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Abstract

I analyze the age at death of 121,524 European nobles from 800 to 1800. Longevity
began increasing long before 1800 and the Industrial Revolution, with marked increases
around 1400 and again around 1650. Declines in violence contributed to some of this
increase, but the majority must reflect other changes in individual behavior. The areas
of North-West Europe which later witnessed the Industrial Revolution achieved greater
longevity than the rest of Europe even by 1000 AD. The data suggest that the ‘Rise
of the West’ originates before the Black Death.

1 Introduction

The ‘Rise of the West’ has recently been traced to events long preceding the Industrial
Revolution1. This paper shows how the spatial patterns of the lifespans of Europe’s nobility
suggest a European mortality pattern that has existed since 1000 AD. The parts of Europe
that later experience the Industrial Revolution first (the North-West) have higher lifespans
than those who later lag behind (the South-East). Nobles transform their behavior over
the long run. Before 1550, about 30% of noble men die in battle. After 1550, the figure is
less than 5%. Surprisingly, the Black Death and subsequent waves of pestilence kill nobles
at a lower rate than the general population and the lethality is higher for women. There
is a structural break in noble lifespan about 1400, where lifespan increases from around 50
to 55. These findings suggest that the origin of the divergence of the ‘West and the rest’
has its origin even earlier than recent research suggests.

∗Dept. of Economic History, London School of Economics. Email: n.j.cummins@lse.ac.uk. I thank Greg
Clark, Morgan Kelly, Alan Fernihough and Cormac Ó Gráda for valuable suggestions. This research would
have been impossible without the incredible genealogical labors of the Church of Jesus Christ of the Latter
Day Saints.

1See, for example, Clark (2007), Acemoglu and Robinson (2012), Voigtländer and Voth (2013) and
Broadberry (2013).
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The emergence of modern economic growth during the Industrial Revolution was ac-
companied by an explosion in Europe’s population. Demographic factors are not tangential
to mankind’s escape from the Malthusian nightmare: they are theorized to have played
a causal role (Becker et al. (1990); Clark (2007); Galor (2004)). The reasons behind the
modern rise in lifespan are debated2. One notable absence for these debates is an interna-
tional time series to characterize trends over the long run. A major issue is the fact that
before 1538, individual level demographic data is sparse3. However, one sub-population
that have left abundant evidence of their lives are the European nobility. This analysis
exploits recent mass digitization of family trees to examine trends in adult lifespan over
the millennium between 800 and 18004.

The paper is complimentary to recent work by David et al. (2010) and de la Croix and
Licandro (2012)5. David et al. (2010) use Alison Weir’s genealogy of the British Royal
family to explore the evolution of life expectancy between 1500 and 1799. de la Croix
and Licandro (2012) use a data-set of over 300,000 famous people from the Index Bio-
bibliographicus Notorum Hominum examine the long time trend in lifespan. They argue
that average age at death was stationary until the birth cohort of 1640. However, they
decide to omit any analysis of the time-trend in lifespan before the 15th century; They
only estimate trends post-1430 (see their figure 6, p.15). This analysis examines trends
beginning over six centuries before either David et al. (2010) or de la Croix and Licandro
(2012).

This paper has 6 sections. Section 2 discusses the data, section 3 details the method-
ology for the analysis while section 4 presents the results. The results section has four
principle subsections: On violence (4.1), plague (4.2), time-trends (4.3), spatial patterns
and time-trends by region (both 4.4). Section 5 discusses the implications of these findings
and section 6 concludes. The appendix details the underlying distributions and supple-
mentary regression results. A separate stand alone appendix (Cummins (2014)) details
the data collection strategy of 1.3m records, the date coding of 402,204 string dates, the
Geo-coding of 117,975 unique addresses, the categorization of nobles into 17 ranks and a
sample of random sources and observations6.

2See Cutler et al. (2006) for a brief summary. For more detail see Schofield et al., eds (1991).
3In 1538, Thomas Cromwell orders all churches in England and Wales to keep a register of births,

deaths and marriages. Similar rules come into effect on the continent around this time. These parish
registers dominate our understanding of the preindustrial demographic world via the seminal contributions
of Wrigley and Schofield (1981); Wrigley et al. (1997); Henry (1972); Henry and Houdaille (1973); Henry
(1978); Houdaille (1976).

4Existing demographic studies of Europe’s aristocracy included Hollingsworths’ analysis of the British
Ducal families and peerage, Peller’s analysis of Europe’s ruling families and Levy and Henry’s analysis of
French nobility (Hollingsworth (1957, 1964, 1975, 1977); Peller (1965); Levy and Henry (1960)).

5Fire and Elovici (2013) is similar in terms of data collection strategy. (See stand alone appendix for
details).

6Further, a list of the 3,133 sources will be provided in a data file on my website, neilcummins.com.
Following publication, replication files and data will be provided there too.
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Tree ID Tree Title N Nsources

1 British Isles. Heraldic Baronage 14,799 1
2 British Isles. Peerage,

Baronetage, and Landed Gentry. 225,220 273
6 England. Leicester. Long Clawson. 20,739 10
7 England. London. Residents. 296,738 90
9 England. London. Visitation, 1664 4,686 1

10 England. Norfolk. 1563 Visitation. 23,098 1
12 England. Sussex. Genealogies. 20,508 2
14 Europe: Royal and Noble Houses 332,511 2,040
16 Ireland. Early Irish Families 4,295 129
17 Wales. Welsh Medieval Nobility and Gentry 267,857 713

Notes: The family tree records were constructed from published sources
by the LDS church and various collaborators. They are available at
https://histfam.familysearch.org.

Table 1: The Sample of Family Trees

2 Data

‘Baptism for the dead’ is a doctrine of the church of Jesus Christ of the Latter Day Saints
(LDS). The practice is mentioned in the Bible (Corinthians chapter 15, verse 29, The
Holy Bible King James Version (2014)). The founder of the LDS church, Joseph Smith,
revived the practice in 1840 and ever since, church members have been collecting historical
genealogical data and baptizing the dead by proxy. The church has been at the frontier
of the application of information technology to genealogy and has digitized a multitude
of historical records. Today they make the fruits of their research available online at
familysearch.org. The records number in the billions.

This analysis uses records from family trees. The source of the data is histfam.familysearch.org
a collaboration between the LDS church (familysearch) and individual genealogical ex-
perts. Table 1 reports the titles, sample size and number of sources for the ten family trees
databases used in this paper. The individual entries are constructed from published works
such as Burke and Burke’s “A Genealogical and Heraldic Dictionary of the Peerage and
Baronetage”, (Burke and Burke (1881b)) “An Official Genealogical and Heraldic Baronage
of England” Paget (1957) and Boyd’s “Pedigrees with index of London citizens, abt. 1600-
1800” (Boyd (1954)), numerous other published genealogical works, guild records, census
records, parish registers, wills and other published family genealogies. Boyd and Burke
and Burke are the leading sources (providing 295,892 and 127,269 records respectively),
followed by de Sainte-Marie and de Sainte-Rosalie (1728) (73,723) and Schwennicke (2005)
(70,835)7. The ten family trees used here are summarized in table 1.

