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Abstract

Recently, Cohen (2014) revisited the popular question some de-
mographers have asked: How many people have ever been born? In
particular he studies the fraction of those ever born up to a calendar
year T , who are alive at time T , for age y = 0. The present paper
extends this methodology to the proportion of people, who have ever
reached a certain age y, say 65 years, and are alive today (hereinafter
⇡(y, T )).

In this paper, we first analyze this fraction ⇡(y, T ) by using de-
mographic data based on UN estimates. Opposite to the claim made
by Fred Pearce (The Economist, 2014): “it is possible that half of all
the humans who have ever been over 65 are alive today”, we estimate
that the proportion ⇡(65, 2010) is much smaller, ranging between 5.5
and 9.5%. Moreover, we show the main properties of ⇡(y, T ) by age
and over time. We complete our analysis by using stable population
theory.
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1 Introduction

Global population ageing, caused by fertility decline and increasing survival
at older ages, has become a challenging issue of our times. The shift of the
age structure of the population will profoundly reshape the social structure
of our world as well as its economy.

There are around 600m people aged 65 or older alive today. While their
share is now about 8% of the total population, it will increase to some 13%
in the next twenty years. According to the UNs population projections the
world had 16 people aged 65 and over for every 100 adults between the ages
of 25 and 64, but this dependency ratio will rise to 26 by 2035.

A recent article in The Economist (2014) describes how those age invaders
are about to change the global economy. Beside of the old-age dependency
ratio in this publication another indicator of aging is mentioned: the ratio 65
or older alive today related to all the humans who have ever reached the age
of 65 and above. According to The Economist, Fred Pearce claimed that it
is possible that half of all people who have ever been over 65 are alive today.
Since this is a daring statement depending crucially on historic demographic
processes, we decided to check its validity. In the present paper, by using
formal demography and some empirical data on population processes, we will
try to get a more sound answer to Fred Pearces interesting assertion.

Clearly, it is closely related to a question, which has been posed by sev-
eral prominent demographers, namely “How many people have ever lived on
earth?” In his seminal book on Applied Mathematical Demography Keyfitz
(1977) gives a brief introduction into the problem. Among the demogra-
phers who have dealt with this problem are Petty (1682), Winkler (1959),
Deevey (1960), Desmond (1962), and Keyfitz (1966). More recent references
are Tattersall (1996), Johnson (1999), Haub (2011) and Cohen (2014).

Cohen (2014) shows a table with various estimates of the number of people
ever born by year t starting with Petty (1682) until Haub (2011). It illustrates
the wide range of the various estimates. The most reliable seems to be the
last one authorized by Haub (2011). This semi-scientific approach yields an
estimate of 108 billion births since the dawn of the human race assumed as
50.000 B.C. With a world population in mid-2011 this gives a percentage of
those ever born who are living in 2011 of 6.5.

Asking the question whether this fraction rises or falls, Cohen (2014)
comes to the robust conclusion that at present it is increasing. On the other
hand, if world population would reach stationarity or declines, the fraction
would fall. The significance of Cohens analysis lies in the fact that he uses
mathematical demography to obtain his results. The present paper follows
his reasoning. By extending his approach we study the fraction of people
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ever surpassing a certain age limit y, say 65 years, who are now alive.
The paper is organized as follows. In Section 2 we introduce an analytic

expression of the ratio of the number of people at ages above y in year T to the
number of those that ever reached the age y and present a first rough estimate
of this number based on given historical population estimates. The empirical
assessment is refined in Section 3 by applying a stable and alternatively a
non-stable population model. In particular a non-stable population model
that takes into account changes of fertility and mortality in history yields a
more realistic estimate of our expression of elderly at a specific age currently
alive among elderly that have ever reached this age. Section 4 is devoted
to an analytic and numerical investigation of the dynamic change in this
expression with respect to the age threshold y and the time T . The final
section concludes and highlights how far o↵ estimations of our expression
could be by using wrong models on historical populations.

2 Formal model and first empirical assess-

ment

In this section we first present the general formula to calculate the fraction
of people over age y ever lived who are currently alive in year T , which we
denote by ⇡(y, T ). Second, we calculate using data from several authors
the ratio of people at age 65 alive in year 2010 to the number of those ever
reached age 65.

2.1 Analytical framework

Let N(a, t) be the population size at age a in year t; B(c) be the number of
births in year c; and `(a, c) be the survival probability to age a for the birth
cohort c. The number of people that ever reached old age y since the original
cohort c = 0 is:

Z
T�y

0

N(y, c+ y)dc =

Z
T�y

0

B(c)`(y, c)dc, (1)

while the number of people currently alive at ages y and older is (assuming
T > !, where ! is the maximum age):

Z
!

y

N(a, T )da =

Z
T�y

T�!

B(c)`(T � c, c)dc. (2)
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The proportion of interest is the ratio of the number of people currently at
ages y+ to the number of those ever reached the age y:

⇡(y, T ) =

R
!

y

N(a, T )da
R
T�y

0

N(y, c+ y)dc
=

R
T�y

T�!

