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Abstract

We study a class of four mortality models with exponentially increasing hazards

of death by senescent causes (the Gompertz family): the Gompertz, the Gompertz-

Makeham, the gamma-Gompertz, and the gamma-Gompertz-Makeham. We quantify

the bias in parameter estimators if we fit a model from this family that neglects non-

zero extrinsic mortality or existing mortality deceleration. We present the resulting

distortion in mortality measures imposed by the inaccurate parameter estimates.

The Gompertz Family

Parametric adult-mortality models capture different patterns of death-rate increase over age:

exponential, polynomial, logistic, etc. Since Beard (1959) demographers have acknowledged

the fact that a given mortality pattern can be generated by a homogeneous population of

individuals exposed to one and the same hazard or, equivalently, by a heterogeneous popu-

lation of individuals subjected to a finite or countably infinite number of different hazards.
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Gompertz (1825) suggested an exponential increase of one’s risk of dying from senescent

causes

µG(x) = aebx , (1)

where a denotes the level of mortality at the starting adult age (age 0) and b, equal to the

relative derivative of µG(x), denotes the rate of aging. If the exponentially increasing hazard

of death from senescent causes is complemented at each age by a constant non-aging-related

risk c (Makeham 1860), the resulting model is characterized by a force of mortality

µGM(x) = aebx + c . (2)

If the study population is considered heterogeneous with respect to a, i.e. individual mor-

tality patterns have the same rate of aging b, but different starting levels of mortality a, the

resulting relative-risk models are known as frailty models (Vaupel et al. 1979). Formally,

an unobserved random variable Z, called frailty (Vaupel et al. 1979), modulates the initial

mortality level and the force of mortality for individuals with frailty Z = z is given by

µΓG(x | z) = zaebx , (3)

when risk of dying for all individuals follows a Gompertz pattern, and

µΓGM(x | z) = zaebx + c , (4)

when in addition each individual is subjected to one and the same extrinsic hazard c at all

ages x. For empirical (Beard 1959; Vaupel et al. 1979) and theoretical reasons (Finkelstein

and Esaulova 2006; Steinsaltz and Wachter 2006; Missov and Finkelstein 2011) frailty is often

assumed to be gamma-distributed with an expected value of 1 and a squared coefficient of

variation γ, i.e. Z ∼ Γ(1/γ, 1/γ) follows a single-parameter gamma distribution. As frailty
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is unobserved and human mortality data are aggregated for the entire population by age

and year (or age and cohort), researchers fit the marginal models resulting from (3) and (4),

namely

µΓG(x) =
aebx

1 + aγ
b

(ebx − 1)
(5)

and

µΓGM(x) =
aebx

1 + aγ
b

(ebx − 1)
. (6)

Models (1), (2), (5), and (6) all assume an exponentially increasing hazard of death from

senescent causes, and we will address them as the Gompertz family. For convenience, we

will also abbreviate each of the four models from the Gompertz family: the Gompertz model

(1) by G, the Gompertz-Makeham (2) by GM, the gamma-Gompertz (5) by ΓG, and the

gamma-Gompertz-Makeham (6) by ΓGM. Vaupel and Missov (2014) present an extensive

overview of relationships that hold within each of the four models from the Gompertz family,

while Missov (2013) and Missov and Lenart (2013) study the corresponding life expectancies.

In this article we study how model misspecification can influence the estimates of model

parameters.

A model in the Gompertz family can be misspecified by neglecting either non-zero ex-

trinsic mortality (omitting c) or statistically significant frailty (omitting γ). Disregarding c

is usually driven by the fact that estimating a model with a Makeham term (GM or ΓGM)

is qualitatively different from estimating a model without it (G or ΓG): the former is a pure

optimization problem (likelihood maximization) while the latter reduces to fitting a Poisson

regression. Disregarding γ stems usually from one’s disbelief in either the heterogeneity of

the study population or the existence of mortality deceleration at the oldest ages (Gavrilov

and Gavrilova 2011).

We simulate data from models with non-zero extrinsic mortality (GM or ΓGM) and fit
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their Gompertz family counterparts that do not contain c (G and ΓG, respectively) to assess

the associated bias in a, b, and γ. We perform the same procedure to measure the bias in

a, b, and c introduced by ignoring a non-zero γ, i.e. we fit a G and a GM model to data

simulated from a ΓG and a ΓGM, respectively. We quantify the resulting bias by using

two different measures – the relative absolute bias (Pletcher 1999) and the mean squared

error – and provide examples of demographic measures that can be substantially distorted

depending on the magnitude of the bias in model parameters.

