1) the method that uses only follow-up data, i.e., the 

likelihood function FUL  (3); and 2) the method that uses both data on the ages at biospecimen 

collection and follow-up data, i.e., the likelihood function AFUL   (4). 
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We assumed that carriers and non-carriers of some hypothetical allele in a population 

have mortality rates GexGx  )()|( 0 , where the variable G denotes carriers (G = 1) or non-

carriers (G = 0), the baseline mortality )(0 x  is the Gompertz function, i.e., bxax  ln)(ln 0 , 

with 0.10ln a  and 09.0b , and the proportion of carriers at birth P1 = 0.25. We varied the 

parameter   from -0.5 to 0.5 with the interval 0.05 to simulate scenarios with different effect 

sizes. 

We generated a “general population” of 10,000,000 individuals assigning the genetic 

status (i.e., variable G) to individuals in accordance with the initial proportion P1. Then we 

generated life spans for all individuals from the respective probability distributions (i.e. , those 

corresponding to the hazard Gex  )(0
 for carriers and )(0 x  for non-carriers, with the 

parameters defined above). Then we assigned the hypothetical “age at entry” into the study to 

each individual in the population generated as a discrete random variable uniformly distributed 

over the interval 40 to 100 years. We assumed that individuals were genotyped at the baseline, 

i.e., their age at biospecimen collection coincides with age at entry. We collected a sample of 

4,500 individuals whose life spans exceeded their hypothetical “age at entry.” We considered 

two scenarios: a short follow-up period (6 years) and a long follow-up period (60 years). 

Individuals with simulated life spans exceeding “age at entry” plus respective follow-up period 

were considered censored at that age in the respective scenario (note that in the scenario with a 

long follow-up period almost all individuals experienced the event whereas in the scenario with a 

short follow-up period a substantial proportion of individuals is censored). This procedure was 

repeated 1,000 times (in each scenario with different   and follow-up period) to generate 1,000 

datasets which were estimated using the likelihoods (3) and (4).  

Fig. 1 (A) illustrates the empirical power (i.e., the proportion of datasets in which the null 

hypothesis H0: 0  was rejected at 05.0 ) in the scenario with a short follow-up and for 

different effect sizes (i.e., values of the parameter  ). We also fitted these empirical values with 

the power curves of a one-sample Z-test of the mean and found the values of the standard 

deviations that produced the best fit to the empirical power curves for each method (0.059 for 

“FU+A” (4) and 0.088 for “FU” (3)). Fig. 1 (B) shows the level of the test (shown as )(log10   

for better visibility) that yields power w=0.8, as a function of the effect size in both methods (the 

curves were calculated using the abovementioned values of standard deviations). Fig. 1 (C) and 

Fig. 1 (D) display similar quantities for the scenario with a long follow-up period.  

Fig. 1 (A) and Fig. 1 (B) illustrate that, in case of a short follow-up period, the use of 

information on ages at biospecimen collection in addition to follow-up data gives a substantial 

increase in power compared to the traditional approach that uses the follow-up data alone. For 

example, Fig. 1 (B) shows that for the effect size 3.0  p-value reduces approximately from 

10-2 to 10-5 and for the effect size equal to 4.0  p-value drops approximately from 10-4 to 10-

9. This means that many genetic variants which would not reach the genome-wide significance in 

genome-wide association studies (GWAS) using the traditional approach analyzing the follow-up 

data alone could become highly significant if the data on ages at biospecimen collection were 

also used. Fig. 1 (C) and Fig. 1 (D) reveal that this effect diminishes for a long follow-up period. 

In the case of a long follow-up period information from this long follow-up makes a more 

substantial contribution compared to information hidden in the distributions of ages at 

biospecimen collection. Conversely, in the case of a short follow-up period, distributions of the 
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ages at biospecimen collection play a more important role in differentiating the allele- or 

genotype-specific survival patterns compared to the follow-up data (in the case of a substantial 

proportion of censored individuals, as in our simulations).  

Our simulations thus illustrate that the additional use of information on ages at 

biospecimen collection may have important implications for GWAS of longevity or onset of 

diseases in cases with short follow-up periods (which are the majority of data currently 

available).  