B(c)`(T � c, c)dc
R
T�y

0

B(c)`(y, c)dc
. (3)

The numerator of Eq. (3) accounts for the living population older than age
y in year T , which is represented by the vertical solid line in Figure 1, while
the denominator of Eq. (3) is the population ever lived to age y until year
T , or the solid horizontal line in Figure 1.
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Figure 1: Lexis diagram illustrating the calculations of ⇡(y, T )
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2.2 First empirical assessment

For a first estimate of ⇡(65, 2010), we took data on total population and
births born before 1945 from Deevey (1960), Keyfitz (1966), Westing (1981),
and Haub (2011). These four authors cover plausible minimum (5.5%) and
maximum (13.9%) values of the people ever lived on earth in the literature.
In all papers, the births born are calculated dividing the human history
in several time intervals, in which the population is assumed to grow at a
constant rate. Di↵erences in the number of people ever lived on earth among
all authors stems mainly from the number of intervals used and the assumed
life expectancy at birth in the first periods.1 For instance, the number of
time intervals up to 1945 used by Deevey (1960) is 11, 8 intervals by Haub
(2011), 6 intervals by Westing (1981), and 4 intervals by Keyfitz (1966). In
the first time intervals, the life expectancy at birth ranges between age 13
(Haub, 2011) and 25 (Deevey, 1960; Keyfitz, 1966), with a middle value of
20 assumed by Westing (1981). To compute the number of people that ever
lived to age 65, shown in Table 1, we multiply the total population born by
the corresponding survival probability to age 65 in each period. The values
of the survival probability to age 65 by di↵erent life expectancy are drawn
from the UN General Model Life Table. See Table 3 in the Appendix 6.5 for
the calculations performed for each author.

Table 1: Fraction of people ever lived to age 65 who are alive in year 2010

Deevey (1960) Westing (1981) Keyfitz (1966) Haub (2011)

Persons ever born until 1945 (millions)† 83,719 45,951 67,138 99,803
Persons age 65 ever lived (millions)‡ 9,575 7,991 6,640 3,762
Persons age 65+ in 2010 (millions)[ 524 524 524 524
⇡(65, 2010) 0.055 0.066 0.079 0.139

Source: † Data collected from Johnson (1999). ‡ Author’s calculations based on UN Model Life Tables
by life expectancy and people ever lived collected by Johnson (1999). [ Data taken from UN, Population
Division (2013).

These assessments led to estimate that the number of people who have
survived to age 65 until 2010 ranges between 3.762 and 9.575 million people.
The lowest value obtained by Haub (2011) crucially depends on a low life
expectancy even for the most recent decades, while the highest value ob-
tained by Deevey (1960) is due to the combination of a long time span (i.e.

1Recall that in a stable population, for a given population growth rate, there exists a
one-to-one relationship between the life expectancy at birth and the crude birth rate .
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more than one million years) together with a high initial population size (i.e.
125,000 people). Provided that the UN estimates a total number of people
age 65+ in year 2010 close to 524 million, we calculate that between 5.5% and
13.9% of the total population ever-reached age 65 were alive in year 2010. It
is clear that these values fall below the claim that half of people who have
ever been over age 65 are alive today. Due to this high discrepancy, in the
next subsections we study whether higher values of ⇡(y, T ) can be obtained
using di↵erent demographic models.

3 Empirical assessments

In this section we analyze the behavior of ⇡(y, T ) in the context of two
alternative demographic models: the stable and the non stable population
model.

3.1 Stable population

In the simplest case of a stable population, that is life tables are constant
across cohorts (i.e. `(a, c) = `(a)) and births grow exponentially at a constant
rate r (i.e. B(c) = B(0)erc), ⇡(y, T ) becomes

8
<

:

r

1�e

�r(T�y)

R
!

y

e

�r(a�y)

`(a)

`(y)

da if r 6= 0,

1

T�y

R
!

y

`(a)

`(y)

da if r = 0.
(4)

The integral in Eq. (4) is the stable population at ages y+ divided by the
stable population of exact age y, while the fraction in front of the integral is
the ratio between the total births born in year T � y and the person-years
lived between 0 and T � y.

Assuming positive population growth and T � y, the ratio converges to
the limit value:

⇡(y, T ) = r

Z
!

y

e

�r(a�y)

`(a)

`(y)
da. (5)

Hence, under a stable population, the value of the integral is given by the
inverse of the proportion of people aged 65 divided between those age 65+,
which according to the UN estimates is about 7.50% at age y = 65 in 2010.
On the other side, the geometric mean of the long-run population growth
rate from the origin of our race (50.000 BC) is 0.035%. Consequently, if we
use the existing data to a stable population model, the value of ⇡(65, 2010)
will be 0.00035

0.075

' 0.47%, which according to Figure 2 is above the range 0.20-
0.35% that is obtained if a stable population with a life expectancy at birth
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Figure 2: Ratio of people age 65+ who are alive in year 2010 to people ever
lived to age 65, by life expectancy at birth and growth rate of births.