How reliable is this data? Is it fiction? We can examine the distributions of age at
death by period and see if fantastical ages are being attributed or if some average is just

7The complete list of the 3,117 sources will be provided as a separate pdf file (as it runs to 204 pages).
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blankly applied. This does not appear to be the case - The basic shape of these distribution
reveals patterns that seem to reflect a fairly consistent underlying pattern - See figures 20
and 21. It does not appear that some different process (e.g. speculative guesswork) is
driving the pattern more or less as we go towards the 16th century, where we know the
data is much better (and can be corroborated with parish records etc.)8. The connection of
each individual record to its source(s) is a sign that at least the digitization and collation
is of a tractable design. By making the underlying analytical data freely available I also
invite other scholars to replicate my analysis here.

Family trees are an under-utilized resource for academic research. This is perhaps re-
lated to the difficulty of making the records amenable for statistical analysis. The family
tree records used here contain 402,204 unique date descriptions. The entries are incon-
sistent, of varying quality and sometimes refer to different calendars at different points in
time. I have standardized all of these dates to decimal values of years, using random attri-
bution for missing months and days. This process is described in detail in the stand-alone
appendix (Cummins (2014)). The quality of the dates recorded improved greatly over time
(as indicated by the extent of an index of heaping (an excess of years ending in 0 or 5) in
figure 1).

As table 1 details, the majority of the sample consists of individuals connected to
European nobility. This sample is in no way representative of the general population. This
is an extremely elite subsection. This paper makes no claims about the general population,
just this elite sub-section. However, the nature of the selection undoubtedly changes over
time. How does an individual born in 850 make it in to the data, versus someone born in
1650? Each record in the family tree data used here contains an indicator of nobility via the
‘suffix’ variable. I have assigned all 7,607 unique suffix values to 1 of 17 simple ‘noble rank’
categories from 1 (Emperor) to 17 (no suffix). The ranking is inferred from general sources
such as such as Doyle (2010) and also Burke and Burke (1881a). The exclusiveness of the
sample declines as the centuries pass (See the stand alone data appendix for detail on this).
The family trees artificially select for ‘successful’ offspring and ancestors, neglecting the
‘failures’. However, as the standing of each member of the family is recorded via a suffix,
the section based on success is directly observed. Thus I can control for the changing
exclusivity of the sample over time.

There are more selection issues: Omission is heavy. For example, there are more men
recorded than women, and there is wild under representation of infant and child deaths,
before 1500. I argue that this genealogical data is amenable for scientific analysis because
firstly, the variable of prime interest, age at death can be restricted to those dying at age
20 and over. Secondly, the nature of the changing composition of the sample is directly
observed and this can be controlled for in the analysis (e.g. sex, suffix, data type, family
tree and geographic composition). Finally, I must stress that this analysis only concerns a

8However, the unusual shape of male age at deaths in the 8th century is perhaps suggestive of some
attribution, but the sample size is relatively small here and the pattern does not seem to be any different
for women.
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Figure 1: Year ‘Heaping’ over Time
Notes: H = 5/4 ∗ (X − 20) where X is the percentage of birth, death or marriage years ending in 0 or
5. Where events are reported accurately by year H will average 0. H = 1 implies all dates are being
approximated. Births suffer severely from ‘heaping’ whilst marriages and deaths do not. Source: Noble
sample.

very elite subsection of the human population.
Table 2 reports the counts by family tree and birth decade for those observations where

both birth and death dates are recorded. Each individual has been geocoded. Figure 2
displays the geographic distribution of the full sample. In the analysis, family tree and
geography are controlled for in all regressions. Of the 1,329,466 individual records, 168,167
have age at death recorded: 121,524 have an age at death over 20. 76,403 have a specific
day of death. These observations form the basis of the analysis conducted here. A stand
alone appendix (Cummins (2014)) describes in considerably more detail the construction
of this data set.

5



Tree ID
1 2 6 7 9 10 12 14 16 17

pre-800 11 280 162 86
800 30 311 55 69
900 39 570 81 108

1000 6 121 1,031 56 148
1100 51 215 1,910 70 249
1200 385 480 1 1 2,981 66 353
1300 350 743 1 3 9 4,768 50 492
1400 98 877 26 24 12 6,564 113 838
1500 10 2,911 6,694 41 430 569 13,193 84 3,418
1600 10,094 85 21,887 333 723 1,546 11,904 149 7,353
1700 16,399 155 8,007 10 302 1,030 2,932 92 7,392
1800 18,852 137 588 18 434 818 16 3,134
1900 933 1 6 27 27

Notes: See table 1 for tree titles. The paper examines the 800-1800 period where the
data is dense enough to allow robust estimation. Source: Noble sample.

Table 2: Counts by Century and Tree ID, Age at Death Observed

Figure 2: Density of Observations
Notes: This is a simple scatter plot of the attributed geocoded addresses. There are 117,975 variations
of addresses of birth, marriage and death detailed in the 1.3m family tree records. See the stand alone
appendix details on the geocoding. Source: Noble sample.
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3 Methodology

This section details the empirical strategy that aims to characterize trends in lifespan
amongst European nobility from 800 to 1800. Table 3 presents the summary statistics9.

Firstly, I analyze those records with a specific day or month of death to measure the
significance of violence and plague in noble mortality (sub-section 4.1 and 4.2). Both
matter.

Following this, I apply sequentially, an OLS model, a quantile regression model and a
Bayesian Additive Regression Tree (BART) model to an estimation equation of the form:

AgeD = C + DFemale + Lat + Long +
101∑
i=1

DBirthDecade2 +
17∑
i=1

DNobleRank + DBastard

+DV iolent +
10∑
i=1

DTree +
4∑

i=1

DDateQB +
4∑

i=1

DDateQD + ε (1)

Where AgeD = Age at Death (for those over 20), C is a constant, DFemale is a female
dummy, Lat and Long are (attributed) latitude and longitude, DBirthdecade2 are a set
of 101 categorical variables indicating the 20 year interval of birth from 240BC to 1960.
(However, the data only become dense enough to estimate time-trends in the ninth century.)
DNobleRank is a set of 17 categorical variables indicating noble rank10, DBastard equals one
where an individual is the result of an illegitimate union, DV iolent is a dummy indicating
where the death is likely violent (see subsection 4.1), DTree identifies the family tree of
origin and DDateQB and DDateQD are indicators (1-4) for the quality of the data for both
birth and death respectively (Here data quality refers to the precision of the date estimate
- See the stand alone appendix for detail on this).

The empirical challenge is to extract from the noisy data the major time and spatial
trends in noble lifespan while controlling for the changing selectivity and composition of the
sample. Equation 1 captures this by directly including controls for sex, geography, noble
rank and an indicator for a violent death. Further, the family tree of origin is included
as a categorical variables as are 12 separate data quality variables. Every possible co-
variate that could confound our characterization of the time-trends that can be included
has been included. The resulting coefficient estimates on the set of birth period dummies
can therefore be interpreted as representing the controlled time trend.

9The average latitude and longitude correspond to a field beside Pellingford Brook in East Sussex, the
South of England.

10Nobles are ranked in rough order of prestige: 1: Emperor, 2: King, 3: Grand Duke, ArchDuke, Ancient,
4: Duke, 5: Prince-Elector, Prince, 6: Earl, Count, 7: Marquess, Margrave, 8: Viscount, 9: Baron, 10:
Baronet, 11: Knight, 12: Esquire, Gentleman and unassigned nobility, 13: Lord, 14: Geographic, 15:
Military, 16: Religious, 17: Occupational and 18: No Suffix, Meaningless Suffix. See the stand alone
appendix, Cummins (2014), for detail.