 

Figure 1: Simulation studies in longitudinal genetic-demographic model: (A) Power in two 

methods (with follow-up only, “FU”, and follow-up and ages at biospecimen collection, 

“FU+A”) for different effect sizes (i.e., values of the regression parameter  ) and 05.0  in 

the scenario with a short follow-up period (6 years). The lines denote the fit of the empirical 

curves by the power curves of a one-sample Z-test of the mean (the standard deviations that 

produced the best fit are 0.059 for “FU+A” and 0.088 for “FU”). (B) The level of the test (shown 

as )(log10   for better visibility) that yields power w=0.8, as a function of the effect size in 

both methods (the curves are calculated using the abovementioned values of standard deviations) 

in the scenario with a short follow-up period (6 years). (C) is same as (A) but for a long follow-

up period (60 years). The standard deviations that produced the best fit are 0.032 for “FU+A” 

and 0.035 for “FU.” (D) is same as (B) but for a long follow-up period (60 years). 

 

3. Simulation Studies in Genetic Stochastic Process Model 
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The genetic stochastic process model was developed in Arbeev et al. [9]. Here we present 

its version modified to include the dependence of the model’s components on the vector of 

observed (time-independent) covariates available at baseline and describe simulation studies to 

illustrate the increase in power in joint analyses of genotyped and non-genotyped participants of 

a longitudinal study compared to analyses of only non-genotyped participants in different 

scenarios to test relevant biologically-based hypotheses.  

Let g, g = 1…G, denote the presence of allele/genotype g in the genome of an individual. 

We can specify the probabilities of having this allele/genotype, 
gp , conditional on some vector 

of time-independent covariates X. One possibility, for example, is to specify this probability 

using a multinomial logistic regression:  


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
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
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1
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
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,      (5) 

for g = 1…G-1, and 










1

1

101

1
G

g

X
G

T
gge

p


.      (6) 

Here “T” denotes transposition (we will use column vectors if not stated otherwise).  

Let tY  (t is age) be the stochastic process representing age dynamics of an M-dimensional 

vector of biomarkers in carriers of allele/genotype g with the following stochastic differential 

equation:  

 ttt dWXgtBdtXgtfYXgtadY ),,()),,()(,,( 1  ,   (7) 

with initial condition 
0t

Y . Here tW  is an M-dimensional vector Wiener process independent of 

the vector of initial values 
0t

Y  which represents external (and unobserved) disturbances affecting 

the trajectory of biomarkers. The strength of external disturbances is characterized by the 

MM   matrix of diffusion coefficients ),,( XgtB . The vector-function ),,(1 Xgtf  (having the 

same dimension as tY ) introduces the notion of allostasis into the model representing the age 

trajectories of biomarkers that organisms are forced to follow by the process of allostatic 

adaptation (see detailed description of the meaning of different components of the stochastic 

process model in Arbeev et al. [9]). The negative feedback coefficient in equation (7), the 

MM  matrix ),,( Xgta , describes the adaptive (homeostatic) capacity in an aging organism. 

The elements of this matrix correspond to the rate of adaptive response to any deviation of 

trajectories tY  from the trajectories ),,(1 Xgtf .  

The hazard rates for carriers of allele/genotype g conditional on the vector of biomarkers 

tY  and the vector of observed covariates X are given as: 

)),,()(,,()),,((),,(),,|( 000 XgtfYXgtQXgtfYXgtXgYt t

T

tt   .  (8) 
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Here ),,(0 Xgt  is the baseline hazard for carriers of allele/genotype g characterizing the risk 

that would remain if the vector 
tY  followed the trajectory ),,(0 Xgtf , and ),,( XgtQ  is a non-

negative-definite symmetric MM  matrix. The M-dimensional vector-function ),,(0 Xgtf  

introduces the concept of age-dependent physiological norm into the model and it corresponds to 

the values of biomarkers which minimize the risk at respective age for carriers of allele/genotype 

g. The matrix ),,( XgtQ  in the quadratic hazard term can be associated with the decline in 

resistance to stresses with age, as discussed in Yashin et al. [12, 13] and Arbeev et al. [14]. 

