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Involuntary human migration is among the social outcomes of greatest concern in the current era 
of global climate change. Responding to this concern, a growing number of studies have 
investigated the consequences of short to medium-term climate variability for human migration 
using demographic and econometric approaches. These studies have provided important insights, 
but at the same time have been significantly limited by lack of sophistication in the use of 
climate data and lack of access to high-quality, cross-national data on migration. To address 
these limitations, we link data on internal and international migration over a 6-year period from 
7624 origin households in Kenya, Uganda, Burkina Faso and Senegal to high-resolution gridded 
climate data from both station and satellite sources. Analyses of these data reveal that climate 
variability has country-specific effects on migration: Migration increases with temperature 
anomalies in Uganda, decreases with temperature anomalies in Kenya and Burkina Faso, and 
shows no relationship with temperature in Senegal. Consistent with previous studies, rainfall 
shows only weak relationships with migration across countries. These results challenge 
generalizing narratives that foresee a consistent migratory response to climate change across the 
globe. 
 
For decades, many human-environment scholars predicted that climate change would result in 
large-scale human displacements, creating a Malthusian wave of “climate refugees” (Houghton  
et al. 1992; Myers 2002). Concern in particular focused on rural populations in the developing 
world and in Sub-Saharan Africa, reflecting their high dependence on agriculture and lack of 
resources for adaptation (Müller et al. 2011). However only in the past few years has a 
significant body of scientific evidence begun to accumulate that rigorously evaluates these 
claims. These studies have linked climate data to georeferenced data on human migration, most 
commonly from specialized household surveys, and then tested climate-migration hypotheses 
using multivariate approaches that account for potential confounders (Gray & Mueller 2012ab; 
Hunter et al. 2013; Bohra-Mishra et al. 2014; Mueller et al. 2014). These studies have confirmed 
predictions that climate extremes can increase human migration, but otherwise the story they 
reveal often does not fit the conventional narrative of climate-induced displacement. 
Specifically, the effects of climate variability on migration are often larger for short-distance or 
temporary moves (Gray & Mueller 2012b), the effects of rainfall (which have received 
disproportionate attention) are often weak relative to temperature (Bohra-Mishra et al. 2014; 
Mueller et al. 2014), and reverse effects can occur in which climate extremes trap vulnerable 
populations in place (Black et al. 2011; Gray & Mueller 2012a). 
 
These findings support a revised view of climate-induced migration that recognizes the 
importance of (1) social and economic barriers to long-distance migration in the developing 
world, (2) the many local adaptation strategies available to rural households, and (3) the potential 
for climate-migration relationships to be contextually specific and vary across space. To date, 
however, our ability to more broadly test for these patterns has been limited the absence of 
comparable high-quality, cross-national datasets on migration. Previous studies have been 



constrained to the national and subnational scale by existing survey data, or to the use of 
national-scale data that ignores within-country heterogeneity (e.g., Marchiori et al. 2012). 
Previous studies have also typically made use of a single climate data source and many have 
focused on rainfall, ignoring evidence that climate fluctuations are often poorly correlated across 
alternative data sources (Auffhammer et al. 2013) and that temperature often has large effects on 
migration relative to rainfall (Bohra-Mishra et al. 2014; Mueller et al. 2014). 
 
To address these limitations, we make use of comparable, large-sample migration surveys 
conducted in Kenya, Uganda, Burkina Faso and Senegal in 2009-10, along with two high-
resolution gridded climate datasets derived from both station and satellite data. These four 
countries are particularly appropriate for studying climate-induced migration because they 
encompass a diverse range of climates and have been previously identified as potentially 
vulnerable to climate-induced displacement, reflecting their relative poverty and agricultural 
dependence. Migration data are derived from the World Bank’s African Migration and 
Remittances Surveys (AMRS), which collected standardized retrospective data on international 
and internal migration in Kenya, Uganda, Burkina Faso and Senegal for ~2,000 households per 
country, using an innovative sampling design that oversampled migrant-sending households 
(Plaza et al. 2011; see Methods). Retrospective household-level data such as these have a long 
history of successful use for investigating the determinants of migration in the developing world 
(Smith & Thomas 2003). In the case of AMRS, households reported the destination of all 
departed household members and return migrants, as well as the timing and motivation of each 
move. To limit errors due to retrospection and whole-household mobility, we use data on 
migrants who departed in the year of data collection or in the five years prior (2004-09).  
 