7



Statistic N Mean St. Dev. Min Max

DFemale 121,478 0.35 0.48 0 1
Birth day in year 121,524 181.75 105.31 1 365
Birth year 121,524 1618.29 200.66 −229 1961
Death day in year 121,524 180.35 106.63 1 365
Death year 121,524 1674.74 203.56 −186 2013
NSources 121,524 2.05 2.45 1 63
Noble Rank 121,524 0.29 0.45 0 1
Latitude 121,524 50.99 7.02 −46.41 69.82
Longitude 121,524 −0.01 16.13 −162.05 179.82
Age at Death (> 20) 121,524 56.94 18.84 20.00 122.95

Source: Noble sample.

Table 3: Summary Statistics

In addition, I have employed several econometric methodologies. Distributions of age
at death for the noble data sample are reported in the appendix (figures 16, 17, 20 and 21).
The distributions are multi-modal. There are some striking features, particular related
to pronounced female mortality during the peak child bearing years (see figure 17 for
the sample as a whole, the effect is spectacularly strong in London, figure 19 ). This
effect disappears at upper end of the age distributions. To deal with the variety of effects
that could change the mortality environment at different quantiles of the age at death
distribution I employ quantile regression to examine time-trends for the .1, .25, median,
.75 and .9 percentiles. The estimating equation is the same as equation 1 so the results
can be directly compared with those estimated for the mean by OLS.

After examining the data for a common time trend I test for spatial heterogeneity via
heat-maps and the separate estimation of equation 1 across sub-periods. To deal with the
potential non-linear effects of geography, I run a regression of the form:

AgeD = C + DFemale +
106∑
i=1

DLat +
214∑
i=1

DLong +
101∑
i=1

DBirthDecade2 +
17∑
i=1

DNobleRank

+DBastard + DV iolent +
10∑
i=1

DTree +
4∑

i=1

DDateQB +
4∑

i=1

DDateQD + ε (2)

Equation 2 is exactly the same as equation 1 except for the inclusion in equation 2 of
dummy variables for each integer value of longitude and latitude in the sample. Finally, I
divide my sample into seven separate geographic regions and use a BART model to predict
noble longevity across time and space, fully accounting for the inherent non-linearity and
heterogeneity.
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Regression trees use algorithms to grow ‘trees’ that recursively divide samples of the
data along values of predictor variables that best fit the observed outcome (how regressions
based upon those divisions predict the rest of the data decide the fit). BART models are a
sum-of-trees approach that allow interaction and additive effects using priors to keep the
individual tree effects small (and approximating a different part of the unknown function).
To fit the model, BART uses an iterative Markov-chain Monte Carlo algorithm (Chipman
et al. (2010), Green and Kern (2012)). Here age at death can be modeled as the outcome of
the predictor variables listed in equations 1 and 2 (denoted as X). The unknown function is
approximated by m regression trees of structure T with terminal node parameters (leaves)
L11:

AgeD = f(X) + ε ≈ TL
1 (X) + TL

2 (X) + . . . + TL
m(X) + ε (3)

The advantages to using this relatively new methodology is that it allows for model free
variable selection (each variable can be assessed in terms of its predictive importance), no
assumptions about functional form and the ability to incorporate heterogeneous, interactive
and additive effects. For the description of noble longevity across one thousand years and
ten million square kilometers, the choice of this approach seems appropriate12.

4 Results

4.1 A History of Violence

European nobility specialized in the execution of violence. Their genealogies connected
them to the Barbarian conquerors of Europe following the decline of the Roman Empire.
We can expect that a large proportion, especially of the men, died in battle. How can we
know if a individual in the data dies from violence? Where the individual has a specific date
of death (an exact day), we could link that date to a list of all known battles in European
history. However, many battles have been lost from history’s memory. The genealogical
records of noble deaths themselves may be the only remnant of minor dark age skirmishes.

To investigate how many nobles died from violence, I employ a general version of the
famous birthday problem. First year statistics students are often introduced to proba-
bility via the surprisingly low number of people it takes to have a high probability of a
shared birthday. If we take the number of exact-date deaths per year, n, and the observed
shared death days in a given year, m, we can calculate the probability that this will occur
randomly13.

11See Kapelner and Bleich (2013, p.3). Birth year is included instead of period dummies.
12The model was estimated in R using the bartmachine package Kapelner and Bleich (2013). In addition

quantile regression forests are used to predict the uncontrolled (reported in the appendix).
13For example, if there are 30 deaths in a year, the probability that two people share a death day, if death

days are distributed randomly over 365 days of a typical year is about .70. The probability of three people
sharing a death day is about .03.
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m Date n Battle

88 9 Sep 1513 148 Battle of Flodden
83 25 Oct 1415 154 Battle of Agincourt
36 9 Jul 1386 80 Battle of Sempach
23 10 Sep 1547 112 Battle of Pinkie Cleugh
22 26 Aug 1346 77 Battle of Crécy
16 10 Aug 1557 151 Battle of St. Quentin
15 1 Jul 1690 144 Battle of the Boyne
15 19 Jul 1333 58 Battle of Halidon Hill
15 11 Jul 1302 43 Battle of the Golden Spurs
14 29 Mar 1461 60 Battle of Towton

Notes: Calculated for the “Europe: Royal and Noble
Houses” family tree only (to ensure no duplicates skew
the calculation). All of these battles had heavy noble
casualties. Source: Noble sample.

Table 4: Ten most frequent exact death dates

Table 4 reports the top 10 dates of death in the database. Each of these dates cor-
responds to a major European battle. Using the observed ranges of n and m (2-88 and
1-1,935 respectively), expected probabilities of coincident days of death were calculated.
14. These values are reported in figure 3. After m = 13, the expected probabilities of any
coincident dates of death in the sample is never above .5. All of these dates are assigned
as ’likely violent’. Below 14, I assigned all dates as likely violent where the expected prob-
ability for that number of shared death days is below .5. Figure 4 reports the time-path
of an index of violent deaths, averaged over family tree and death half century15.

A useful, endogenous test of this procedure is to examine the ’violent’ deaths by sex.
Women were far less likely to die in battle and the assignment algorithm does a good job -
See figure 22: Female violent deaths are much lower than male violent deaths and exhibit
no trend over time16.

In order to examine the determinants of a violent death and to calculated a controlled
time trend, a logistic regression is run of the form:

14The procedure is extremely sensitive to duplicates. Therefore the m and n combinations for each exact
death date were calculated by family tree.

15The index was calculated for each family tree, where possible. However, the family tree data set for
Leicester, Long Clawson gave perverse results, e.g. nearly 32% of females dying violently (based on this
procedure). This was because Long Clawson was a relatively small parish and all the death dates were
actually burial dates. Therefore the tendency for burials to be clumped in smaller parishes resulted in a
misattribution of these deaths to violence. Long Clawson, family tree id number 6 was therefore dropped
from the ansaysis here.

16However, they are also non-zero. Non-violent coincident death dates will also be captured by this
exercise. For example the sinking of the White Ship on the 25 November 1120.
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Figure 3: Expected Probabilities of Shared Death Days
Notes: m = the number of people sharing a birthday, n = the number of people at risk (e.g born in a given
year). Calculated using the birthday command in R: http://www.inside-r.org/r-doc/stats/qbirthday
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Figure 4: Proportion of Deaths from Battle
Notes: Figure reports the average proportion of male deaths from battle or violence (Nviolent/NAll, where
date of death is reported as an exact day) via the birthday probability exercise described in the text. Source:
Noble sample.
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Figure 5: The Time Trend of Male Violent Deaths, from the Logistic Regression
Notes: The figure reports the predicted probabilities of a violent death (based on the birthday proba-
bility exercise) from a logistic regression controlling for sex and geography. Source: Noble sample and
(Hollingsworth, 1957, p.8).