The likelihood function for the model (5)-(8) is a straightforward modification of the 

likelihood for the original model in Arbeev et al. [9] and is not presented here. Note that the 

likelihood function contains the parts for the genotyped and non-genotyped sub-samples and that 

both parts contain the same parameters of the model. Hence, the use of available information 

from the non-genotyped participants (i.e., the longitudinal measurements of biomarkers and 

time-to-event data) provides an opportunity for increasing the power compared to analyses based 

on the genotyped sample alone. The advantage of the genetic stochastic process model is that it 

has different components which represent specific biological concepts and aging-related 

mechanisms for which the respective parameters have clear biological interpretations. 

Dependence of the model’s components on variable g allows for formulating and testing 

different hypotheses on the presence of genetic effect of the alleles/genotypes on respective 

aging-related characteristics (such as stress resistance, adaptive capacity, age-dependent 

physiological norms, etc.). Below we present the results of simulation study that compares the 

power for testing of several such hypotheses in two approaches: 1) using only information from 

the genotyped participants; and 2) in joint analyses of the genotyped and non-genotyped 

individuals. 

We used the following specifications of the model’s components in simulations: 1) 

Gompertz baseline hazards: XtbaXgt g

X

gg   
00

ln),,(ln 0 , where g = 1, 2 for carriers and 

non-carriers of a hypothetical allele (genotype), 0ccX  , c is year of birth (cohort), 0c  = 

1890, in simulation #2 (see Table 1) and tbaXgt gg

00
ln),,(ln 0    in the other simulations; 2) 

linear functions for the multipliers in the quadratic hazard: tbaXgtQ g

Q

g

Q ),,( ; 3) linear 

functions for the mean allostatic trajectories: tbaXgtf g

f

g

f 11
),,(1  ; 4) linear functions for 

physiological norms: tbaXgtf g

f

g

f 00
),,(0  ; 5)  linear functions for the negative feedback 

coefficient in (7) representing the adaptive capacity of an organism: tbaXgta g

Y

g

Y ),,( , with 

0g

Ya  and 0g

Yb , 6) constant diffusion coefficients: 
gXgtB 1),,(  ; 7) normally distributed 

initial values of the process tY  with means ),,( 01 Xgtf j (where jt0  is age at the first exam for jth 

individual) and standard deviations g

0 ; and 8) initial probability of carrying the allele/genotype 

( 1p ) is independent of covariates X. The values of the respective parameters were chosen to 

provide realistic samples resembling real data on mortality in the Framingham Original cohort 

data [15] and with longitudinal dynamics tY  mimicking pulse pressure. See Table 1 summarizing 

parameters in different simulation studies.  

We performed six simulation studies for testing different biological hypotheses on 

genetic effects on aging-related characteristics (see columns “Null Hypothesis” and 
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“Interpretation of Null Hypothesis” in Table 2). In each scenario, we simulated 100 datasets 

with data on age at death/censoring and the longitudinal dynamics of 
tY  for 2,500 individuals 

followed up for 60 years with ages at baseline uniformly distributed over the interval 30 to 60 

years and with 30 biennial exams measuring 
tY . Year of birth c for simulation #2 was defined as 

1950 minus age at baseline. We assumed that 500 individuals have been genotyped and genetic 

data were not available for the rest of the sample. Power was estimated as the proportion of 

datasets in which the respective null hypothesis was rejected at the 0.05 significance level by the 

likelihood ratio test (see Table 2). For these purposes, we estimated the original (unrestricted) 

models and the restricted models that assume that respective parameters (highlighted in Table 1) 

are equal for carriers and non-carriers (simulation #2 assumes the restriction 0g

Xb ). Column 

“Gen. Only” in Table 2 corresponds to the likelihood that used only information from the 

genotyped participants and column “Gen. + Non-Gen.” displays the power for the likelihood 

with joint analyses of the genotyped and non-genotyped individuals. The table shows that joint 

analysis of the genotyped and non-genotyped individuals allows for a substantial increase in the 

power compared to analyses based on information from the genotyped participants alone thus 

making possible to reveal genetic effects on aging-related characteristics which would remain 

non-significant in analyses of the genotyped sample. 
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Table 1. Simulation studies in genetic stochastic process model: Parameters used to generate data (parameters used to define 
respective null hypotheses to be tested in each simulation are highlighted) 

S
im

u
la

ti
o
n

 

G 

Baseline Hazard  

( ),,(0 Xgt ) 

Quadr. 

