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Abstract 

Exploiting recent advances in molecular genetics, this study demonstrates that the 

number of children ever born (NEB) and the age at first birth (AFB) of women living 

in industrialized societies is genetically influenced. Results show additive effects of 

common genes explaining 10 % of the variance in the NEB and 15 % in the AFB as 

well as a genetic correlation of -0.62 (SE = 0.27, p-value = 0.02) between both traits 

in a sample of 6,758 unrelated individuals from the UK and the Netherlands. Amongst 

others, this contributes to the controversial debate of whether humans still evolve. Our 

findings indicate that women with a genetic predisposition for an earlier AFB have a 

reproductive advantage, implying that natural selection acts in contemporary 

populations. The observed fertility postponement in industrialized societies suggests 

that the genetic effects are small relative to environmental effects, emphasizing the 

need for an integrative research design from genetics and the social sciences.  
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Recent research within both biology (
1-4

) and demography (
1,5,6

) demonstrates a 

genetic component of human fertility, namely the number of children ever born 

(NEB) and the age at first birth (AFB) of women, explaining up to 40-50 percent of 

the observed phenotypic variance in these traits. The well-established negative 

relationship of late AFB with lower NEB (
7,8

) appears to be partly genetic, suggesting 

that natural selection favored a younger age at first birth over the Twentieth century 

(
2-4

). Genetic studies examining the relationship between NEB and AFB, however, 

have been solely based on twin (
2
,
 9

) or other family designs (
3,4

) that use data on 

expected genetic differences among relatives to estimate the genetic component 

underlying these traits. Although these studies are pervasive in behavioral genetics, 

they can only draw indirect inferences about genetic contributions and suffer from 

problematic assumptions and practical limitations (for critical discussions on, for 

example, the equal environment assumption (EEA) see 
 10-12

).  

 Twin and family designs are also limited for further reasons. First, by virtue of 

their design, twin studies inherently require pairs of siblings and therefore exclude 

individuals from low fertility families, particularly only children, which may be 

problematic for the generalization of results. Second, in contrast to monozygotic 

twinning, dizygotic twinning is genetically based (
13,14

), which means that dizygotic 

twins carry genes that are potentially important for high fertility. Therefore, the use of 

monozygotic and dizygotic twins to investigate fertility questions in the classic twin 

design leads to non-random genetic stratification and might bias variance estimates. 

Finally, a practical limitation of family designs is that they require data from multiple 

family-members, which is obviously more difficult to gather than data on unrelated 

individuals.  



An ideal design to examine the genetics of fertility would be a direct estimate  

using single nucleotide polymorphisms (SNPs) across the entire genome for unrelated 

individuals who do not share the same micro environment, a technique first applied to 

model the complex trait of height (
15,16

). This type of data and the corresponding 

statistical tools for genome-wide complex trait analyses (GCTA
 17

) have recently 

become available and are already well-established in the fields of genetic 

epidemiology (
18

), psychology (
19,20

) and sociogenetics (
21,22

).  

The current study exploits recent advances in the field of molecular and 

quantitative genetics by applying genomic-relationship-matrix restricted maximum 

likelihood (GREML) methods to quantify for the first time the extent to which 

common genetic variants influence both the NEB and the AFB of women. We applied 

both uni- and bivariate models to these traits producing unbiased estimates of their 

common SNP heritability and the extent to which the association between earlier AFB 

and higher lifetime fertility (NEB) is due to a (negative) genetic correlation between 

AFB and NEB (
23

). This not only helps us to understand the relationship between the 

AFB and NEB, but also allows an assessment of whether genes are associated with a 

reproductive advantage, indicating natural selection in contemporary, industrialized 

populations.  

In contrast to twin and family designs, the GREML approach is free of 

confounding from shared environmental effects between close relatives because the 

method can be applied in a sample of unrelated individuals (
15,16

). The GREML 

analyses make use of the genetic similarity between pairwise unrelated individuals as 

captured by all common SNPs and correlate the genetic similarity with the phenotypic 

similarity between individuals (see Material and Methods). To ensure accurate and 

well-powered estimates, particularly for the bivariate model (
24

), we pooled data 



sources to estimate the genetic influence on all outcomes of interest (see Material and 

Methods). We utilize two large cohorts from the Netherlands (NL, N = 4,338) and the 

United Kingdom (UK, N = 2,420, for descriptive statistics see Table 1). In both 

populations resemblance in fertility outcomes has been reported for relatives (
25-27

) 

using intergenerational comparisons with survey data. No distinction has been made, 

however, between the possible genetic and environmental effects responsible for this 

pattern. After quality control of the merged genetic data files, we used more than 1 

million SNPs to estimate the genetic relationships among individuals (see Material 

and Methods) and subsequently the genetic variance components.  