DV iolent = DFemale + DBastard + Latitude + Longitude + DY R (4)

Where the notation is as equation 1 and DY R is the year of death. Table 5 reports the
determinants of a violent death for those who have an exact death date in the sample17.
Figure 5 reports the time path of predicted violent deaths. There is a sharp decline from
1500 to 1600. The trend corresponds closely to that reported by Hollingsworth (1957, p.8)
for the English Ducal families.

A confounding factor in calculating violent deaths this way is the sudden return of
plague to Europe in the 14th century. However, the principal result that violent deaths
decline for the nobility is robust as this occurs during exactly the period during which we
would expect the wave of plagues to bias this violent death index upwards.

4.2 Dance of Death

Recent estimates of the lethality of the Black Death suggest a toll of 50 million, or about
60% of Europe’s population (Benedictow (2004, p.383)). Emerging from the East in 1346,

17Table 13 in the appendix reports the noble rank effects. It is notable that military suffixes are associated
with a higher risk of dying from violence (although the standard error is large), and religious occupations
are significantly negative associated with a violent death.
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Dependent variable:

DV iolent

(1) (2)

DFemale −.298∗∗∗ −.215∗∗∗

(.031) (.033)
DBastard .204 .256

(.261) (.257)
Latitude .016∗∗∗ .010∗∗

(.005) (.004)
Longitude −.004∗∗ −.001

(.002) (.002)
Death Year −.006∗∗∗

(.0001)
Controls
Family Tree N Y
Noble Rank N Y
Non-Linear Time Trend N Y
Constant 6.350∗∗∗ −1.232∗∗∗

(.294) (.230)

N 76,403 76,403
Log Likelihood -17,982.360 -17,342.070
Akaike Inf. Crit. 35,976.720 34,804.140

Note: ∗p<.1; ∗∗p<.05; ∗∗∗p<.01

Notes: DV iolent is estimated via the birthday probability exer-
cise. The model is estimated for only those observations with
an exact day of death. Source: Noble sample.

Table 5: Determinants of a Violent Death, Logistic regression
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plague remained in Europe until at least 181518. Despite the vast difference in death rates
between the Black Death and modern outbreaks of bubonic plague, genetic and molecular
testing has revealed that the cause of both is the bacillus Yersinia Pestis (Raoult et al.
(2000); Haensch et al. (2010); Schuenemann et al. (2011)).

An simple index of mortality is constructed for the family tree sample via the formula:

Mt =
Ndt

(
∑5

i=1
Ndt−i+Ndt+i)/10

(5)

Where Mt is an index of mortality in year t. Nd is the number of deaths in a given year.
A value of one means that mortality is exactly equal to a moving window of the annual
average for 5 years before and after. Figure 6 plots this simple index from 1200-1800.
The plague era is immediately obvious. There are no years in the 13th century where Mt

exceeds 2. After the arrival of the Black Death there are 8 years when the number of
deaths is over double what we would expect: 1349, 1361, 1369, 1415, 1513, 1563, 1603 and
1625 and 5 years when Mt is over 1.5: 1375, 1471, 1540, 1593 and 166519. All of these
years, apart from 1415, correspond to well known plagues (Biraben (1975)). The battle of
Agincourt took place on Friday, October 1415.

There is nothing in the family tree data to suggest that the Black Death or any subse-
quent pestilence killed anything like the proportions claimed for the rest of the population.
For comparison, testaments were 21 times normal in urban Tuscany and Umbria in 1438,
burials were almost 30 times normal in Siena during the plague year of 1363 Cohn (2002,
p.201-2). The highest levels of crisis mortality are significantly below those for 17th century
London, where plague mortality has recently been measured at 5-6 times normal mortal-
ity and never killed more than 20-25% of the city’s population (Cummins et al. (2013)).
Further, the simple mortality index suggests that plague mortality was consistent from the
Black Death until its disappearance; consistently shocking mortality to between 1.5 to 2
times normal for this elite section of Europe’s population.

Quantitative examination of Black Death mortality reveals a strong uptick in deaths
during early summer with a peak in late summer (See chapter 7 in Cohn (2002))20. This
summer peak in deaths is a distinctive marker of bubonic plague. Cummins, Kelly and Ó
Gráda use this to track the disappearance of Plague mortality in London. The summer
peak marker persist in poorer parishes of the city until 1720, over 60 years after the 1665
plague. (See figure 23 in the appendix for the seasonality of deaths in London and rural
England from parish burial registers (Cummins et al. (2013)).

18According to Cohn (2008), the last Western European plague was at Noja (near Bari in Italy) in 1815.
Plague may have persisted in Eastern Europe until 1897.

19There are three years in the 13th century where Mt > 1.5; 1230, 1242 and 1265. It is not clear
(by eyeballing the individual observations) why mortality spikes in these years (it may be attributable to
heaping and small numbers).

20See also Biraben (1975) and Gras (1939). For the seasonal pattern of later plagues see Slack (1977)
and Schofield (1977).
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Figure 7: Seasonality of Deaths, by Century
Notes: Only records with the season of death recorded are used here. Plague typically hits in late summer.
Source: Noble sample.
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Figure 7 reports the frequency of month of death for those records where the month
of death is recorded (data quality codes 1 and 2). The impact of the second global plague
pandemic, starting with the Black Death in 1346 is evident from the changing seasonality
of deaths. In particular the 1300s have a distinctive summer peak. Over time, the trend
is for a disappearance of this summer peak. From the 18th-20th centuries, the summer
months record significantly less deaths than the Winter months.

A well know stylized fact of the Black Death was its indiscriminate nature. King Death
cut equally from the rich and the poor, men and women, old and young. Cohn (2002,
p.213) quotes the chronicler of Cologne, the monk Albert:

there was no disparity in sex or age, taking men, women, the old, the young,
plebs and nobles, paupers, the rich and powerful, priests and the laity

I have shown above that the family tree data suggest otherwise: Black Death mortality
was mild relative to that estimated for the rest of the population. However, how did plague
discriminate within the noble family tree data? Further, was plague more virulent in the
east relative to the West? Using the distinctive summer peak of plague deaths and the
fact that the plague years are well known, a dummy variable (Dplague) was coded for death
during a plague period (June-September) in one of the plague years listed above. A logistic
regression was run of the form;

DPlague = C + DFemale + Lat + Long + DBastard +
17∑
i=1

DNobleRank (6)

Where the notation is as equation 1. The data is restricted to the boundaries of the
significant plague years recorded in the data; 1346-1666. Further, the model is run twice;
once including a control for a violent death and once for those deaths that were not violent.
(The likely misattribution was the concern here.)

The results are detailed in table 6. There are no consistent geographic or noble rank
effects (the coefficients and standard errors for the 17 noble ranks are reported in the
appendix; table 13). The Black Death and subsequent plagues were discriminately indis-
criminate. Surprisingly, it appears that women faced an increased probability of a plague
death. The result is significant and large in all model formulations. The lowest estimated
effect in model two suggest that women faced an odds ratio of 1.16 relative to men for the
risk of dying in one of the major plague seasons21. (The misattribuition of some violent
deaths at Agincourt in 1415 to plague could only be expected to bias the analysis against
this result.) The regression also indicates that older people were more likely to die during
the summer plague season.