Note: Survival probabilities by life expectancy taken from the UN General Model Life
Tables.

between age 20 and 40, respectively, were assumed. This result simply implies
that current ⇡(65, 2010) values cannot be obtained using the same stable
population growth rate throughout the whole time period. This is because
⇡(y, T ) is very sensitive to the number of intervals when the population
growth rate accelerates rapidly (Keyfitz, 1966). For this reason, we next
analyze the value of ⇡(65, 2010) under a non-stable population.

3.2 Non stable population

Unlike the stable population model, we now assume, yet realistically, that
the rapid acceleration of the population growth rate is driven by changes in
fertility and mortality. To account for these changes, we consider that the
survival probability to age a of an individual born in year c and the fertility
rate at age a of an individual born in year c are, respectively, given by

`(a, c) = e

�M(a,c)

, (6)

f(a, c) =

(
f · exp{�(c)} if a = A,

0 otherwise,
with �(0) = 0, (7)
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where M(a, c) =
R
a

0

µ(x, c + x)dx is the cumulative mortality hazard rate
at age a for an individual born in year c and µ(x, c + x) is the mortality
hazard rate at age x in year c + x. In Eq. (7) it is assumed that fertility
is concentrated at the mean age at childbearing, where f is the average
number of children of the birth cohort 0, �(c) is the cohort-specific change
from the initial cohort in the number of children, and A is the unique age of
childbearing.

Like the Lee and Carter (1992) model, we assume that log µ(x, c + x) =
↵(x)+ k(c+ x)�(x), where ↵(x) and �(x) represent the fixed age e↵ects and
the rate of change in mortality at age x in response to a change in k, and k(c+
x) is the level of mortality at time c+ x. Particular functional forms of Eq.
(7) have been previously studied in the context of population growth theory.
In particular, Coale and Zelnik (1963), Feichtinger and Vogelsang (1978),
and Feichtinger (1979) showed that when �(t) = � · t the birth trajectory is
given by B(t) = B(0) exp

�
�

2

t+ �

2A

t

2

 
, where � is the rate of change in the

level of fertility. Here, however, we assume that total births depend on both
fertility and mortality.

Combining (6)-(7) the total number of births born in year c becomes

B(c) = B(0) exp

8
<

:

c/A�1X

i=0

�(iA)�M(A, iA)

9
=

; . (8)

See the proof in Appendix 6.3. Eq. (8) shows to what extent former changes
in fertility and in mortality a↵ect on the growth rate of births. Substituting
(6) and (8) in (3) we get

⇡(y, T ) =

R
T�y

T�!

B(c)e�M(T�c,c)

dc

R
T�y

0

B(c)e�M(y,c)

dc

. (9)

Thus, provided ↵(x) and �(x), Eq. (9) implies that ⇡(y, T ) is a function
not only of y and T but also on the history of �(·) and k(·). In order to
replicate the historical population data shown in Table 2 (column 2), we
calculated �(·) and k(·) over time using the Generalized Inverse Projection
method (GIP) (Lee, 1985; Oeppen, 1993) (see Appendix 6.4 for further de-
tails). Our age-specific mortality rates as well as the relative rate of change
in mortality across age groups are taken from the model life table by level of
life expectancy provided by UN, Population Division (2013). Figure 3 shows
the age components of the underlying survival probabilities. These values are
derived taking the first principal component from the mortality data by life
expectancy reported by UN, Population Division (2013). We set the mean
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age of childbearing (A) at 27, similar to that of Hutterites. Since the results
presented by several scholars mainly di↵er because of the assumed initial life
expectancy at birth and the number of periods, in Table 2 we present the re-
sults that would be obtained if we replicate the populations that result from
combining the data of Deevey (1960) and Haub (2011) up to year 1900 and
the population estimates from 1950 until 2100, reported by UN, Population
Division (2013).
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Figure 3: Underlying mortality model

Replicating Deevey (1960) and Haub (2011) gives us the likely minimum
and maximum values of ⇡(65, 2010). Table 2 reports the population of age 65
(columns 3 and 6) and persons age 65 ever lived (columns 4 and 7) for each
author from year 50000 B.C to 2010 A.C estimated with the GIP method.
Notice that the population age 65 ever lived in year 2010 di↵er from those
reported in Table 1 because in this case the population data from 1950 until
2010 is based on UN, Population Division (2013). The first important feature
to be highlighted in Table 2 is that the number of people age 65 increased
almost by a factor of four during the last century, while the total popula-
tion increased less than three times in both population scenarios. A similar
increase in the population age 65 before the twentieth century took almost
250 years (from 1650 to 1900) according to Haub (2011), which is one-third
of the time following Deevey (1960)’s assumptions. The population age 65
ever lived, however, only increased by 40% during the twentieth century ac-
cording to Haub (2011) and around 20% according to Deevey (1960). The
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Table 2: Number of people age 65 ever lived on earth (millions)