Hazard  

( ),,( XgtQ ) 

Adaptive 

Capacity  

( ),,( Xgta ) 

Mean 

Allostatic 

Trajectory  

( ),,(1 Xgtf ) 

Physiological 

Norm 

( ),,(0 Xgtf ) 

Other Parameters 

ga
0

ln 
 gb

0
 g

X  
g

Qa  g

Qb  g

Ya  
g

Yb  
g

fa
1
 g

fb
1
 g

fa
0

 g

fb
0

 g

0  g

1  1p  

1 1 -9.0 0.080 
 

0.5 0.1 -0.25 1.0 45.0 0.20 45.0 0.1 5.0 4.0 0.25 

 
2 -8.5 0.082 

 
0.3 0.1 -0.20 1.0 50.0 0.25 40.0 0.1 5.0 4.0 

 
2 1 -9.0 0.080 -0.014 0.5 0.1 -0.25 1.0 45.0 0.20 45.0 0.1 5.0 4.0 0.25 

 
2 -8.5 0.082 -0.014 0.3 0.1 -0.20 1.0 50.0 0.25 40.0 0.1 5.0 4.0 

 
3 1 -9.0 0.080 

 
0.5 0.1 -0.25 1.0 45.0 0.20 45.0 0.1 5.0 4.0 0.25 

 
2 -8.5 0.082 

 
0.5 0.4 -0.20 1.0 50.0 0.25 40.0 0.1 5.0 4.0 

 
4 1 -9.0 0.080 

 
0.5 0.1 -0.22 1.0 45.0 0.20 45.0 0.1 5.0 4.0 0.25 

 
2 -8.5 0.082 

 
0.3 0.1 -0.20 1.0 50.0 0.25 40.0 0.1 5.0 4.0 

 
5 1 -9.0 0.080 

 
0.5 0.1 -0.25 1.0 45.0 0.20 45.0 0.1 5.0 4.0 0.25 

 
2 -8.5 0.082 

 
0.3 0.1 -0.20 1.0 46.0 0.20 40.0 0.1 5.0 4.0 

 
6 1 -9.0 0.080 

 
0.5 0.1 -0.25 1.0 45.0 0.20 50.0 0.1 5.0 4.0 0.25 

 
2 -8.5 0.082 

 
0.3 0.1 -0.20 1.0 50.0 0.25 40.0 0.1 5.0 4.0 

 

Notes: 

1) Some parameters are rescaled for better visibility in the table: g

Qa
 
is multiplied by 104; g

Qb  is multiplied by 105; 
g

Yb  is 

multiplied by 103. 



 11 

 

Table 2. Simulation studies in genetic stochastic process model: Power (for 05.0  and effect sizes defined by respective 
parameters from Table 1) in case of the likelihood estimating only data on genotyped individuals (column “Gen. Only”) and 

data on both genotyped and non-genotyped individuals (column “Gen. + Non-Gen.”) 

Simulation Null Hypothesis Interpretation of Null Hypothesis 
Power 

Gen. Only Gen. + Non-Gen. 

1 ),(),,( 00 XtXgt    No genetic effect on baseline hazard 0.42 0.85 

2 ),(),,( 00 gtXgt    No cohort changes in baseline hazard 0.25 0.89 

3 ),(),,( XtQXgtQ   No genetic effect on stress resistance 0.41 0.90 

4 ),(),,( XtaXgta   No genetic effect on adaptive capacity 0.40 0.82 

5 ),(),,( 11 XtfXgtf   No genetic effect on mean allostatic trajectory 0.71 0.89 

6 ),(),,( 00 XtfXgtf   No genetic effect on physiological norm 0.44 0.91 
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4. Applications 

Applications of the genetic-demographic model and the genetic SPM have been 

performed in our recent publications [8, 10, 16, 17]. These applications allowed making 

important insights on the genetics of aging and longevity and the genetic determinants of 

aging-related mechanisms.  