21Odds ratios were calculated using Fernihough (2011). For DFemale, they are 1.18 (.05), 1.16 (.06) and
1.26 (.09) for columns 1-3 respectively in the results table (standard errors in parentheses).
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Dependent variable:

DPlague

(1) (2) (3)

Death Year −.004∗∗∗ −.010∗∗∗ −.011∗∗∗

(.001) (.001) (.001)
DFemale .167∗∗∗ .148∗∗∗ .228∗∗∗

(.045) (.053) (.075)
AgeD .009∗∗∗

(.002)
DBastard .239 −.324 −.148

(.686) (1.027) (1.051)
Latitude .042∗∗ −.013 .002

(.018) (.015) (.026)
Longitude −.011∗ −.003 .002

(.006) (.008) (.013)

DV iolent 3.482∗∗∗

(.051)
Constant −.860 12.238∗∗∗ 12.810∗∗∗

(1.219) (1.176) (1.785)
Controls
Family Tree Y Y Y
Noble Rank Y Y Y
Non-Linear Time Trend Y Y Y

N 35,318 31,498 17,350
Log Likelihood -7,948.902 -5,94.242 -3,03.829
Akaike Inf. Crit. 15,969.800 11,95.480 6,125.657

Note: ∗p<.1; ∗∗p<.05; ∗∗∗p<.01

Table 6: Logistic Regression on Plague Deaths, 1346-1666
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Figure 8: Occupational Hazards
Notes: Values are from the OLS estimation of equation 1. Error bars indicate 95% confidence intervals.
Source: Noble sample.

4.3 Trends in Lifespan Over Time

4.3.1 Trends in the conditional, controlled Mean: OLS

Table 7 reports the results of an OLS regression of equation 1 on the noble sample (column
2)22. The assigned dummy for a likely violent death (DV iolent) has a strong negative effect.
Geography matters too, with a strong effect of latitude and longitude on age at death. The
noble rank effects are reported in figure 8. In the main individuals with a noble suffix are
more likely to die older (almost 4 years older for ranks 7-13,15 and 16). Unsurprisingly,
those with a military suffix die younger (although the standard errors here are large). Kings
die around 3 years younger than non-nobles.

Figure 9 reports the expected age at death for each 20 year birth period from 800 to
1800. The 95% confidence intervals are too wide to allow over-interpretation of any trends
in noble longevity before 1400 but after 1400 there does appear to be a sudden and sharp
uptick in noble longevity - From a mean of around 50 to 54. After 1500, lifespan seems
to decline until around 1650 where an uninterrupted rise begins. Noble lifespan exhibits
significant oscillations across the millennium of the Dark ages to the Early modern period.

22Column 1 reports a version of equation 1 without any noble, data quality or family tree control variables
and a a linear time trend.
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Dependent variable:

AgeD

(1) (2)

Death Year .018∗∗∗

(.0003)

DFemale −.063 1.197∗∗∗

(.112) (.119)

Latitude .098∗∗∗ .061∗∗∗

(.008) (.008)

Longitude −.029∗∗∗ −.026∗∗∗

(.003) (.003)

DV iolent −7.194∗∗∗ −7.585∗∗∗

(.456) (.456)

DBastard .064 −1.822∗∗

(.891) (.889)
Constant 21.937∗∗∗ 47.558∗∗∗

(.606) (.872)

Controls:
Noble Rank N Y
Data Quality N Y
Family Tree N Y
Non-Linear Time Trend N Y

N 121,478 121,478
R2 .044 .060
Adjusted R2 .044 .059
Residual Std. Error 18.423 18.281
F Statistic 929.736∗∗∗ 56.548∗∗∗

Note: ∗p<.1; ∗∗p<.05; ∗∗∗p<.01

Table 7: OLS Regression of Equation 1
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Figure 9: Expected Lifespan 800-1800
Notes: Expected values are from the birth period coefficents estimated by OLS estimation (equation 1).
Error bands indicate 95% confidence intervals. Average longitude and latiude is applied (50.09, -.015), all
other controls are set to 0. Source: Noble sample.

4.3.2 Trends across the distribution: Quantile Regression

Table 8 reports the quantile regression results for equation 1 for the .1, .25, .5, .75 and
.9 percentiles of the age at death distribution. The non linear effects of sex are picked
up by this approach. The coefficient on the female dummy variable (DFemale) is negative
at younger ages and turns significantly positive as the percentile increases. Geography
matters at every quantile of the distribution.

Figure 10 reports the expected age at death for each of the percentiles reported in
table 8. The pattern agrees broadly with that indicated by OLS: there is a sharp rise
in noble longevity after 1400. The time patterns are broadly consistent across the age
at death distribution: increases from 1300-1400, decline from 1500-1600 and a strong rise
after 165023.

4.4 Trends in Lifespan across space and time

The results from table 7 and 8 suggest a European Mortality Pattern. Figure 11 plots
heat-maps of median lifespan (over 20) by geographic coordinates. The pattern is easiest
to detect in panel (b) where the median is calculated over integer longitude and altitude
coordinates. Length of noble life follows a strong South-North, East-West gradient.

Is this European Mortality Pattern constant over time? Table 9 estimates equation 1

23The coefficient estimates and their respective standard errors are reported in the appendix.
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.1 .25 .5 .75 .9

DFemale -.451** -.477** 1.436*** 2.345*** 2.668***
(.179) (.200) (.171) (.148) (.153)

Latitude .043*** .065*** .078*** .041*** .024**
(.012) (.013) (.011) (.010) (.010)

Longitude -.008 -.020*** -.033*** -.035*** -.027***
(.005) (.006) (.005) (.004) (.004)

DV iolent -4.753*** -8.122*** -10.298*** -7.310*** -4.583***
(.685) (.763) (.652) (.566) (.582)

DBastard -1.765 -3.230** -1.736 -.816 -2.470**
(1.336) (1.487) (1.271) (1.104) (1.135)

Constant 27.989*** 38.032*** 46.348*** 59.957*** 71.679***
(1.909) (2.125) (1.816) (1.578) (1.622)

Controls:
Noble Rank Y Y Y Y Y
Data Quality Y Y Y Y Y
Family Tree Y Y Y Y Y
Non-Linear Time Trend Y Y Y Y Y

N 121,478 121,478 121,478 121,478 121,478
Pseudo R2 .025 .037 .045 .041 .032

Standard errors in parentheses
*** p<.01, ** p<.05, * p<.1

Table 8: Quantile Regression of Equation 1
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Figure 10: Expected Lifespan 800-1800, by Quantile
Notes: Expected values are from the birth period coefficents estimated by quantile regression (equation 1).
Error bands indicate 95% confidence intervals. Average longitude and latiude is applied (50.09, -.015), all
other controls are set to 0. Source: Noble sample.
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Figure 11: The European Mortality Pattern: Heat-maps of Median Age at Death
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Figure 12: Controlled Geographic Effects

by sub-period. The standard errors on latitude and longitude are too large for us to be sure
of any real effect before the first millennium but the coefficient estimates are suggestive.
Geography matters in all periods after 1000. It is notable that in the pre-Black Death era
this European Mortality Pattern is present.