We use these data to create a household-year dataset covering 7,624 households over a 6 year 
period (2009-2004) (Table S1). Migration is measured as the number of migrants sent by the 
household in year t, a count which is subsequently decomposed by migrant destination, gender 
and reported motivation. Households in this dataset were linked to climate by their district-level 
administrative unit of residence, for a total of 123 such units. The following climate data were 
extracted as spatial means for these units: 1) the Climatic Research Unit’s (CRU) high-resolution 
monthly precipitation and temperature, derived from weather stations (CRU 2013); and 2) 
monthly mean land surface temperature and total surface precipitation from the NASA Modern 
Era-Retrospective Analysis for Research and Applications (MERRA), derived from weather 
satellites (Reichle et al., 2011). From these sources we calculate annual values of mean 
temperature and total precipitation as well as climate anomalies standardized to a 1981-2010 
base period. Because previous studies have shown that climate can lagged effects on migration 
for at least two years (Bohra-Mishra et al. 2014), we average annual climate values across year t 
and t-1 and test for longer lags.  
 
To test for climatic effects on migration while accounting for potential confounders, we estimate 
country-specific negative binomial regression models of the number of migrants sent per 
household-year. Predictors include climate variables, a set of socio-demographic controls, 
district-level fixed effects, a quadratic time trend to account for potential retrospective reporting 
biases, and, for a small fraction of households, indicators for missing values on one or more 
control variables. Negative binomial regression is appropriate for count outcomes and has been 
previously used to model migration (Taylor et al. 2003). Standard errors are corrected for 



clustering at the level of the district-level unit, and all results are weighted using sampling 
weights.  
 
Building on previous studies which have validated CRU, used climate anomalies as the measure 
of temporal variation, and identified two-year lags in climatic effects on migration, our core 
specification of climate includes linear measures of rainfall and temperature anomalies derived 
from CRU and averaged over years t and t-1 (Table S2). Temperature anomalies have been 
shown to have robust negative effects on agricultural output across Sub-Saharan Africa, while 
rainfall tends to have positive effects (Seo et al. 2009). We also test additional plausible 
specifications of climate as described below. Socio-demographic control variables include the 
number of migrants sent before 2004, rural versus urban location, and various demographic 
characteristics of the household and household head estimated for 2004 (Table S3). The 
inclusion of district-level fixed effects allows each district to have a baseline rate of migration 
and accounts for all time-invariant district-level factors as long as these effects are linear. To 
account for potential errors of retrospection we allow for a quadratic time trend by including 
both linear and squared terms for the year. We also test the alternative inclusion of linear and 
cubic time trends. With inclusion of the time trend, the effects of climate variables are identified 
by local deviations of climate from the national-scale trend.  
 
Results of the main specifications are shown in Table 1, where the coefficients can be interpreted 
as the multiplicative effect of a one-unit increase in the predictor on the number of migrants sent 
per household. As described above, our core model (specification A) includes rainfall and 
temperature anomalies averaged over years t and t-1 and measured from CRU. To test the 
robustness of these results, the subsequent specifications alter the climate measures, the climate 
data source and the temporal lag. Specification B replaces climate anomalies with raw values of 
temperature and rainfall, specification C uses MERRA data in place of CRU, specification D 
extends the lag to cover years t though t-3, and specifications E and F replace the quadratic time 
trend with a linear and a cubic time trend, respectively.  
 