Here we discuss one application of the genetic SPM related to estimating genetics 

of stress resistance from longitudinal data. Typically, longitudinal data on aging in humans 

contain limited (if any at all) information on longitudinal dynamics of biomarkers which 

can be associated with stress resistance and would allow for investigating the genetic 

component of decline in stress resistance with age. The genetic SPM allows evaluating this 

important aging-related component indirectly from the estimates of the U-shaped mortality 

risk as a function of observed covariates. Eq. (8) in the one-dimensional case is represented 

by a quadratic function: 

2

00 )),,()(,,(),,(),,|( XgtfYXgtQXgtXgYt tt   .   (9) 

The value of Q(t,g,X) in (9) can be associated with stress resistance because it regulates the 

width of the U-shaped risk function (as a function of the risk factor Y). If the value of this 

coefficient is small then the U-shape is wide and the risk function is less sensitive to small 

deviations of the risk factor Yt from the norm (f0(t,g,X)). This can be associated with better 

stress resistance. If the value of this coefficient is large then the U-shape is narrow and the 

risk function is sensitive to small deviations of Yt from the norm which corresponds to 

worse stress resistance. With age, the width of the U-shape can change. For example, if it 

narrows with age (i.e., Q(t,g,X) is an increasing function of t) then this can be linked to the 

phenomenon of the aging-related decline in stress resistance (see more discussion on the 

topic in [14]). The genetic SPM allows estimating this component (Q(t,g,X)) as a function 

of allele/genotype g, i.e., one can evaluate whether carriers and non-carriers of some 

specific allele/genotype differ in their stress resistance and/or the dynamics (decline) of 

stress resistance with age. 

Fig. 2 illustrates changes in stress resistance with age for carriers and non-carriers 

of the APOE e4 allele in participants of the Framingham Original Cohort showing the 

quadratic component of the conditional hazards considered as functions of serum 

cholesterol (see detailed description of computations and the data in [10]). This figure 

shows that stress resistance (i.e., the width of the U-shaped mortality risk) among carriers 

of the APOE e4 allele declines faster with age than among non-carriers of this allele (and 

also that males tend to have worse stress resistance than females, see also [14]).  
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Figure 2: Application of genetic SPM to data on mortality and longitudinal dynamics of 

cholesterol in carriers and non-carriers of the APOE e4 allele in the Framingham Original 

Cohort: Changes in the U-shapes of mortality risks with age  

 

5. Discussion 

In this paper we presented different approaches that can be applied to work with 

rich data available in the modern longitudinal studies of aging, health, and longevity that 

started collecting genetic information in addition to follow-up data on events and 

longitudinal measurements of biomarkers.  

The longitudinal genetic-demographic model described in Section 2 and in [8] 

provides the method to enhance genetic analyses of time-to-event outcomes from 

longitudinal data combining several sources of information: follow-up data on the outcome 

of interest (e.g., mortality) for genotyped individuals, information on age structure of the 

population at the time of biospecimen collection, and follow-up data on respective events 

for non-genotyped participants. Such joint analysis of genotyped and non-genotyped 

individuals can result in substantial improvements in the power and accuracy of estimates 

compared to analyses of genotyped subsample alone if the proportion of non-genotyped 

participants is large. Such situations when genetic information cannot be collected for all 
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participants of longitudinal studies are not uncommon. They can arise because of several 

reasons: 1) the longitudinal study may have started at some time before genotyping was 

added to the study design so that some initially participating individuals dropped out of the 

study (i.e., died or were lost to follow-up) by the time of genetic data collection; 2) budget 

constraints prohibit obtaining genetic information for the entire sample; 3) some 

participants refuse to provide samples for genetic analyses. Nevertheless, even in the case 

when genotyped individuals constitute a majority of the sample or the entire sample, 

application of such an approach is still beneficial in terms of the accuracy and power 

because it takes into account the population structure at the time of biospecimen collection 

which has additional information on genetic effects on the risk of death complementing the 

follow-up data [11]. We should still note here that, clearly, any statistical model is just an 

approximation of the reality and the use of even the most advanced models does not 

undermine the need to collect large-scale genetic data in longitudinal studies. We note also 

that the genetic-demographic model presented in Section 2 and in Arbeev et al. [8] uses 

parametric specifications of allele- or genotype-specific survival functions. More flexible 

specifications such as semiparametric and non-parametric models or methods that correct 

for unobserved heterogeneity effects can be formulated [5].  