The most successful and popular design to detect the approximate location of 

genetic variants associated with a complex trait is the meta-analyses of genome-wide 

association studies (GWAS) from multiple samples. In lieu of this, our assessment of 

the genetic effects of common SNPs based on the pooled samples shape the 

expectations to find individual variants when conducting a GWAS. We account for 

population stratification effects by adjusting for the first 20 principal components in 

our GREML models and further correct for country and birth cohort effects. From the 

twin data only singletons are included, so that close relatives do not contribute to the 

estimates. 

This study has several important implications for research in demography, 

genetics and biology. We know surprisingly little about genetic effects on human 

fertility on a population level, yet it is crucial for our understanding of fertility, the 

interpretation of related social science research in this field (
21,22,28-30

), and broader 

questions of modern human evolution (
3,4,31,32

). We first discuss the importance of 

adopting an integrative multidisciplinary approach to understand human fertility and 

then proceed by presenting and discussing of our findings. 



 

Towards an integrative approach in human fertility research  

The term ‘fertility’ takes on different meanings in demography, reproductive 

medicine and biology (
7
). In demography, fertility refers to performance, specifically 

the two interrelated aspects of the tempo of childbearing (in our case age at first 

childbirth, AFB) and the quantum or number of children ever born (NEB) in a certain 

historical period (
33

).  In reproductive medicine, fertility defines the ability or inability 

of couples to conceive and have children given unprotected intercourse (
34

). In 

biology, AFB and NEB have become central indicators for individual fitness as the 

successful transmission of genes to the next generation in post-industrial societies 

(
4,32

), with NEB in particular shown to be nearly perfectly correlated with alternative 

measures (
2,35

). Due to improvements in hygiene and the reduction in prenatal, infant 

and child mortality in industrialized societies, NEB has emerged as the gold standard 

to measure lifetime reproductive success indicating biological fitness (32).  

In the last decades, industrialized societies have experienced massive changes 

in both the postponement of AFB and drop in the total number of offspring, which 

cannot mainly be attributed to genetic or biological factors (7,36). Rather, human 

reproduction is influenced by three analytically distinct but empirically interrelated 

factors: 1) genetic and biological fecundity (i.e., length of reproductive period, 

infertility diseases), 2) the environment (i.e., institutional, societal and family 

structures); and, 3) reproductive choice of individuals (i.e., planned behavior, latent 

individual and partner characteristics).   

Previous research has successfully demonstrated that there is a genetic 

component to reproduction with over 70 genome-wide association studies (GWAS) 

published for 32 traits and diseases associated with reproduction (
14

). This includes 



identification of genes such as those related to age at menarche (
37,38

), menopause (
39-

42
), and endometriosis (

43
). Environmental factors, such as women’s gains in 

education and labor market participation, gender equity and economic uncertainty 

have been demonstrated to also strongly impact the tempo and quantum of fertility 

(for reviews see ref 
 7,36

). Studies of reproductive choice have examined the predictive 

power of fertility intentions on behavior and often position reproductive choice in a 

socio-psychological framework that consists of attitudes (perceived costs and 

benefits), norms (influence social network) and perception of control over individual 

choice (
44

, 
 45

).  

A bivariate twin model in a study by Rodgers and colleagues (
46

) suggests an 

interrelation between reproductive choice and genetic factors, providing evidence for 

shared genetic effects on the decision to have a first child and the number of children 

during lifetime. It is therefore likely that biological fecundity, the environment and 

reproductive choice not only interact with each other, but that genes also mediate 

reproductive choice (
47

). Genetic endowment in social science fertility research has 

been virtually ignored (
36

), yet may be of major importance when drawing 

conclusions that have policy implications.  

If the quantum of fertility in the form of NEB is at least partly genetically 

influenced, this implies that certain SNPs have a higher chance to be successfully 

transmitted to the next generation than others, and by extension that the allele 

frequency might change due to natural selection, indicating evolution. If the negative 

relationship between AFB and NEB is partly genetic, this would indicate that the 

AFB was under natural selection during the Twentieth century and that more recent 

birth cohorts may carry a higher genetic predisposition for an earlier AFB.  