Haub (2011) Deevey (1960)

Year t Pop.
Pop.
age 65

Pop. age
65 ever
lived

Pop.
Pop.
age 65

Pop. age
65 ever
lived

-50000 0 0 0 3 0 1,921
-8000 5 0 36 6 0 2,404

1 309 1 1,547 139 1 4,699
1200 432 1 2,350 369 1 5,882
1650 516 1 2,823 544 2 6,743
1750 800 3 3,003 732 3 7,006
1850 1,277 5 3,342 1,199 4 7,389
1900 1,681 7 3,620 1,637 7 7,678
1950 2,587 13 4,118 2,577 13 8,126
1970 3,758 18 4,422 3,760 19 8,427
1990 5,354 27 4,861 5,361 27 8,869
2000 6,177 33 5,159 6,184 33 9,168
2005 6,573 35 5,330 6,579 35 9,340
2010 6,896 39 5,514 6,896 39 9,524

1 Source: Haub (2011), Deevey (1960), are used until 1900 and UN, Popu-
lation Division (2013) from 1950 to 2010.

fact that the population age 65 is increasing faster than the population age
65 ever lived suggests that the proportion of people who have ever reached
65 and are alive today is nowadays higher than in the past. In particular, if
the population older than 65 in year 2010 was 524 million people, ⇡(65, 2010)
ranges between 5.5% and 9.5%. Clearly, these ⇡(65, 2010) numbers are still
far from the 50% claimed in The Economist (2014).

Given this huge discrepancy in the next section we study whether ⇡(y, T )
can reach the value of 50% at any other age threshold (y) or at any point in
time in the recent past or the future (T ).

4 Dynamic features of ⇡(y, T )

Recently, Cohen (2014) has shown that ⇡(0, T ) (i.e. fraction of people ever
born up to time T who are alive at time T ) decreases over time for a stable
population model, but it can increase or decrease with a super-exponential
or with a doomsday model. Therefore, in a population with an increasing
population growth rate, it cannot be rejected the possibility that ⇡(y, T )
might take a value close to 50% at any other point in time or, maybe, at any
other age threshold y.
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In this section we extend Cohen (2014) analysis by studying the dynamic
features of the new indicator ⇡(y, T ), i.e. the proportion alive of those ever
reached age y. To explore the alternative values that ⇡(y, T ) might take over
time and over age, we first di↵erentiate the log ⇡(y, T ) with respect to the
threshold age y and, second, with respect to time T .

Changing age threshold y. In the first case, taking logarithms at both
sides of Eq. (3) and di↵erentiating it with respect to y gives

⇡

y

(y, T )

⇡(y, T )
=

N(y, T ) +
R
T�y

0

N(y, c+ y)µ(y, c+ y)dc
R
T�y

0

N(y, c+ y)dc
�

N(y, T )R
!

y

N(a, T )da
. (10)

Eq. (10) is the di↵erence between the fractional change over age in the
number of people ever reached age y and the fractional change over age in
the number alive above age y. The first term, which is always positive, is
the sum of the ratio between the number of people at y in year T and the
number of people ever reached age y plus the average mortality rate at y,
weighted by the population ever reached age y. The second term, which is
always negative, is the proportion of people age y exactly among all age y+
in year T . A priori, the sign of Eq. (10) is ambiguous. Higher ages imply
a greater contribution of mortality on ⇡(y, T ) due to the positive correlation
between age and mortality. But, higher ages also imply a greater proportion
of people age y among all age y+ in the same year.

The sign of (10) is, nonetheless, known for some special cases. For exam-
ple, in a stable population, Proposition 1 shows that ⇡(y, T ) is monotonically
decreasing with respect to the age threshold y (see proof in Appendix 6.1)

Proposition 1 In a stable population with r > 0, ⇡(y, T ) is monotonically
decreasing with respect to the age threshold y if the death rate from age y

onwards is non-decreasing.