The genetic stochastic process model presented in Section 3 adds a new dimension 

to genetic biodemographic analyses combining information on longitudinal measurements 

of biomarkers available for participants of a longitudinal study in addition to follow-up 

data and genetic information. Such joint analyses of different sources of information 

collected in both genotyped and non-genotyped individuals allow for a more efficient use 

of the research potential of longitudinal data which otherwise remains underused if only 

genotyped individuals or only subsets of available information (e.g., only follow-up data 

on genotyped individuals) are involved in analyses. Similar to the longitudinal genetic-

demographic model presented in Section 2, benefits of combining data on genotyped and 

non-genotyped individuals in the genetic SPM come from the presence of common 

parameters describing respective characteristics of the model for genotyped and non-

genotyped subsamples of the data. This takes into account that the non-genotyped 

subsample is a mixture of carriers of the same alleles or genotypes represented in the 

genotyped subsample and applies the ideas of heterogeneity analyses [18]. When the non-

genotyped subsample is substantially larger than the genotyped subsample then these joint 

analyses can lead to a noticeable increase in the power of statistical estimates of genetic 

parameters compared to estimates based only on information from the genotyped 

subsample. This approach is applicable not only to genetic data but to any discrete time-

independent variable which is observed only for a subsample of individuals of a 

longitudinal study. 

The genetic stochastic process model enhances biodemographic analyses allowing 

for evaluating hidden components of aging (such as age-specific physiological norms, 

allostasis and allostatic load, decline in adaptive capacity and stress resistance with age)  

that are typically not directly measured in longitudinal data and, hence, can be estimated 

only indirectly. Apparently, different components and mechanisms characterizing the same 

process of aging should be mutually dependent and work in concert. Therefore, unification 

of such concepts in a comprehensive model of aging is an important step forward to the 
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development of a systemic methodology in aging research. As the original stochastic 

process model, the genetic SPM allows working with several mechanisms of aging-related 

changes under the overarching framework of one statistical model. In addition, the genetic 

SPM evaluates genetic effects on such mechanisms thus providing deeper insights on 

genetic determinants of the processes of aging affecting mortality and morbidity risks. It 

permits addressing new questions in biodemographic analyses concerning genetic 

influence on the aging-related changes in humans, which cannot be studied using 

conventional approaches, for example, the joint models or standard demographic methods. 

Simulations in Section 3 provide several examples of hypotheses that can be tested using 

the genetic SPM and illustrate the differences power resulting from the addition of 

information on non-genotyped individuals to the analyses. 

Several practical considerations should be mentioned about applications of the 

genetic SPM to real data. As any parametric model, the genetic SPM relies on the 

description of its components as specific parametric functions. Although the basic 

components of the model (such as the quadratic shape of the hazard, physiological norm, 

average allostatic trajectory, negative feedback coefficient) are all based on the solid 

biological theories that justify their presence in the model, the specific parametric forms of 

these components are unknown and may be hard to justify biologically. Moreover, these 

components generally cannot be empirically evaluated from the real data to guess their 

parametric form because they model hidden components of aging process not directly 

associated to any measurable variables in the data (one exception might be the baseline 

hazard rate which, with some degree of relevance, can be assumed to have the same shape 

as the hazard rate in the total population, e.g., Gompertz, Weibull, gamma-Gompertz, or 

gamma-Weibull baseline rates can be chosen depending on the application). Therefore, it is 

advisable to perform sensitivity analyses with different parametric specifications of the 

components of the model, e.g., linear, quadratic, or higher order polynomial functions, and 

select the best fitting model using formal criteria such as the likelihood ratio test for nested 

models or the Akaike Information Criterion for non-nested models. 