Is the effect of geography completely linear? To answer this, equation 2 was estimated
(allowing dummy values for each integer value of longitude and latitude in the data). This
fully controlled effect of geography, along with 95% confidence intervals is reported in figure
12. The effect is broadly linear.

4.4.1 Time Trends in Noble Lifespan by Region

Are there different time-trends in noble lifespan in different regions of Europe? A simple
geographic bounding box is calculated for each region of Europe where the data is dense
enough to allow analysis by 20 year birth period. Seven ’regions’ numbered in order from
North to South are drawn in figure 13 and details are reported in table 10.

A BART model is estimated based on equation 3. Figure 14 and 15 report predictions
of adult noble lifespan for each of these seven regions, based upon their average latitude
and longitude24. Predicted lifespan is stationary everywhere before 1400, where just as
with the OLS and quantile regression estimates (see figures 9 and 10), lifespan suddenly
rises. There is heterogeneity within Europe after 1400 however; in Scotland, Ireland and
England and Wales, lifespan rises from 1400 to 1500. Everywhere in Europe, the modern

24The top three variables in the BART model (by average variable inclusion proportions across 100
models) are birth year, longitude and latitude. See figure 25 in the appendix.
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Dependent variable:

Age at Death (>= 20)

(1) (2) (3) (4) (5) (6)

Pre 1000- 1340- 1500- 1600- post

1000 1340 1500 1600 1700 1700

Latitude .053 .118∗∗∗ .156∗∗∗ .170∗∗∗ .115∗∗∗ .094∗∗∗

(.078) (.032) (.023) (.022) (.023) (.010)
Longitude −.034 −.114∗∗∗ −.096∗∗∗ −.087∗∗∗ −.071∗∗∗ −.005

(.045) (.017) (.013) (.011) (.009) (.005)
DFemale 1.846 .899∗∗ .333 −.286 −.282 3.644∗∗∗

(1.274) (.427) (.305) (.240) (.210) (.195)
DV iolent −1.560 −8.885∗∗∗ −8.282∗∗∗ −9.405∗∗∗ −9.643∗∗∗ −4.172∗∗∗

(4.344) (1.181) (.769) (.712) (.717) (.966)
DBastard −2.852 −4.594∗∗∗ −2.596∗∗ −2.993∗∗ −3.048∗ .774

(3.601) (1.661) (1.227) (1.239) (1.561) (3.819)
Constant 48.303∗∗∗ 41.096∗∗∗ 42.143∗∗∗ 42.949∗∗∗ 47.032∗∗∗ 50.331∗∗∗

(4.877) (1.770) (1.255) (1.160) (1.190) (.598)
Controls
Noble Rank Y Y Y Y Y Y
Family Tree Y Y Y Y Y Y
Data Quality Y Y Y Y Y Y

N 1,690 10,050 19,570 30,592 41,211 46,648
R2 .033 .044 .042 .047 .036 .034
Adjusted R2 .017 .041 .041 .046 .035 .033

Note: ∗p<.1; ∗∗p<.05; ∗∗∗p<.01

Table 9: Estimating by Sub periods

Longitude Latitude Avg.
Region Min Max Min Max N Longitude Latitude

1 North and NorthEastern Europe 2 50 52 75 6,987 54.59 12.3
2 Scotland -8 -1 55 59 8,279 56.16 −3.59
3 Ireland -11 -6 51 56 4,875 53.15 −7.49
4 England and Wales -6 2 50 55 73,489 52.09 −1.41
5 France -6 8 43 52 13,680 49.19 3.44
6 Central and Eastern Europe 8 50 44 52 8,111 49.24 13.19
7 Southern Europe -11 50 36 44 2,262 40.87 4.75

Table 10: Regions
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Figure 13: Regions used for Separate Quantile Regressions
Notes: Overlapping regions were assigned to the Northern most region.

increase of longevity originates around 1650 for European nobility. The impact of the thirty
years war is evident in figure 15. The three models agree on the path of noble longevity
between 800 and 1800.
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Figure 14: BART Machine predictions for Adult Longevity, by Region (Sample avg. and
1-3)
Notes: Values are predicted values from a BART model, N=151,324 with 40 predictors, 200 trees, 250
burn-in and 1000 post. samples, Pseudo R2 = .103. The best model was chosen via a gridsearch over a set
of hyperparameter combinations, including the number of trees, m. m = 200 gave the best results. The
three most important variables in the BART model are birth year, longitude and latitude. To understand
the raw trends in the data, uncontrolled quantile regresion forest predictions are reported in the appendix.
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Figure 15: BART Machine predictions for Adult Longevity, by Region (4-7)
Notes: See notes to the previous figure for details on the construction of the predictions.
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5 Discussion

This study has characterized noble lifespans from 800 to 1800. The results have many
implications. Firstly, the sharp decline in the proportion of male nobles dying from violence,
from at least 600 years of a steady 30% to less than 5% in the 16th century, predates the
arrival of the Industrial Revolution by two centuries. The long run decline in violence25

is cited as one of the principal correlates of the emergence of the modern World. Why
did violence decline among European nobility? Was it a ‘bottom-up’ behavioral change
(perhaps as a result of natural selection, as Clark (2007) suggests for the general population)
or was it a response to changing ‘top-down’ institutional incentives (as argued by Acemoglu
and Robinson (2012))? This speaks to the core of modern debates about the wealth of
nations.

Long before the decline of violence there are significant changes in noble longevity. I
have examined the impact of plague on Europe’s elites. The consistent and large association
uncovered between sex and plague mortality runs counter to the indiscriminate reputation
of the Black Death and counter to recent paleodemographic analysis on skeletons from 14th
century London (DeWitte (2009)26). Perhaps sex differentials in historical plague mortality
strengthened women’s position in the marriage market? Could a simple supply-side effect
explain the origin of the European Marriage Pattern? (Hajnal (1965), Voigtländer and
Voth (2013)). These questions will be pursued in future research27.

Thirdly, this paper estimates the time-trend of noble lifespan over the millennium
between 800 and 1800. The findings on the timing of the modern rise in age at death
agree almost exactly with de la Croix and Licandro (2012) (the birth cohort of 1640-9).
The nobility are forerunners of Europe’s mortality transition (as David et al. (2010) argue
too). This provides an important clue for those who seek to explain exactly why mortality
declined. There could be an important role for individual behavior and a demonstration
effect (e.g. hygiene and other behavioral traits) as this rise predates modern medicine or
any public health measures. It also predates the Industrial Revolution28. Whilst modern
evidence suggests that life expectancy does not matter for economic growth (Acemoglu
and Johnson (2007)), the case has not been proved for the preindustrial era. Is this rise in
age at death also evident for other groups within the population as well?

However, unlike de la Croix and Licandro (2012), this study argues that lifespan was
not a stationary trend before 1650. There are significant oscillations, most importantly
the sharp Europe-wide rise in lifespan after 1400. The rise is stronger over the 1400-1600
interval in Ireland, Scotland and in particular, England and Wales (figures 14 and 15).

25As evidenced by Gurr (1981), Eisner (2003), Clark (2007) and popularized recently by Pinker (2011).
26However, the fact that older people faced a higher probability of death from plague is consistent with

DeWitte (2010).
27Cummins et al. (2013) details the construction of dataset of 3.5m deaths from plague era London that

could be used to further explore this.
28It is also striking how the post 1600 rise is weaker in Central and Eastern Europe, and Southern Europe

(figures 14 and 15).
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This pattern has remained hidden as only long and deep time series of at least a millennia
in length could uncover this.