Proposition 1 implies that, in a stable population with r > 0, the reduc-
tion in the number of people alive at age y and older is, in relative terms,
smaller than the reduction in the number of people ever reached age y if, and
only if, the death rate from age y onwards is non-decreasing. Thereby, in a
growing stable population, ⇡(y, T ) is increasing early in life, due to the fact
that infant death rates are historically higher than the proportion of people
at age y (y belonging to infant ages) among all y+; it reaches a maximum
and it monotonically decreases until very old ages (see Figure 3 in Johnson
(1999) for an illustration with a constant population growth rate).
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In reality, however, the population growth rate is not constant over time.
Like in Eq. (8), the population growth rate is driven by gains in life ex-
pectancy and by decreases in the fertility rate. Under this setting, Propo-
sition 1 does not necessarily hold and, instead, it is necessary to perform
an empirical analysis. Figure 4 shows, for the two extreme cases modeled
with the GIP method, the decomposition of the fractional change over age
in the fraction of people above age y ever lived who are alive in year 2010.
The solid lines (black for Haub-UN and gray for Deevey-UN) represent the
fractional change over age in the number of people ever reached age y (or
first term in Eq. (10)), while the dashed red line is the fractional change over
age in the number of people alive in year 2010 above age y (or second term
in Eq. (10)). Note that the second term is the same in both cases since it is
based on current population data. In contrast, the black solid line and the
gray solid line di↵er because they are based on historical data. Consequently,
since historically the age-specific mortality rates are higher in Haub (2011)
than in Deevey (1960), the black solid line is higher than the gray solid line.
Recall that Haub (2011) starts with a life expectancy at birth of age 13,
while Deevey (1960) assumes, similar to Keyfitz (1966), a life expectancy of
25 at the onset of the homo sapiens. The crossing point between the gray
and black solid lines at old age is due to the higher weight of historical data
in Deevey (1960) than in Haub (2011), since the former assumed that more
people reached old age. From Figure 4, we know that Eq. (10) is positive at
young and old ages, i.e. when the solid lines are above the dashed line, and
it is negative from age 7 to the end of prime working age (around age 60).
Thereby, according to Figure 4, the fraction ⇡(y, 2010) should have a local
maximum early in life and a local minimum late in life.

Figure 5 shows the fraction of people above di↵erent ages y ever lived
who are alive in year 2010. The black solid line depicts ⇡(y, 2010) under the
case of Haub (2011)-UN, Population Division (2013), while the gray solid
line corresponds to that of Deevey (1960)-UN, Population Division (2013).
As Figure 4 suggests, in both cases we find that ⇡(y, 2010) increases early
in life, reaching a maximum value between 11 and 13% at age 5 (gray line)
and at age 7 (black line), afterwards it declines until age 65 (gray line) and
age 60 (black line), and finally it rises, reaching a value of 8% (gray line)
and almost 15% (black line) at age 80. Initially, ⇡(y, 2010) rises because the
historical average mortality rate at age 0 –i.e. the first term in (10)– until
2010 is close to 23 percent (in Deevey-UN) and 35 percent (in Haub-UN),
while the proportion of recently born among the total population in year
2010 is close to 2 percent. Second, the faster decrease over age in the gray
solid line from age 8 to age 60 compared to the black solid line is explained
by the lower mortality rate in the former case relative to the proportion of
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people at age y among all age y+ in year 2010 (cf. Figures 4 and 5). As a
consequence, ⇡(65, 2010) is three percetange points greater in the black solid
line (9%) than in the gray solid line (6%). Therefore, according to Figure
5 we cannot expect –based on realistic scenarios– ⇡(65, 2010) values close to
50% for any age threshold y < 80.2

Changing time T . To analyze whether ⇡(y, T ) might reach values close to
50% in the near future, we di↵erentiate the log ⇡(y, T ) with respect to time
T . After rearranging terms, we obtain3

⇡

T

(y, T )

⇡(y, T )
=

N(y, T )�
R
!

y

N(a, T )µ(a, T )da
R

!

y

N(a, T )da
�

N(y, T )
R

T�y

0

N(y, c+ y)dc
. (11)

2Values of ⇡(y, 2010) for y > 80 are not shown because of lack of data above age
80 for the period 1950-1990. Nevertheless, based on data for living super-centenarians
the fraction ⇡ for supercentenarians in year 2000 seems to be close to 12% (see
http://www.grg.org/Adams/E.HTM) .

3For an illustration of the derivative of ⇡(y, T ) with respect to T see Figure 9 in
Appendix 6.2
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Eq. (11) is the di↵erence between the fractional change over time in the
number of people alive above age y and the fractional change over time in the
number ever reached age y. Eq. (11) coincides with Eq. (2) in Cohen (2014),
page 1562, when y = 0. The fractional change over time in the number of
people alive above age y in year T can be either positive or negative. Indeed,
the first term is the crude growth rate in year T of the population older
than age y. In contrast, the second term in Eq. (11) is always negative.
As a result, our fraction ⇡(y, T ) can either increase or decrease over time.
Another important di↵erence is that the first term in Eq. (11) only depends
on current information, whereas the second term depends on the historical
population.
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Figure 6: Ratio of people age 65+ who are alive in year T to people ever
lived to age 65 until year T , by life expectancy at birth and growth rate of
births.

Note: Survival probabilities by life expectancy taken from the UN General Model Life
Tables.