The specific type of genetic influence on the hidden components of aging is not 

known a priori. Thus, versions of the model with different types of genetic influences 

should be tested in applications. For example, dominant, recessive, or additive form of 

action of the minor allele on respective characteristics can be investigated. Similarly, joint 

analyses of two or more genetic markers might be of interest in applications. The genetic 

SPM can be straightforwardly extended to work with multiple genetic markers. However, 

this results in a larger number of parameters and a smaller number of individuals in 

different groups that can reduce the reliability of estimates. 

Computational burden should always be taken into account in practical 

implementations of statistical methods especially in large-scale problems involving studies 

with large sample sizes and/or extensive amounts of genetic data. For example, genome-

wide association studies (GWAS) data are collected in different longitudinal studies that 

can contain millions of single nucleotide polymorphisms (SNPs) for thousands of 

participants (see the dbGaP website, http://www.ncbi.nlm.nih.gov/gap?db=gap). For such 

data, computational burden of the parameter estimation procedure in the genetic SPM 

http://www.ncbi.nlm.nih.gov/gap?db=gap
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suggests that its routine application to each SNP in the dataset is not feasible for modern 

computers, especially in high dimensional cases. At the present time, a more relevant 

application of this model is to work with a much smaller set of SNPs pre-selected 

according to some criterion [19]. The likelihood estimation procedure in the longitudinal 

genetic-demographic model is considerably faster and, therefore, it is suitable for large-

scale applications. Our experience with the version of the model by Arbeev et al. [8] 

indicates that estimation of GWAS data on thousands of individuals and more than a 

hundred thousand SNPs can be performed in a reasonable time. Nevertheless, both the 

genetic SPM and longitudinal genetic-demographic models can be used in studies with 

candidate genes or SNPs to investigate their connections with mortality risk and risks of 

diseases and to evaluate genetic contribution into hidden components of aging that affect 

these risks. 

Several further generalizations of the methods to evaluate genetic influence on 

hidden components of aging can be considered. As discussed in Yashin et al. [20], ignoring 

hidden heterogeneity in a population due to the presence of latent subpopulations defined 

by some unobserved characteristics can lead to erroneous conclusions concerning 

biological regularities of aging-related processes estimated by the stochastic process 

model. The same, of course, is true for the genetic SPM. Therefore, the generalization of 

the genetic SPM to include latent classes can be useful for sensitivity analyses to test the 

presence of hidden heterogeneity that can affect the results of the genetic SPM.  

Another direction for possible extension of the genetic SPM concerns 

“individualization” of longitudinal trajectories. In its present form, all individuals in the 

model have the same (“population”) parameters of the adaptive capacity and the allostatic 

trajectory. Respective parameters of these components can be assumed as random variables 

or realizations of some stochastic process to describe individual patterns of adaptive 

capacity and the allostatic load. Although in this case such additional random effects and 

the “original” random process (i.e., the Wiener process tW  in the equation for the 

dynamics of longitudinal biomarker tY  (7)) may “compete” for the same correlation 

structure in the longitudinal data, so that the feasibility of such an approach needs careful 

investigation. See also relevant discussion on the use of complicated random effects 

structures vs. the use of stochastic processes in the joint models literature [21, 22]. 

Investigation of genetic effects on hidden components of aging and their relation to 

risks of death and onset of diseases can also be performed in the framework of extended 

versions of the stochastic process model aimed at analyses of dependent competing risks 

[23, 24], and data on individual health histories and mortality [25] that analyze longitudinal 

data collected using different observational plans [26]. Such analyzes would allow 

addressing many new problems that cannot be investigated using standard approaches. For 

example, one can reveal the role of genetic factors in competing risks of death without 

traditional assumption on independent risks for different causes of death, investigate how 

genes affect hidden mechanisms of aging manifested in the longitudinal dynamics of 

physiological variables, and explore their relation to these dependent competing risks. The 

introduction of jumping components describing health states in the model allows for 
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comprehensive analyses of genetic effects on both fast changes in health status and slower 

changes in physiological state of an organism associated with aging processes, and their 

effects on mortality. This can help in uncovering pre-disease physiological pathways and 

differences in respective aging-related characteristics among carriers of different alleles or 

genotypes. 
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