Using a family-design, findings from the Framingham Heart Study 

demonstrated that the same genes influencing NEB are negatively correlated with the 

AFB (
4
). The authors subsequently predict that selective changes in the disposition for 

the timing of the first child predict the decrease in the AFB for subsequent 

generations. The study design, however, is based on correlations between relatives 

and the estimates can therefore be inflated by shared environmental factors such as 

family norms that have shown to be important for fertility (
48

). Family designs cannot 

robustly discriminate between the case that the correlation between NEB and AFB is 

environmentally caused, and natural selection, in which case the correlation is 

genetically caused and the allele frequencies of the genome might change (
32

). This 

limitation leaves a less desirable practical solution “…to note the issue and remain 

modest in drawing conclusions” ((
32

) p. 614). In the current study, our design permits 

us to directly draw conclusions about modern natural selection based on the 

information derived from the field of molecular genetics. When the trait of interest, 

here the age at first birth, does not genetically covary with fertility, a genetic response 

to selection will not occur (
49

).  

Results 

Table 1 shows the descriptive statistics for both traits in the TwinsUK and Lifelines 

cohorts. Overall the AFB is around one year later in the Dutch (26.83) than the UK 

cohort (25.70) and the latter is about one decade younger. These characteristics are 

interrelated, since many nations in Europe experienced a massive postponement in the 

AFB during the second half of the Twentieth Century (
7
). The larger proportion of 

younger individuals thus leads to a higher average AFB. It is important to note that 

the N for AFB is different from the N for NEB. The reason is that only women older 

than 45 years of age have been included in the analysis of NEB, and only women who 



were at least 45 years old have been included for the NEB. As a consequence, there 

are more individuals with a reported AFB in the Lifelines cohort than with NEB, 

since around one third of the cohort had a first child but did not yet reach the end of 

their reproductive lifespan. To combine the cohorts, both measures were standardized 

by country (z-transformation) and the NEB was log transformed to approach a normal 

distribution (see S1 for distributions and S2 for the model estimation of all alternative 

transformations – all estimates are robust across transformations). 

>>INSERT Table 1 roughly here<< 

The correlation between AFB and NEB  

In line with previous studies, in both samples, women who had their first child at a 

later age also had a lower number of children ever born (Figure 1). The observed 

correlation for individuals with full information on both traits (i.e., excluding all 

childless individuals, individuals younger than 45 and those without information on 

AFB) between AFB and NEB is –0.32 (N=1,521) in the UK cohort, –0.26 (N = 2,553) 

in the Dutch cohort and –0.28 (N = 4,074) for the standardized measures in the pooled 

cohorts (–0.27 if estimated from the residuals of all covariates, not shown).  

>>INSERT Figure 1 roughly here<< 

SNP heritability of AFB and NEB  

Table 2 depicts the SNPs based heritability (h
2

SNPs) estimated from the univariate 

models for AFB and NEB. Both traits have a significant genetic component, with 

h
2

SNPs for NEB of 0.10 (SE 0.05) and for AFB of 0.15 (SE 0.04). These results 

suggest that additive effects of common SNPs explain 10 % of the variance in the 

NEB and 15 % of the variance in the AFB of women.  

 

 



Bivariate GREML analysis of AFB and NEB  

Table 3 shows the results for the bivariate GREML model of AFB and NEB, 

including the genetic correlation between both traits. The genetic correlation would be  

–1.00 if all genetic effects leading to a later AFB would have a negative influence on 

NEB and 0 if the genetic effects of AFB and NEB would be completely independent. 

The genetic correlation estimate is –0.62 (SE 0.27) and significantly different from 0 

(p-value = 0.02), meaning that genes that lead to a later age at AFB are indeed 

negatively associated with NEB. Based on these estimates, genetic effects lead to a 

phenotypic correlation of –0.07 (SE 0.03) between AFB and NEB, whereas the 

overall correlation estimated from the fitted model is –0.38 (SE 0.02). Therefore 

around 20% (~ (–0.07)/ -0.38)of the phenotypic correlation is associated with shared 

genetic effects across the traits while the main part is still associated with common 

environmental/residual effects of the AFB and the NEB.  The phenotypic correlation 

estimated from the genetic model is larger than the observed correlation because the 

bivariate GREML analysis does not require both traits to be measured on exactly the 

same set of individuals. It therefore makes use of additional information such as the 

childless individuals for the estimates of NEB.  