Assuming a stable population, we know from Eq. (4) that ⇡(y, T ) is a
decreasing function with respect to time T , which converges in the limit to
Eq. (5). Figure 6 illustrates all possible values of ⇡(y = 65, T ) between
year T = ! and T " 1 by di↵erent life expectancies at birth and growth
rates of births. Note that all feasible values are contained in the blue area.
Since ⇡(y, T ) decreases over time, the highest value of ⇡(65, T ) for a given
population growth rate occurs when T = !, while the lowest value occurs
when T " 1. Any other intermediate value of ⇡(65, T ), or ⇠, should satisfy
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the following equation:4

T̃ = y �

1

r

log

✓
1�

r

⇠

Z
!

y

e

�r(a�y)

`(a)

`(y)
da

◆
. (13)

where T̃ is the exact time at which ⇡(y, T̃ ) equals ⇠. For example, in a stable
population, a value of ⇠ = 50% is unattainable unless that the (annual)
growth rate of births would be higher than 10% for a population with a life
expectancy at birth of 20 years or higher than 3% for a population with a
life expectancy at birth of 80 years.
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Figure 7: Fraction of people above alternative threshold ages ever lived who
are alive in year T

Similar to the previous analysis with the age threshold y, the sign of Eq.
(11) is ambiguous and we need to perform an empirical analysis when the

4Notice that Eq. (13) exists if, and only if,

r

Z !

y
e�r(a�y) `(a)

`(y)
du < ⇠. (12)

The region that satisfies the above condition is depicted in blue color in Figure 6.
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population is non-stable. Nevertheless, the first term in Eq. (11) will typi-
cally be higher than the second one when the growth rate of births increases,
because the population reaching age y increases faster than the deaths above
that age (Cohen, 2014). For this reason, as it is shown in Figure 7, ⇡(y, T )
has continuously increased during the twentieth century at all ages analyzed.
In the twenty first century, however, the proportion ⇡(y, T ) may eventually
decline at di↵erent ages after reaching a maximum due to the expected slow-
down in the growth rate of births. For instance, ⇡(0, T ) is expected to reach
a maximum value between 8-12% during the second half of the twenty first
century, ⇡(65, T ) will peak between 13-19% in the 2060s.

5 Conclusion and discussion

The question on how many people have ever lived on earth has been discussed
extensively in the demographic literature. The first mathematically correct
solution has been derived by Keyfitz (1966). By dividing the interval from
-1,000,000 to 1960 into 4 subintervals and fitting successive geometric growth
for each interval, Keyfitz obtained that 69 billion people have ever lived as
compared to 3 billion people alive in 1960. Put di↵erently, the population
in 1960 amounted to about 4% of all people that have ever lived. Compared
to Keyfitz, Winkler (1959) obtained much higher values above 3,000 billion
people since he has not been aware of the di↵erent subperiods of population
growth in human history.

In a recent study Cohen (2014) followed this earlier research and studied
the change over time in the fraction of people ever born who are currently
alive. In this paper, we extend the analysis by Cohen and investigate the
fraction of people above a specific age threshold y alive at time T to the
population that ever was alive and reached this age threshold, which we
denote it by ⇡(y, T ). Such a measure may yield a new view on the pace
of population ageing over time. More specifically, through our analysis we
can show that the claim of Fred Pearce (The Economist, 2014), that half of
all people who have ever reached the age of 65 is alive today, is not true.
Indeed, such a number would be never attainable, neither theoretically (in
a stable population), nor empirically according to existing data. Hence,
though such investigations are important to understand the dynamics of
ageing populations, we need to be careful in applying correct calibrations.

We have applied simple mathematical demography to analytically express
⇡(y, T ) and use the framework of the Lexis diagram to illustrate this frac-
tion. Assuming a stable population model, we were able to derive analytical
expressions of ⇡(y, T ). For the specific case of a stationary population this
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fraction converges to 0 for T going to infinity. Assuming, however, a stable
population with positive growth rate r > 0 we could analytically derive an
expression of the fraction ⇡(y, T ) which amounts to a weighted integral of
the further life expectancy at age y with the weights being an exponential
discount with the stable population growth rate.

Since the stable population model is quite a restrictive approximation over
such a long time period, we extended our analysis to a nonstable population
model where we indirectly estimated the time series of fertility and mortality
over time allowing for di↵erences across various subperiods. Our estimates
for the fraction ⇡(65, 2010) ranges from 5.5% to about 9.5% which is clearly
well below the estimates cited in Pearce (The Economist, 2014).

In the rest of the paper we studied the sensitivity of the fraction ⇡(y, T )
with respect to the age y and the time T . For a given contemporaneous time
T , we demonstrate that the shape of the fraction is non monotonic. It first
increases with the age threshold at younger ages, then starts to decline before
it increases again for older ages. This property can be explained by two op-
posite forces. The first one is positive and depends on the average historical
mortality rate at age y. The second is negative and it is the proportion of
people at age y among all age y+ in year T , which depends on contempora-
neous data. The non decreasing property of ⇡(y, T ) over the age threshold
at young and old ages is explained by the fact that the high mortality rates
at these ages in the past dominate over the existing mortality rates at these
two life periods. Nevertheless, and despite ⇡(y, T ) increasing at old ages, our
results clearly indicate for all age thresholds the value of the faction ⇡(y, T )
in year T = 2010 is far below 50% and ranges from 0.05 to at most about
0.15.