Why did noble lifespan increase so much after 1400? It was probably not because of a
Black Death ‘survivor’ effect as plague mortality was relatively low amongst the nobility.
Absent a previously unnoticed medical revolution of the 15th century, this rise, as with the
later rise of 1650, must reflect some change in individual behavior29.

Finally, this paper documents a previously unknown European mortality pattern, Sim-
ilar to that for marriage first documented by Hajnal (1965), the mortality gradient runs
South-North and East-West, and has existed since before the Black Death30. The long
existence of such a geographic effect has implications for recent work which stresses the
‘little divergence’ between the North-West of Europe and the South-East (Voigtländer and
Voth (2013), Broadberry (2013) and de Pleijt and van Zanden (2013)). The Black Death
is not the first turning point. There was something about the North-West of Europe long
before 1346 that led to nobles living longer lives.

These results suggests that the ‘Rise of the West’ does not solely originate in insti-
tutional innovations of the 17th century (Acemoglu and Robinson (2012)) nor in social
reactions to the Black Death (Voigtländer and Voth (2013)). Western exceptionalism ex-
ists in individual behavior differences that are present since at least the first millennium
AD.

6 Conclusions

This paper makes four principle contributions. Violence declines for nobles in the 16th
century, plague kills noble women at a higher rate than men. There is a structural break
in noble lifespan about 1400 and there is a European mortality pattern that has existed
since the year 1000. The ‘Rise of the West’ can be traced to the centuries before the Black
Death. These new stylized facts may or may not only apply to this elite subgroup. Future
research can test whether the patterns are more general.
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Dependent variable:

violent

(1) (2)

Emperor −1.227
(1.066)

King 0.055
(0.214)

Grand Duke, ArchDuke, Ancient −0.264
(0.412)

Duke −0.102
(0.167)

Prince-Elector, Prince 0.025
(0.255)

Earl, Count 0.116
(0.092)

Marquess, Margrave 0.698∗∗∗

(0.123)
Viscount 0.100

(0.224)
Baron, Lord 0.465∗∗∗

(0.074)
Baronet −0.422∗∗∗

(0.151)
Knight 0.212∗∗

(0.107)
Esquire, Gentleman and unassigned nobility 0.050

(0.161)
Geographic 1.028∗∗∗

(0.163)
Military 0.607

(0.597)
Religious −0.629∗∗

(0.248)
Occupational −0.332∗∗

(0.164)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11: Noble Rank Correlations with a Violent Death, Logistic Regression
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Dependent variable:

agedeath

Birth Date Quality 2 −1.610∗∗∗

(0.469)
Birth Date Quality 3 2.464∗∗∗

(0.138)
Birth Date Quality 4 1.858∗∗∗

(0.166)
Death Date Quality 2 −2.400∗∗∗

(0.279)
Death Date Quality 3 −1.262∗∗∗

(0.145)
Death Date Quality 4 −0.055

(0.341)
Tree ID 1 −4.941∗∗∗

(0.668)
Tree ID 2 2.990∗∗∗

(0.168)
Tree ID 6 2.198

(1.443)
Tree ID 7 −1.437∗∗∗

(0.238)
Tree ID 9 4.598∗∗∗

(1.029)
Tree ID 10 2.001∗∗∗

(0.585)
Tree ID 12 2.478∗∗∗

(0.384)
Tree ID 16 3.221∗∗∗

(0.649)
Tree ID 17 4.027∗∗∗

(0.179)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: The ommited categories are 1 (birth and
death quality types) and 14 (Tree ID). See the
stand alone appendix for detail.

Table 12: OLS Control Results
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Dependent variable:

plague2

(1) (2) (3)

Emperor −12.416 −12.148 −12.867
(1, 016.254) (1, 348.173) (2, 229.220)

King −.196 −.700 −.548
(.668) (1.044) (1.049)

Grand Duke, Arch Duke, Ancient −.545 −12.159 −13.011
(1.153) (423.822) (716.361)

Duke −1.048∗ −.269 −.120
(.628) (.601) (.613)

Prince-Elector, Prince −12.666 −12.427 −13.345
(22.285) (268.398) (456.692)

Earl, Count −.221 −.250 −.166
(.248) (.342) (.415)

Marquess, Margrave −.807∗ −.223 .372
(.472) (.744) (.769)

Viscount −1.214 −.226 −13.673
(1.057) (1.025) (708.390)

Baron, Lord .145 .377∗ .410
(.170) (.225) (.316)

Baronet −13.155 −12.285 −13.130
(20.716) (237.966) (453.584)

Knight −.745∗∗∗ −.374 −1.211∗

(.254) (.355) (.727)
Esquire, Gentleman and unassigned nobility −.263 .280 .053

(.417) (.474) (.613)
Geographic 2.041∗∗∗ .388 −12.851

(.268) (.728) (552.573)
Military 1.688 1.512 2.787∗∗

(1.190) (1.088) (1.223)
Religious 0.597 0.250 0.299

(0.565) (0.531) (0.752)

Occupational 0.686∗∗ 0.167 0.600
(0.325) (0.437) (0.612)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 13: Noble Rank Plague Death Correlations
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Table 14: Quantile Time Dummies

Quantile
.1 .25 .5 .75 .9

800 11.647*** 6.097 0.836 0.424 -1.594
(67) (3.551) (3.952) (3.378) (2.935) (3.018)
820 -2.33 -1.08 -3.574 -7.508*** -3.276
(88) (3.150) (3.506) (2.997) (2.604) (2.677)
840 0.064 -1.661 -0.846 -1.489 -2.797
(76) (3.354) (3.733) (3.191) (2.773) (2.851)
860 2.614 2.185 -0.128 -2.414 -2.589
(117) (2.787) (3.101) (2.651) (2.304) (2.368)
880 5.191* 1.289 0.844 1.131 0.695
(90) (3.113) (3.465) (2.962) (2.574) (2.646)
900 0.287 -1.381 0.046 -2.669 -2.088
(131) (2.658) (2.959) (2.529) (2.198) (2.259)
920 -4.951* -4.341 -5.464** 1.123 3.816*
(137) (2.611) (2.906) (2.484) (2.158) (2.219)
940 -3.234 1.407 1.634 1.952 -0.684
(126) (2.701) (3.006) (2.569) (2.233) (2.295)
960 -2.877 -0.84 0.512 3.391* 3.386*
(198) (2.261) (2.516) (2.151) (1.869) (1.922)
980 -4.383* -2.933 -2.587 -4.155** 3.460*
(157) (2.470) (2.749) (2.350) (2.042) (2.099)
1000 -2.074 -2.635 -1.035 -1.073 -3.060*
(217) (2.186) (2.433) (2.079) (1.807) (1.858)
1020 -0.98 -0.135 0.03 -0.41 0.191
(212) (2.203) (2.451) (2.095) (1.821) (1.872)
1040 -0.95 -0.341 0.104 0.125 0.658
(257) (2.056) (2.289) (1.956) (1.700) (1.748)
1060 -0.974 -0.059 0.775 1.263 4.094**
(308) (1.934) (2.152) (1.840) (1.598) (1.643)
1080 4.167** 2.862 2.933 0.418 2.487
(310) (1.930) (2.148) (1.837) (1.596) (1.641)