>>INSERT Table 2 roughly here<< 

 If we only include individuals with complete information on both traits in the 

genetic model – as we do when computing the phenotypic correlation directly – the 

phenotypic correlation estimates based on the genetic model (–0.29 SE = 0.02) is not 

significantly different from the observed value based on Pearson correlation (–0.27) 

and the component due to genetic effects estimated from the GREML model (–0.08 

SE = 0.05) is not significantly different from that using all available information (–



0.07 SE = 0.03), whereas the inference would be weaker (see S4 for the model 

excluding all individuals with missing information).  

Discussion 

Using recently developed analytical techniques from molecular genetics we provide 

direct evidence for a genetic component underlying the AFB and NEB of women in 

the UK and the NL born during the Twentieth century. Moreover, genetic effects on 

the tempo (AFB) and quantum (NEB) of human reproduction co-vary, which partly 

explains why women who start reproducing at an earlier age, have higher fertility.  

>>INSERT Table 3 roughly here<< 

This genetic association between AFB and NEB can have different origins. 

Both traits might simultaneously be influenced by the same genetic effects 

(pleiotropy) or genetic effects on the NEB could be mediated via AFB – as well as a 

combination of both. To further examine the causal relationship among these factors, 

measured genotypes important for these traits might be integrated in the statistical 

model (
50

) in applications such as Mendelian randomization (
51

). Regardless of the 

underlying cause of the genetic association between NEB and AFB, the consequence 

of this genetic association is that it shows that natural selection acts in modern, 

industrialized societies, implying that women born in more recent cohorts may be 

genetically inclined to have an earlier AFB. This prediction of a decrease in AFB, 

however, is a ‘population paradox’ since it strongly contradicts observed fertility 

trends over the last 50 years. Instead of earlier first births, there has been a massive 

postponement in the AFB of an average of 4-5 years in nearly all European countries 

since the 1970s (
7
). 

Although our results seem to raise a paradox, they are well in line with studies 

on natural populations, such as from Milot and colleagues (
3
) who observed a 



decrease in AFB as a response to natural selection in a contemporary population. One 

probable explanation is that natural selection works in addition to environmental 

forces and in the opposite direction – with the latter being stronger. Natural 

populations are assumed to experience no environmental fluctuation, with set fertility 

norms in place to maximize reproductive success. In European and many 

industrialized societies, in contrast, environmental changes across the past century 

such as the use of contraceptives and women’s educational expansion and entry into 

the labor market have had a strong impact on fertility behavior (
7,8,48

). Although more 

recent populations in the Netherlands and the UK are genetically predisposed to an 

earlier AFB, these environmental forces have led to a postponement in the AFB. In 

that sense, the environment has achieved an ‘evolutionary override’. The discrepancy 

between observed changes and those predicted by evolutionary processes has parallels 

with the case of human height. Although natural selection has a disinclination for 

taller individuals, at least in US populations (
4,52

), people still, on average, grow up to 

be taller than their parents (
53

). This is largely attributed to environmental factors, 

such as better nutrition and improved health care (
54

).  

A second potential – and largely interrelated – explanation for the fact that 

AFB is postponed despite selection towards genes favoring earlier birth is that genes 

and the environment interact across birth cohorts. Previous twin studies have in fact 

shown differences in heritability estimates across cohorts and environments in both 

NEB (
6
) and AFB (

2,30,55,56
). Therefore, independent of additive environmental effects 

leading to postponement in the AFB, genetic variants important for AFB may differ 

across cohorts and populations, so that large changes due to natural selection are not 

necessarily implied.  



The genetic effects estimated in this study represent narrow sense heritability 

estimated from SNP data. As can be expected (
57

), they are lower than the estimates of 

narrow sense heritability (~0.20–0.30) obtained from family designs. Potential 

reasons for this are, on one hand, the inflation of estimates by shared environmental 

factors in family designs, but on the other hand true genetic effects of variants that are 

not captured through linkage disequilibrium with SNPs used in GREML analysis. In 

order to engage in a more rigorous examination of genetic effects as well as gene-

environment interplay, replication in larger datasets and across different populations 

is required. The provision of data with genetic and environmental information 

continues to grow, as do more advanced analytical techniques (
58

). Nonetheless, it 

becomes obvious that human fertility is both a genuinely biological process as well as 

a social undertaking. We conclude from our findings that an integrative approach 

between the social and biological sciences is necessary to better understand the 

changing patterns in, or even predict future levels of, human fertility.  