The behavior of the fraction ⇡(y, T ) with respect to T may also exhibit a
non monotonic path as we have demonstrated in our numerical calculations
for values of ⇡(y, T ) for T between 1850 and 2100 in case of y = 65. In this
case, ⇡(y, T ) first increases with T , while it decreases afterwards starting at
time periods around T = 2050. The behavior of ⇡(y, T ) over time is also
explained by two terms. The first one is the crude growth rate in year T of
the population older than age y, which can be either positive or negative.
The second one is the fractional change over time in the number of people
ever reached age y. During the twentieth century and first half of the twenty
first century the first term will typically be higher than the second one when
the growth rate of births increases, because the population reaching age y

increases faster than the deaths above that age. Though, the values obtained
for various time periods and di↵erent age thresholds are again well below 50%
and could be as low as 1% for early time periods T = 1850 and go up to
about 20% in 2050.
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For illustrations we also provided the range of values for ⇡(65, T ) for
extreme values of T (i.e. T being the maximum age 130 versus T going to
1) given a stable population under various growth rates of births and for
alternative values of the life expectancy at birth. Only in case of a very high
growth rate of births we could obtain numbers of the fraction ⇡(65, T ) similar
to Pearce (The Economist, 2014) or even exceeding these values.

Summing up our analytical and numerical derivations we may conclude
that for realistic time series of historic and future fertility and mortality
patterns the fraction of people alive today at ages above 65 among all those
ever lived to age 65 is much lower as the one given in Pearce. Nevertheless
our results indicate that the fraction has increased over time supporting the
argument that the pace of ageing has increased.

6 Appendix

6.1 Proof of Proposition 1

Assuming time-constant death rate at age y (µ
y

), let us define

⇡ =
A

B

, ⇡

0 =
A

0

B

0 , (14)
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Rearranging terms and multiplying by �1 gives
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Defining �
B

= b� and simplifying
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� 0.5µ�
b

A

<

b

B

+ µ� µ�
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B

. (19)
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Notice that b is the total number of births per year who have survived to age
y, whereas � is an infinitesimal number. Rearranging terms and using the
definition of ⇡ gives

)

b

A

(1� ⇡) < µ

y


1 +�

b

A

(0.5� ⇡)

�
. (20)

Provided that for any stable population lim
T!1 ⇡ = 0, we obtain

) µ

y
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1
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A

�
. (21)

Under a stationary population b/A = 1/e
y

. Hence,
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e

y
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. (22)

If the death rate from age y is non decreasing and � ! 0, 1/e
y

� µ

y

, which
contradicts the above inequality. Therefore, we have shown that ⇡0

< ⇡ when
the population is stationary.

It is important to realize that ⇡0
< ⇡ also applies to a stable population

with a fixed mortality schedule across cohorts. If the death rate at age y is
constant, it can be shown for � ! 0

�
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Using Eq. (30), we have
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Therefore, if r > 0
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which also proves by contradiction that ⇡0
< ⇡.
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Figure 8: Illustration to change over age of the fraction alive of those ever-
survived to old age
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6.2 Sensitivity analysis of ⇡(y, T ) with respect to T
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Figure 9: Illustration to change over time of the fraction alive of those ever-
survived to old age

6.3 Simultaneous variation in longevity and fertility

model

Assuming a unique age of childbearing (A), the renewal equation at time
s+ A is

B(s+ A) = B(s)f(A, s)`(A, s). (26)
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From (6)-(7), taking logarithms to both sides of (26) and di↵erentiating with
respect to s gives

r(s+ A) = r(s) + �

s

(s)�M

s

(A, s), (27)

where r(s) is the growth rate of births in year s. Iterating (27) recursively
until time 0 gives

r(s+ A) ⇡ r(0) +
s/AX

i=0

�

s

(s� iA)�M

s

(A, s� iA). (28)

Integrating (28) with respect to time equals the total contribution of changes
in mortality and fertility on the growth rate of births until time t (i.e.
log{B(t)/B(0)})

Z
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By changing the order of integration and rearranging terms, we have
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Solving the integral and assuming r(0)A = �(0)�M(A, 0) gives

Z
t

0

r(s)ds ⇡
t/A�1X

i=0

�(iA)�M(A, iA),

which is equivalent to Eq. (8).

6.4 Reconstruction of the historical population reported

in Table 2

Under a constant population growth rate r, the following demographic rela-
tions are satisfied:

N(0) = B(�⌧)er⌧
Z

!

0

e

�ra

`(a)da, (29)

B[�⌧, 0] = B(�⌧)

Z
0

�⌧

e

rt

dt, (30)
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where B[�⌧, 0] denotes the total number of births born during the period
[�⌧, 0]. Thus, provided a survival probably profile and the length of the
interval ⌧ , combining (29) and (30) the initial population growth rate (r)
solves

N(0)

B[�⌧, 0]
=

r

R
!

0

e

�ra

`(a)da

1� e

�r⌧

.