Standard errors in parentheses
*** p<.01, ** p<.05, * p<.1

Continued on next page
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Table 14 – continued from previous page
Quantile

.1 .25 .5 .75 .9

1100 -0.769 -0.753 2.176 1.654 2.653*
(419) (1.757) (1.956) (1.672) (1.453) (1.494)
1120 -0.058 -0.402 1.89 1.478 0.591
(459) (1.712) (1.905) (1.629) (1.415) (1.455)
1140 0.369 -1.369 -1.131 -1.773 0.258
(466) (1.705) (1.898) (1.622) (1.409) (1.449)
1160 0.493 -1.564 0.064 -0.335 -0.454
(564) (1.620) (1.803) (1.541) (1.339) (1.377)
1180 0.379 -0.167 1.122 -0.947 -0.261
(464) (1.707) (1.900) (1.624) (1.411) (1.451)
1220 -0.359 -0.333 0.049 -0.132 0.011
(675) (1.551) (1.727) (1.476) (1.282) (1.319)
1240 -0.547 -0.685 -0.48 -3.370*** -2.763**
(820) (1.489) (1.657) (1.416) (1.230) (1.265)
1260 -1.117 -1.675 -1.681 -1.475 -0.077
(955) (1.444) (1.607) (1.373) (1.193) (1.227)
1280 -2.823** -3.246** -1.442 -3.072*** -2.817**
(986) (1.435) (1.597) (1.365) (1.186) (1.219)
1300 -1.177 -3.092** -2.504* -2.058* -1.161
(1175) (1.391) (1.549) (1.324) (1.150) (1.183)
1320 -2.976** -3.600** -1.647 0.489 0.588
(1177) (1.390) (1.547) (1.322) (1.149) (1.181)
1340 -2.506* -1.311 0.034 -0.999 -0.285
(1154) (1.394) (1.552) (1.327) (1.153) (1.185)
1360 -2.997** -3.886** -2.038 -0.768 0.328
(1301) (1.368) (1.522) (1.301) (1.131) (1.162)
1380 -2.899** -2.34 -0.079 0.82 2.216*
(1163) (1.393) (1.550) (1.325) (1.151) (1.183)
1400 1.431 2.663* 4.592*** 3.213*** 2.726**
(1363) (1.358) (1.511) (1.292) (1.122) (1.154)
1420 -0.075 0.94 2.891** 1.125 1.150
(1533) (1.335) (1.485) (1.270) (1.103) (1.134)
1440 -0.31 -0.52 0.644 0.751 0.499

Standard errors in parentheses
*** p<.01, ** p<.05, * p<.1

Continued on next page
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Table 14 – continued from previous page
Quantile

.1 .25 .5 .75 .9

(1468) (1.343) (1.495) (1.278) (1.110) (1.141)
1460 1.803 1.161 3.300*** 3.415*** 3.006***
(1889) (1.300) (1.447) (1.237) (1.075) (1.105)
1480 0.024 1.845 3.048** 1.567 1.619
(1776) (1.311) (1.459) (1.247) (1.084) (1.114)
1500 3.324*** 3.239** 3.975*** 4.759*** 6.002***
(2720) (1.253) (1.395) (1.192) (1.036) (1.065)
1520 2.007 2.592* 4.164*** 4.108*** 3.792***
(3485) (1.230) (1.369) (1.170) (1.017) (1.045)
1540 0.34 1.041 3.686*** 3.384*** 2.755***
(3825) (1.224) (1.362) (1.164) (1.012) (1.040)
1560 -0.364 0.866 2.958*** 1.938* 2.110**
(5009) (1.206) (1.342) (1.147) (0.997) (1.025)
1580 -0.589 -0.428 1.759 2.008** 2.161**
(5287) (1.205) (1.341) (1.147) (0.996) (1.024)
1600 -1.561 -0.481 3.192*** 3.058*** 3.412***
(6674) (1.193) (1.328) (1.135) (0.986) (1.014)
1620 -0.94 -0.041 2.468** 3.092*** 3.334***
(6814) (1.194) (1.329) (1.136) (0.987) (1.015)
1640 -2.018* -2.252* 1.484 2.320** 2.345**
(6310) (1.201) (1.337) (1.143) (0.993) (1.021)
1660 -2.903** -2.614* 0.599 1.379 1.965*
(6224) (1.202) (1.338) (1.144) (0.994) (1.022)
1680 -2.060* -2.039 1.458 2.788*** 3.221***
(5126) (1.217) (1.354) (1.158) (1.006) (1.034)
1700 -0.903 1.034 5.149*** 5.330*** 4.818***
(5295) (1.215) (1.352) (1.156) (1.004) (1.033)
1720 1.299 4.320*** 7.871*** 6.681*** 5.405***
(4687) (1.226) (1.365) (1.167) (1.014) (1.042)
1740 2.285* 6.373*** 9.910*** 8.215*** 6.652***
(4816) (1.226) (1.364) (1.166) (1.013) (1.042)
1760 1.474 6.395*** 10.278*** 8.423*** 6.408***
(5515) (1.220) (1.358) (1.160) (1.008) (1.037)

Standard errors in parentheses
*** p<.01, ** p<.05, * p<.1

Continued on next page

46



Table 14 – continued from previous page
Quantile

.1 .25 .5 .75 .9

1780 1.886 7.276*** 11.185*** 9.224*** 6.891***
(5900) (1.218) (1.355) (1.159) (1.007) (1.035)
1800 2.407** 7.819*** 12.160*** 9.663*** 7.333***
(6954) (1.212) (1.349) (1.153) (1.002) (1.030)
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Figure 24: Coefficient on Noble Rank Dummy by Quantile, with 95% CI

A.1.1 Missing the Forest for the Trees

To understand the raw trends in the data this section uses Quantile Regression Forests
(Meinshausen (2006)), which build upon Random Forests; Random Forests were intro-
duced by Breiman (2001) and have the advantage of making no distributional assumptions,
handling complex non-linear interactions and having error rates that have been shown to
compete very well with alternative methods31 (Hastie et al. (2009, p.590)).

Quantile Regression Forests are a robust non-parametric method to estimate the con-
ditional distribution of a response variable32. Figures 26 and 27 plot annual estimates for
the .1, .25, median, .75 and .9 quantile for the sample average and the 7 regions of Europe
defined in table 1033. Looking at the raw trends, it is apparent that the Black Death hits
harder in England than anywhere else: All quantiles decrease apart from the .1 quantile
who are stable. This result, for England and Ireland, that that age mattered during the
Black Death is consistent with the results from table 6, reported earlier.

31Such as bagging (bootstrap aggregation) and gradient boosting.
32See Meinshausen (2006) for an numerical evaluation for the algorithm.
33Estimation is via the R package quantregforest Meinshausen (2007).
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Figure 25: Top 15 Variables in BART model
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Figure 26: Quantile Regression Forests predictions for Adult Longevity, by Region (Sample
average and 1-3)
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(a) England and Wales

800 1000 1200 1400 1600 1800
20

40

60

80

(b) France

800 1000 1200 1400 1600 1800
20

40

60

80

P
re
d
ic
te
d
A
ge

at
D
ea
th

(c) Central and Eastern Europe

800 1000 1200 1400 1600 1800
20

40

60

80

(d) Southern Europe

Figure 27: Quantile Regression Forests predictions for Adult Longevity, by Region (4-7)
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