Consistent with previous studies focusing on single countries, this approach reveals important 
effects of temperature on migration and only weak effects of rainfall. However, novel to this 
literature, we show using a consistent methodological approach that the direction of temperature 
effects varies across countries. With each unit increase of the two-year temperature anomaly in 
specification A, the number of migrants sent per household increases 123% in Uganda (p = 
0.008), decreases 42% in Kenya (p = 0.003), decreases 71% in Burkina Faso (p < 0.001), and 
does not significantly change in Senegal (p = 0.75). The direction and significance of these 
effects are largely robust across alternative specifications B-E with a few exceptions. In Uganda 
the temperature effect becomes non-significant when a four-year measure is used (D), suggesting 
that migration may be an immediate response to temperature that is compensated by lower 
migration over time. In Kenya and Burkina Faso, adding a cubic term for the year (E) renders the 
temperature effect non-significant, indicating that year-to-year variation in climate at the national 
scale is an important component of our ability to identify the effects in specification A. In Kenya 
and Burkina Faso, the effect of rainfall becomes statistically significant in particular 
specifications. We further investigate both rainfall and temperature through an additional 
interactive specification as described below. 
 



To further test the robustness of these results to alterative assumptions we allow the effects of 
rainfall and temperature to be nonlinear using two approaches, maintaining the use of CRU 
anomalies averaged over two years as described above. First we allow the effects of rainfall and 
temperature to each be nonlinear via restricted cubic splines (Buis 2009). Consistent with the 
linear specification, the nonlinear effects of temperature (Figure 1) are jointly significant in 
Kenya (p < 0.001), Uganda (p < 0.001) and Burkina Faso (p < 0.001), but non-significant in 
Senegal (p = 0.18), and the nonlinear effects of rainfall are significant only for Uganda (Figure 
S1 in preparation). Migration increases most notably with the highest observed temperatures in 
Uganda versus with the lowest observed temperatures in Burkina Faso, and at both ends of the 
temperature spectrum in Kenya. Second, we allow the rainfall and temperature effects to 
continue to be nonlinear via a quadratic specification while also allowing rainfall and 
temperature to interact. As observed for the first nonlinear specification, these effects are jointly 
significant for Kenya (p < 0.001), Uganda (p = 0.003) and Burkina Faso (p < 0.001), but non-
significant for Senegal (0.54). In Table 2, we present these results in the form of the predicted 
number of migrants for nine combinations of rainfall and temperature anomalies (Table 2). The 
climate conditions producing the highest levels of migration are cool and rainy in Kenya, warm 
and rainy in Uganda, and cool and dry in Burkina Faso, though with large standard errors in all 
cases. As a whole, the results of these nonlinear specifications support the finding the nature of 
temperature effects differs strongly across countries, though with the existence of significant 
nonlinearities. 
 
Finally, recognizing that human migration encompasses many different types of population 
movements, we allow the effects of climate to differ across types of migrants and households. 
First, we sequentially disaggregate the migration outcome by type of destination, gender of the 
migrant, and reported motivation of the migrant (Table 3). This analysis reveals that the effects 
of climate are most important for internal, male and labor migrants in Kenya; internal, female 
and non-labor migrants in Uganda; and are jointly significant for all migration flows in Burkina 
Faso. Additionally, we tested for two-way interactions from rainfall and temperature to 
education, employment in the primary sector, rural location, and location in a low-rainfall area, 
but, consistent with previous studies (Gray & Mueller 2012ab; Mueller et al. 2014), we find that 
these interactions are largely non-significant (Table S4 in preparation).   
 