Relying on the data most frequently reported in the literature we set 0 at
-8000 B.C. and assume N(0) = 5.000.000 similar to Deevey (1960), Westing
(1981), and Haub (2011). Like Keyfitz (1966) we choose an initial life ex-
pectancy at birth (e

0

) of 25 years. Notice that this value of e
0

guarantees
the survival of the Homo Sapiens with a TFR close to 6 even when random
negative demographic shocks kill a sizable proportion of the population (see
Figure 10).5 Finally, since we use the same time data points of Haub (2011)
we rely on his estimated total number of births born within the period [�⌧, 0].

Provided an initial number of births B(0) and a time series of demo-
graphic values {N(t), e

0

(t), tfr(t)}T
t=0

and a set of population distributions
{N(a, t)}t=0,...,T

a=0,...,!

, our historical population is consistently calculated over time
using the Generalized Inverse Projection method (Lee, 1985; Oeppen, 1993),
which consist in solving the following problem

min
k,�
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2

5For example, if every generation is assumed to su↵er a negative demographic shock
(e.g. war, famine, pandemic, etc.) that kills 1/3 of the population, the potential population
growth rate should be approximately 1% per year.
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Figure 10: Constant population growth rate by fertility level and life ex-
pectancy
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subject to

B̂(t) = B̂(t� A)f(A, t� A)`(A, t� A),

N̂(a, t) = B̂(t� a)`(a, t� a),
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where `(a, t�a) = e

{

�
Pa�1

s=0 exp(↵(s)+k(t�a+s)�(s))

}, f(A, t�A) = f ·e

�(t�A), k =
[k(0), . . . , k(T )], � = [�(0), . . . ,�(T )], and [k̄, �̄,�k,��] are the maximum
and minimum values of {k(t),�(t)}

t=0,...,T

, which are set at [30, 0.5, 50, 2],
and f

fab

= 0.4886 is the fraction of female at birth. The main property of
the generalized population reconstruction method is that gives a population
structure that is consistent by age and over time for non-stable populations.
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6.5 Population ever lived data

Table 3: Estimates of people ever born by di↵erent authors

Exact Population Lotka’s r Crude Life Births at Births in Cumulated Survival Population Cumulated
date birth rate expectancy exact period births prob. age ever lived population

date 65 to age 65 to age 65
(millions) (in %) (years) (millions) (millions) (millions) (millions) (millions)

Haub (2011)

-50000 0 0.035 0.080 13.0 0 1140 0.0151
-8000 5 0.051 0.080 13.0 0 46118 1140 0.0153 17 17

1 300 0.034 0.060 17.0 18 26614 47259 0.0330 704 721
1200 450 0.023 0.060 17.0 27 12813 73872 0.0328 879 1600
1650 500 0.464 0.050 22.0 25 3181 86686 0.0671 420 2020
1750 795 0.464 0.040 28.0 32 4047 89866 0.1172 213 2234
1850 1265 0.539 0.040 29.0 51 2903 93914 0.1226 474 2708
1900 1656 0.837 0.033 38.0 55 2986 96817 0.2337 356 3064
1945 2516 0.031 78 99803 698 3762

Keyfitz (1966)

-1000000 0 0.001 0.040 25.0 0 13508 0.0889
-5000 5 0.078 0.040 25.5 0 12525 13508 0.0931 1201 1201

0 250 0.047 0.040 25.3 10 24983 26034 0.0914 1166 2367
1650 545 0.550 0.040 28.7 22 16121 51017 0.1234 2283 4651
1945 3000 0.040 120 67138 1989 6640

Westing (1981)

-298000 0 0.006 0.050 20.0 0 2725 0.0514
-40000 3 0.002 0.040 25.0 0 5014 2725 0.0889 140 140
-8000 5 0.046 0.034 30.0 0 14270 7739 0.1364 446 586

0 200 0.056 0.029 35.0 6 15681 22009 0.1929 1946 2532
1650 500 0.347 0.028 40.0 14 3992 37690 0.2576 3025 5557
1850 1000 0.877 0.029 45.0 29 4269 41682 0.3292 1028 6585
1945 2300 0.037 50.0 85 45951 1405 7991

Deevey (1960)

-998040 0 0.000% 0.040 25.0 0 11782 0.0889
-298040 1 0.000% 0.040 25.0 0 21344 11782 0.0889 1048 1048
-23040 3 0.003% 0.040 25.0 0 2552 33126 0.0889 1898 2945
-8040 5 0.070% 0.040 25.4 0 4658 35678 0.0927 227 3172
-4040 87 0.011% 0.035 28.7 3 15132 40336 0.1228 432 3604
-40 133 0.083% 0.035 29.2 5 17278 55468 0.1282 1858 5462

1650 545 0.290% 0.035 30.9 19 2212 72746 0.1457 2215 7677
1750 728 0.437% 0.035 32.2 25 1424 74958 0.1597 322 7999
1800 906 0.575% 0.035 33.3 32 4286 76383 0.1729 227 8227
1900 1610 0.798% 0.035 35.5 56 3051 80668 0.1990 741 8968
1945 0.035 83719 607 9575
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