Despite the significant advances in the estimation techniques and sample size 

of this study, there are two limitations that need to be made explicit. First, the 

interpretation of NEB in an evolutionary manner implies an interpretation of NEB as 

a measure of fitness. It would be better to have information on the number of children 

who entered reproductive age or even more appropriate, the number of grandchildren 

entering reproductive age in order to obtain a more precise measure of how far genes 

have been successfully transmitted across generations. The NEB, however, has been 

shown to be a strong measure of reproductive success (see also
 32

) due to diminishing 

mortality during the reproductive lifespan. Recent genetically-informed research 

furthermore demonstrates that the same genes important for the NEB also influence 

the number of grandchildren born and therefore have long-term effects (
31

).  



Second, as opposed to the common research practices in demography, it is still 

uncommon to deal with right censored information (i.e., those who have not yet had a 

child by the time of observation) in genetic studies. In our case, we have set 

individuals who remained childless as missing when estimating genetic influences for 

the AFB, since they did not (yet) have a child (
4,56

). Childless individuals, however, 

are of great interest for demographic research as well as from an evolutionary 

perspective since they are the ones who do not transmit their genes to the next 

generation. While the structural equation modelling in twin studies provides 

alternative solutions such as Tobit (
59

) or ordered models (
2
) to integrate censored 

information, there remains no possibility to consider this within current applications 

of GREML. 

To date, thousands of genetic variants have now been successfully linked to 

physical or psychological traits in the past years (
60,61

), as well as complex 

sociogenetic traits such as educational attainment (
28

) and also traits related to 

reproduction (
14

). We conclude that our study, based on the same genetic data as in 

GWAS studies, raises confidence that it is very likely that we will find genetic 

variants associated with human fertility when conducting GWAS-meta analyses of 

sufficient sample size.  

 

Material and Methods 

Samples 

For the Netherlands, we use data from the LifeLines cohort study, a longitudinal, 

population-based study of over 167,000 individuals including genotype information 

from more than 13,000 unrelated individuals (
62

). For the UK, we use data from 

TwinsUK the largest adult twin registry in the country with more than 12,000 



respondents (
63

). The descriptive statistics of the phenotypic variables in the 

genotyped subsamples with full fertility information are shown in Table 1. 

 

Genotypes 

We received HapMap 3 imputed data from the UK cohort and genotype data from 

Lifelines, which we imputed according to the 1000 Genome panel. For quality control 

(QC), we excluded the SNPs with a larger missing rate than 1%, lower minor allele 

frequency than 1% and which failed the Hardy-Weinberg equilibrium test for a 

threshold of      for the UK cohort. We merged this cohort with the imputed Dutch 

samples selected for an imputation score larger than 0.6 and quality controlled in the 

same way. Subsequently, the same QC was applied again on the combined sample 

and on average 1,017,420 SNPs could be utilized to estimate the GRM between 

individuals. We used the software Plink (
64

) for all genetic data preparation. 

 

Phenotypes 

Number of children ever born 

Since fertility is strongly age dependent, we focus on women with a completed 

fertility history in reference to the phenotype. In general, the end of the woman’s 

reproductive lifespan occurs around the age of 45 (
65

), thus, we only included women 

aged 45 or older in our analysis of NEB.  

 

Age at first birth  

To calculate the AFB, we used information on the year of childbirth of the first child 

and year of birth of the mother. In TwinsUK, information from an additional 



behavioral questionnaire directly asking for the age at first birth in 2005 was 

available. Childless individuals have been set to missing in the analysis. 

 

Heritability estimates 

The genetic component underlying a trait is commonly quantified in terms of 

heritability (  ) as the proportion of the genetically caused variance (  
 ) over the 

overall phenotypic variance of the trait (phenotype,   
  ) (

9 66
)): 

 
 
= 

  
 

  
  

Whereas the phenotypic variance is the sum of genetic and environmental   
  

variance components. 

  
 =   

  +   
  

 The methods we apply have been detailed elsewhere (
17

,
 24

). Briefly, we 

applied a mixed linear model  

      

where y is an Nx1 is vector of dependent variables, N is the sample size, g is the Nx1 

vector with each of its elements being the total genetic effect of all SNPs for an 

individual, and e is an Nx1 vector of residuals. We have g~ N(0,  
  ) and e~N(0,   

   

), where   
   is the genetic variance by all SNPs,   is the genetic relationship matrix 

(GRM) estimated from SNPs,   
  is the residual variance and   is an identity matrix. 