Taken together, these results support further revision of the standard conceptual model of 
climate-induced migration, which assumes that climate change will increasingly result in long-
distance, permanent flows of migrants from the developing world. Instead, our results support 
previous findings that climate is more important for internal than international moves, and that 
variations in rainfall only have weak effects. Additionally, we provide novel cross-national 
evidence that temperature effects can act in opposite directions on migration, even between 
neighboring countries. Specifically, in Kenya we show that cool temperatures, particularly when 
combined with high rainfall, drive internal labor-related moves by men. This finding is 
consistent with views of migration as a household investment strategy (Stark & Bloom 
burkj1985), and suggests that households take advantage of beneficial agricultural conditions to 
invest in internal moves by men. In Uganda, where rates of migration are lower and poverty is 
higher, we find that internal non-labor-related moves by women consistently increase with 
temperature. This suggests a Malthusian dynamic in which households send female non-labor 
migrants, likely for marriage, in response to poor agricultural conditions. Across the continent in 



Burkina Faso, temperature has a consistently negative effect on all migration streams including 
international migration, much of which is to neighboring countries in this case (Plaza et al. 
2011). This again suggests an investment dynamic. Finally in Senegal, where the sample is 
majority urban, there are no robust effects of climate on migration, suggesting that the population 
is more insulated from climate variation.  
 
Geographers and others have long-recognized that human-environment relationships tend to be 
contextually specific, and these results strongly support that view for the case of climate and 
migration in Sub-Saharan Africa. Future climate change is likely to have negative consequences 
for many populations in the developing world (IPCC 2014), but it is becoming increasingly clear 
that generalizing narratives that encompass all of Africa or the developing world are likely to 
obscure more than they illuminate (O’Loughlin et al. 2012).  
 
Methods 
 
Sampling: In Uganda and Senegal the household sample is nationally representative. In Kenya 
and Burkina Faso, 10 provinces and 17 districts respectively were included as the most important 
sources of migrants identified by census data. Disproportionate sampling was then used within 
the sample areas to oversample enumeration areas that were more important sources of migration 
as measured by census data, and two-phase sampling was used within enumeration areas to 
select households, oversampling those that had sent migrants (Plaza et al. 2011). Survey weights 
are used in all analyses to account for this sampling design. Interviews took place in late 2009 in 
Kenya, Burkina Faso and Senegal and early 2010 in Uganda; a small number of moves which 
took place in Uganda in 2010 are consolidated with those of 2009. 
 
Survey data: Household composition at the beginning of 2004 was estimated by adding 
household members born before 2004 to migrants who departed during the study period, and 
adjusting individual ages appropriately. 245 households with heads under age 25 at the time of 
the survey were excluded from the analysis as unlikely to have been in existence in 2004. Data 
on one or more control variables are missing for 126 households. These values were interpolated 
to the country median and this interpolation was accounted for through the inclusion of missing 
indicators in the regression analysis. 
 
Climate data: CRU is derived from over 4000 weather stations, including a large number in Sub-
Saharan Africa, by combining a spatial statistical approach and an underlying static climatology. 
This produces a monthly global dataset at 0.5° resolution (~50km at the equator) (Harris et al. 
2014). MERRA uses a reanalysis approach to integrate data from NASA’s collection of earth-
observing satellites in a way that is consistent with physical models of the earth system. This 
produces sub-daily data at 0.5° x 0.67° lat-long resolution (Rienecker et al. 2011). These data 
were extracted at the district-year level as spatial means and linked to households by their 
district-level unit of residence, with the latter defined as districts in Kenya and Uganda, 
provinces in Burkina Faso and departments in Senegal. 
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Table 1. Alternative specifications of the effects of climate variability on migration (incident rate ratios and significance tests).

Rainfall 1.15 1.13 0.79 0.95
Temperature 0.58 ** 2.23 ** 0.29 *** 1.14
Joint test 12.0 ** 7.3 * 28.2 *** 0.3
Rainfall 1.06 1.07 0.81 0.99
Temperature 0.93 * 1.13 ** 0.74 *** 1.01
Joint test 6.6 * 7.9 * 16.9 *** 0.0
Rainfall 0.98 1.12 0.64 ** 0.91
Temperature 0.77 ** 1.22 + 0.51 *** 1.00
Joint test 12.3 ** 3.3 16.1 *** 0.6
Rainfall 0.87 0.95 0.50 + 1.35
Temperature 0.21 *** 0.90 0.14 *** 1.75
Joint test 21.5 *** 0.0 37.1 *** 2.1
Rainfall 1.25 * 1.20 + 0.56 * 1.00
Temperature 0.40 *** 1.54 + 0.41 *** 1.74 +
Joint test 44.9 *** 4.5 13.5 ** 2.9
Rainfall 0.89 1.02 0.78 1.20
Temperature 0.81 2.55 ** 0.43 + 1.42
Joint test 2.8 9.5 ** 3.2 2.7

+ p<0.10, * p<0.05, ** p<0.01, *** p<0.001

Results from negative binomial regressions at the household-year level of the number of departed migrants. Controls, missing 
indicators and fixed effects are included but not shown. Joint tests are Wald tests of the climate variables.

Specification Predictor

A. CRU anomalies, 
years 0-1

Kenya Burkina Faso

B. CRU raw values, 
years 0-1

C. MERRA 
anomalies, years 0-1

D. CRU anomalies, 
years 0-3

E. CRU anomalies, 
years 0-1, linear year

F. CRU anomalies, 
years 0-1, cubic year

Uganda Senegal



Table 2. Predicted number of migrants under various climate conditions (estimates and standard errors).

-1.00 0.12 (0.04) 0.03 (0.01) 0.16 (0.05)
0.25 0.21 (0.07) 0.04 (0.00) 0.13 (0.05)
1.50 0.37 (0.15) 0.05 (0.02) 0.12 (0.09)
-1.00 0.05 (0.08) 0.02 (0.01) 0.07 (0.02)
0.25 0.05 (0.04) 0.02 (0.00) 0.07 (0.03)
1.50 0.07 (0.04) 0.03 (0.01) 0.08 (0.12)
-1.00 0.20 (0.36) 0.09 (0.07) 0.06 (0.03)
0.25 0.12 (0.04) 0.04 (0.00) 0.02 (0.01)
1.50 0.14 (0.02) 0.04 (0.02) 0.02 (0.02)
-1.00 0.03 (0.02) 0.06 (0.02) 0.04 (0.03)
0.25 0.04 (0.02) 0.07 (0.01) 0.04 (0.01)
1.50 0.04 (0.02) 0.07 (0.01) 0.04 (0.02)

Temperature anomalyCountry Rainfall 
anomaly

Predicted number of migrants under various climate conditions and mean values of other predictors from a 
model in which rainfall and temperature effects are allowed to be nonlinear and interact. 

0.00 0.75 1.50

Uganda

Senegal

Kenya

Burkina 
Faso



Rainfall 1.15 1.13 0.79 0.95
Temperature 0.58 ** 2.23 ** 0.29 *** 1.14
Joint test 12.0 ** 7.3 * 28.2 *** 0.3
Rainfall 1.22 + 1.14 1.20 0.84
Temperature 0.55 ** 2.11 * 0.49 * 0.86
Joint test 11.0 ** 5.5 + 6.6 * 1.5
Rainfall 0.88 1.02 0.55 ** 1.05
Temperature 0.76 2.24 0.19 *** 1.81
Joint test 1.3 1.0 38.3 *** 1.4
Rainfall 1.09 1.04 0.76 1.02
Temperature 0.53 * 1.69 0.30 *** 1.14
Joint test 4.2 2.3 18.8 *** 0.1
Rainfall 1.25 1.26 0.96 0.74 +
Temperature 0.63 2.97 * 0.20 *** 1.20
Joint test 2.0 6.7 * 33.3 *** 5.8 +
Rainfall 1.13 0.94 0.79 0.94
Temperature 0.50 ** 1.07 0.31 *** 1.12
Joint test 11.0 ** 0.3 16.2 *** 0.2
Rainfall 1.15 1.38 * 0.78 0.97
Temperature 0.72 4.88 *** 0.24 ** 1.18
Joint test 1.5 19.4 *** 7.5 * 0.1

+ p<0.10, * p<0.05, ** p<0.01, *** p<0.001

Table 3. The effects of climate variability on alternative measures of migration (incident rate ratios and significance 
tests).