The variance components are estimated using the restricted maximum likelihood 

(REML) approach. This analysis has been extended to a bivariate approach by Lee 

and colleagues (
23

) to estimate unbiased genetic correlation based on a standard 

bivariate linear mixed model combined with the genome-wide genetic relatedness 

matrix. 



 

Genetic correlation 

The genetic correlation (r(G)) is an estimate that standardizes the genetic covariance 

between two traits (Cov(     )) by the genetic variance of both traits: 

r(     ) = 
          

√    
  √    

 

 If the genetic correlation between two traits is 1, all genetic variance in trait 1 

and 2 has a common base. If the genetic correlation is 0, the genetically based 

variance between trait 1 and 2 are independent. 

 

Phenotypic and genetic correlation analysis 

The phenotypic correlation between two traits r(     ) is the sum of genetic and 

environmental influences shared across traits and can be estimated like this: 

r(P)  √   
          *√   

  +√   
          *√   

  

whereas    
  is the heritability of trait i in the model and    

  is the 

environmental or residual variance contribution for the trait, standardized for the 

overall variance  

  = 
  

 

  
          

and          is the environmental or residual correlation between the traits (for the 

estimates of environmental effects see S3). We can solve this to compute the fraction 

of the phenotypic correlation explained by the genes (or the environment respectively 

the residuals). For the transformation of standard errors, the delta-method has been 

applied (
67

). 
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Tables 

 Table 1. Descriptive Statistics of the TwinsUK and Lifelines samples 

 TwinsUK LifeLines 

 Mean  SD Min-Max N Mean SD Min-Max N 

Birth year 1951 13 1919-1987 2,420 1960 11 1920-1989   4,338 

AFB 25.70 4.74 15-44 1,951 26.83 4.26 16-43   4,016 

NEB 2.07 1.21 0-9 1,990 2.25 1.20 0-9  2,875 

Note that the N for the age at first birth (AFB) is different from the N for number of children ever born (NEB). The reason for this is that only women 

older than 45 have been included in the analysis of NEB, and only women who were at least 45 years old have been included for the NEB.  For 

example, a 35 years old woman with a first child is part of the analysis for AFB but not for NEB. Therefore in the Lifelines cohorts the N for AFB is 

larger than for NEB, because it contains a large proportion of women younger than 45.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Heritability estimates of NEB and AFB for the pooled 

sample from the UK and the Netherlands using information 

from around 1 million SNPs 

 h
2

SNPs
 
(SE) p-value

c
 N  

Number of 

children ever 

born
a
 

0.10  (0.05) 0.02 4,865 

Age at first 

birth
b
 

0.15 (0.04) 0.0004 5,967
d
 

a: standardized by country and log transformed to adapt the distribution; b: 

standardized by country; c: p-values are based on likelihood-ratio tests, the 

reference model constraints genetic effects to be 0; Estimates of  untransformed  

variables can be found in S 3; d : The N for age at first birth is larger than for 

number of children ever born due to the fact that only women with a completed 

fertility history are included in the latter (for discussion see Material and 

Methods and S1).  



 

 

 

 

 

Table 3. Estimates of the bivariate genetic model for NEB and AFB  for the pooled sample from the UK and the Netherlands using 

information from around 1 million SNPs 

h
2

SNPs NEB
 
(SE) h

2
SNPs AFB

 
(SE) r(G)SNPs AFB-NEB

 
(SE) p-value

a
 Phenotypic correlation NAFB/NEB 

    Overall  (SE
b
) Due to genetic effects  (SE

b
)  

0.08  (0.05) 0.15 (0.04) –0.62 (0.27) 0.02 –0.38 (0.02) –0.07 (0.03) 5,967/4,865
 c
 

NEB: standardized by country and log transformed to adapt the distribution; AFB: standardized by country; a: p-values are based on likelihood-ratio tests, the 

reference model constrains genetic effects to be 0; – one-tailed (default in GCTA);  b. Standard errors have been transformed using the delta method(
 67

); c: The N of 

age at first birth is larger than for number of children ever born due to the fact that only women with a completed fertility history are included in the latter (for 

discussion see Material and Methods and Table 1). For the full model, including environmental/residual effects see S3.  
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Figure 

 

Figure 1: The association between age at first birth and number of children ever born in the British 

and the Dutch cohorts 

 

 

 

 

 

 