Results from negative binomial regressions at the household-year level of the number of departed migrants. Controls, 
missing indicators and fixed effects are included but not shown. Joint tests are Wald tests of the climate variables.

Senegal
Risk of sending a migrant

All migrants

Internal 
migrants

International 
migrants

Male migrants

Uganda Burkina Faso

Female 
migrants

Labor migrants

Non-labor 
migrants

Outcome Predictor Kenya



Figure 1. Nonlinear effects of temperature on migration in Uganda, Senegal, Kenya and Burkina Faso. 
 

 



Table S1. Sample sizes.

Sample size Uganda Kenya Burkina Faso Senegal
Migrants 994 1,390 1,158 1,274

Internal 790 768 583 672
International 204 615 574 602
Male 562 805 1,012 1,002
Female 432 585 146 272
Labor 518 794 894 913
Non-labor 476 594 259 361

Households 1,762 1,871 2,048 1,943
Rural 972 957 1,921 661
Urban 790 914 127 1,282
Primary sector 752 309 1,819 399
Other sector 1,010 1,562 229 1,544

Household-years 10,572 11,226 12,288 11,658
Districts 67 17 10 29
District-years 402 102 60 174



Table S2. Descriptive values of climate variables at the province-year level.

Mean SD Max Min Mean SD Max Min Mean SD Max Min Mean SD Max Min
Rainfall 0.03 0.73 1.57 -1.38 -0.07 0.49 0.95 -1.18 0.44 0.50 1.45 -0.59 0.51 0.55 1.84 -0.75
Temperature 0.95 0.26 1.58 0.39 0.77 0.24 1.25 0.21 0.66 0.43 1.35 -0.22 0.67 0.31 1.47 -0.03
Rainfall (dm) 12.40 1.65 16.55 7.61 11.87 3.61 19.49 4.13 7.82 1.23 10.25 5.81 6.73 2.77 16.74 2.63
Temperature (K) 238 17 271 170 220 34 284 162 289 3 295 282 276 13 302 255
Rainfall -0.47 0.55 1.18 -1.62 -0.27 0.62 1.44 -1.29 0.18 0.43 1.21 -0.62 0.42 0.61 2.21 -0.54
Temperature 0.54 0.68 1.66 -1.63 0.14 0.80 1.61 -1.45 0.31 1.01 1.77 -1.25 -0.11 0.61 1.13 -1.62
Rainfall 0.03 0.39 0.96 -1.11 -0.01 0.30 0.54 -0.73 0.27 0.30 0.93 -0.30 0.31 0.43 1.44 -0.66
Temperature 1.08 0.25 1.52 0.63 0.88 0.24 1.32 0.36 0.77 0.26 1.29 0.18 0.67 0.19 1.13 0.01

SenegalKenya Burkina Faso

CRU anomalies, 
years 0-1
CRU raw values, 
years 0-1
MERRA anomalies, 
years 0-1
CRU anomalies, 
years 0-3

Specification Predictor Uganda



Table S3. Descrptive values of socio-demographic control variables at the household level.

Mean SD Max Min Mean SD Max Min Mean SD Max Min Mean SD Max Min
Characterisics of head

Female 0.25 0.43 1 0 0.22 0.41 1 0 0.04 0.21 1 0 0.17 0.37 1 0
Age 46.0 14.7 99 25 46.1 14.7 116 25 47.9 15.0 125 25 52.5 13.7 97 25
Born in rural area 0.86 0.34 1 0 0.72 0.45 1 0 0.92 0.27 1 0 0.61 0.49 1 0
Years of education 7.25 5.38 32 0 8.33 5.23 23 0 0.78 2.39 17 0 2.51 4.35 17 0
Primary sector occupation 0.58 0.49 1 0 0.17 0.38 1 0 0.90 0.29 1 0 0.24 0.43 1 0

Characteristics of household
Number of children (<15 years old) 2.54 2.03 14 0 1.61 1.66 13 0 3.79 2.62 21 0 3.49 2.88 27 0
Number of adult men 1.31 1.01 9 0 1.28 0.95 9 0 1.81 1.21 9 0 2.37 1.66 16 0
Number of adult women 1.37 0.87 9 0 1.40 0.91 6 0 2.06 1.31 11 0 2.59 1.71 14 0
Sent migrant prior to 2004 0.30 0.91 9 0 0.21 0.61 6 0 0.49 0.90 11 0 0.40 0.78 12 0
Rural location 0.83 0.38 1 0 0.49 0.50 1 0 0.93 0.25 1 0 0.49 0.50 1 0

Uganda SenegalKenya Burkina FasoPredictor



Table S4. Results for Kenya and Uganda of the specifications presented in Table 1 including control variables (incident rate ratios and significance tests).

Climate variables
CRU anomalies, years 0-1, rainfall 1.15 - - - 1.25 * 0.89 1.13 - - - 1.20 + 1.02
CRU anomalies, years 0-1, temperature 0.58 ** - - - 0.40 *** 0.81 2.23 ** - - - 1.54 + 2.55 **
CRU raw values, years 0-1, rainfall - 1.06 - - - - - 1.07 - - - -
CRU raw values, years 0-1, temperature - 0.93 * - - - - - 1.13 ** - - - -
MERRA anomalies, years 0-1, rainfall - - 0.98 - - - - - 1.12 - - -
MERRA anomalies, years 0-1, temperature - - 0.77 ** - - - - - 1.22 + - - -
CRU anomalies, years 0-3, rainfall - - - 0.87 - - - - - 0.95 - -
CRU anomalies, years 0-3, temperature - - - 0.21 *** - - - - - 0.90 - -

Controls
Female 1.24 * 1.24 * 1.24 + 1.24 + 1.24 * 1.24 + 1.06 1.06 1.06 1.06 1.06 1.06
Age 1.07 *** 1.07 *** 1.07 *** 1.07 *** 1.07 *** 1.07 *** 1.00 1.00 1.00 1.00 1.00 1.00
Age squared 1.00 ** 1.00 ** 1.00 ** 1.00 ** 1.00 ** 1.00 ** 1.00 1.00 1.00 1.00 1.00 1.00
Born in rural area 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.91 0.91 0.91 0.91 0.91
Years of education 1.02 1.02 1.02 1.02 1.02 1.02 1.04 + 1.04 + 1.04 + 1.04 + 1.04 + 1.04 +
Years of education squared 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Primary sector occupation 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Number of children (<15 years old) 1.07 * 1.07 * 1.08 * 1.07 * 1.07 * 1.08 * 1.11 *** 1.11 *** 1.11 *** 1.11 *** 1.11 *** 1.11 ***
Number of adult men 1.56 *** 1.56 *** 1.56 *** 1.56 *** 1.56 *** 1.56 *** 1.41 *** 1.41 *** 1.41 *** 1.41 *** 1.41 *** 1.41 ***
Number of adult women 1.54 *** 1.54 *** 1.54 *** 1.55 *** 1.54 *** 1.55 *** 1.51 *** 1.50 *** 1.50 *** 1.50 *** 1.51 *** 1.50 ***
Sent migrant prior to 2004 1.08 1.08 1.08 1.08 1.08 1.08 0.96 0.96 0.96 0.96 0.96 0.96
Rural location 0.98 0.98 0.98 0.98 0.98 0.98 1.08 1.08 1.08 1.08 1.08 1.08
Year 1.37 ** 1.42 *** 1.54 *** 1.52 *** 1.11 ** 3.95 *** 1.16 1.17 1.05 1.03 0.89 ** 1.70 +
Year squared 0.95 * 0.94 ** 0.93 *** 0.96 * - 0.57 *** 0.94 * 0.94 * 0.97 + 0.97 - 0.77 +
Year cubed - - - - - 1.07 *** - - - - - 1.03

Results from negative binomial regressions at the household-year level of the number of departed migrants. Missing indicators and fixed effects are included but not shown.
+ p<0.10, * p<0.05, ** p<0.01, *** p<0.001

Uganda
A B C D E FF

Predictor
A B C D E

Kenya



Table S5. Results for Burkina Faso and Sengal of the specifications presented in Table 1 including control variables (incident rate ratios and significance tests).

Climate variables
CRU anomalies, years 0-1, rainfall 0.79 - - - 0.56 * 0.78 0.95 - - - 1.00 1.20
CRU anomalies, years 0-1, temperature 0.29 *** - - - 0.41 *** 0.43 + 1.14 - - - 1.74 + 1.42
CRU raw values, years 0-1, rainfall - 0.81 - - - - - 0.99 - - - -
CRU raw values, years 0-1, temperature - 0.74 *** - - - - - 1.01 - - - -
MERRA anomalies, years 0-1, rainfall - - 0.64 ** - - - - - 0.91 - - -
MERRA anomalies, years 0-1, temperature - - 0.51 *** - - - - - 1.00 - - -
CRU anomalies, years 0-3, rainfall - - - 0.50 + - - - - - 1.35 - -
CRU anomalies, years 0-3, temperature - - - 0.14 *** - - - - - 1.75 - -

Controls
Female 1.30 1.30 1.29 1.31 1.30 1.29 1.34 + 1.34 + 1.34 + 1.34 + 1.34 + 1.34 +
Age 1.06 ** 1.06 ** 1.06 ** 1.06 ** 1.06 ** 1.06 ** 1.01 1.01 1.01 1.01 1.01 1.01
Age squared 1.00 * 1.00 * 1.00 * 1.00 * 1.00 * 1.00 * 1.00 1.00 1.00 1.00 1.00 1.00
Born in rural area 0.62 * 0.62 * 0.62 * 0.62 * 0.63 * 0.62 * 1.21 1.21 1.21 1.21 1.21 1.21
Years of education 1.14 *** 1.14 *** 1.14 ** 1.14 *** 1.14 ** 1.14 ** 1.01 1.01 1.01 1.01 1.01 1.01
Years of education squared 0.99 * 0.99 * 0.99 * 0.99 * 0.99 * 0.99 * 1.00 1.00 1.00 1.00 1.00 1.00
Primary sector occupation 1.50 1.49 1.50 1.49 1.48 1.50 1.45 1.45 1.45 1.45 1.45 1.46
Number of children (<15 years old) 1.04 1.04 1.04 1.04 1.04 1.04 0.96 * 0.96 * 0.96 * 0.96 * 0.96 * 0.96 *
Number of adult men 1.54 *** 1.54 *** 1.54 *** 1.54 *** 1.54 *** 1.54 *** 1.30 *** 1.30 *** 1.30 *** 1.30 *** 1.30 *** 1.30 ***
Number of adult women 1.00 1.00 1.00 1.00 1.00 1.00 1.17 *** 1.17 *** 1.17 *** 1.17 *** 1.17 *** 1.17 ***
Sent migrant prior to 2004 1.07 * 1.07 * 1.08 * 1.07 * 1.07 * 1.07 * 1.00 1.00 1.00 1.00 1.00 1.00
Rural location 1.29 1.28 1.29 1.29 1.29 1.29 1.02 1.02 1.03 1.03 1.02 1.02
Year 3.34 *** 3.23 *** 4.19 *** 4.34 *** 1.15 *** 4.51 *** 1.45 + 1.48 + 1.48 * 1.31 0.94 + 3.04 ***
Year squared 0.84 *** 0.84 *** 0.82 *** 0.78 *** - 0.67 + 0.92 * 0.92 * 0.92 ** 0.95 - 0.60 ***
Year cubed - - - - - 1.03 - - - - - 1.06 **

Results from negative binomial regressions at the household-year level of the number of departed migrants. Missing indicators and fixed effects are included but not shown.
+ p<0.10, * p<0.05, ** p<0.01, *** p<0.001

Predictor Burkina Faso
A B C D E F

Senegal
A B C D E F
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