Model Fitting

The fitting procedure for the models from the Gompertz family is based on the assumption

that death counts D(x) at age x are Poisson-distributed, i.e. D(x) ∼ Poisson(E(x)µ(x))

(Brillinger 1986), where E(x) is the exposure at age x and µ(x) denotes the corresponding

hazard from (1), (2), (5) or (6). As a result, we maximize a Poisson log-likelihood

L =
∑
x

(D(x) lnµ(x)− E(x)µ(x)) . (7)

Models (1) and (5), the G and the ΓG, are estimated in a qualitatively different way than

models (2) and (6) that contain a Makeham term, the GM and the ΓGM. Taking advantage

of the fact that the ΓG marginal survival function is equal to

sΓG(x) =
(

1 +
aγ

b
(ebx − 1)

)−1/γ

, (8)

one can represent (5) as (see Vaupel 2002; Vaupel and Missov 2014)

µΓG(x) = aebx[sΓG(x)]γ. (9)

Expressions (1) and (9) aid representing log-mortality in the G and the ΓG setting as
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lnµG(x) = ln a+ bx (10)

lnµΓG(x) = ln a+ bx+ γ ln[sΓG(x)] , (11)

i.e. parameters a, b, and γ can be estimated by a Poisson regression (a generalized linear

model), whose solution is calculated analytically by applying iteratively-reweighted least

squares (McCullagh and Nelder 1989). Due to the additive Makeham term, expressions (2)

and (6) cannot be represented in a regression form, and the only way to estimate model

parameters is to maximize the likelihood L in (7). This is an optimization problem over

a three- (in the case of GM) or four-dimensional (in the case of ΓGM) space. Finding its

solution is not always an easy task as standard gradient-based optimization algorithms might

converge to a local maximum instead of the global one. As a result, due to the high sensitivity

of parameter estimates to the starting values, many researchers avoid fitting a model with

a Makeham term. In this manuscript optimization was carried out by applying differential

evolution (Storn and Price 1997) using the DEoptim R-package (Mullen et al. 2011).

Other fitting procedures can also be applied, but only when their underlying assumptions

hold. For instance, one can fit a linear regression for the logarithm of the death rates, given

that they are normally distributed. The latter, however, is not always fulfilled in human life

tables (HMD 2014). Another alternative would be to maximize a quasi-Poisson likelihood for

the mortality rates if the sample mean and variance differ substantially. This is also rarely

the case for HMD data. Finally, one can maximize a binomial likelihood for the probability

of death q(x) if age-specific exposures E(x) are unknown. The binomial log-likelihood is

given by

lnL =
∑
x

[D(x) ln q(x) + (N(x)−D(x)) ln (1− q(x))] ,

where N(x) denotes the population at age x. Maximizing a Poisson likelihood for the death
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counts is equivalent to maximizing a binomial likelihood for the corresponding probabilities

of dying (for further discussion, see Lenart 2014).

Fitting Misspecified Models to Simulated Data

We simulate individual lifespans from the GM and the ΓGM by inverting the corresponding

survival functions. For y ∼ Unif(0, 1) we solve for x numerically

exp {bx}+
bcx

a
+
b

a
ln y − 1 = 0

for the GM, and

aγ

b
exp {bx}+ γcx+ 1− aγ

b
− y−γ = 0

for the ΓGM. For the other two models of the Gompertz family we have an exact simulation

formula resulting from the inversion of the corresponding survival function:

x =
1

b
ln

(
1− b

a
ln y

)
for the G, and

x =
1

b
ln

(
b

aγ
y−γ − b

aγ
+ 1

)
for the ΓG. Death counts and exposures are aggregated age-wise from individual lifespans.

For each of GM, ΓG and ΓGM we generate 500 samples of 5000 individual lifespans. Param-

eter values for the simulation have been chosen in accordance with the range of estimates

(see Missov 2013; Missov and Lenart 2013; Missov et al. 2014) obtained from fitting models

from the Gompertz family to period mortality data from the HMD (2014).
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Influence of Neglecting Frailty

Neglecting frailty means that a G or a GM is fitted to a dataset with a non-zero γ. This

implies that we do not account for mortality deceleration. Figure 1 shows observed logarith-

mic death rates for France in 1999 (triangles for females and circles for males). Estimating

a G model starting from age 80 results in a (brown) line on a log-scale that substantially

overestimates observed mortality after age 95 for both sexes. Estimating a ΓG provides a

much better fit (the blue curves) as it captures mortality deceleration. Moreover, if mortality

levels off (Gampe 2010), incorporating frailty is essential (Missov and Vaupel 2014).

80 85 90 95 100 105 110

−
3

−
2

−
1

0

age

lo
g−

ha
za

rd

female

male

GF: a=0.04501, b=0.11064

GM: a=0.07449, b=0.0944

ΓGF: a=0.03973, b=0.1506, γ=0.26546

ΓGM: a=0.07055, b=0.12315, γ=0.16409

Figure 1: Observed vs fitted mortality in France, 1999, ages 80–110. Observed death rates
are represented by circles for males and triangles for females (Source: KTD 2014). Fitted
mortality is presented in brown for the G model and in blue for the ΓG model.

Neglected non-zero frailty results in overestimated a, underestimated b (Figures 2 and
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3), and underestimated c (Figure 3). The reverse direction in which the misspecification-

generated estimates of a and b shift with respect to the true values of the G parameters

is not surprising: the maximum-likelihood estimators of â and b̂ exhibit an almost perfect

negative correlation (for further discussion, see Lenart and Missov 2014; Missov et al. 2014).
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Figure 2: Histograms of estimated a and b of the Gompertz model (red bars) and estimated
a, b and γ of the gamma-Gompertz model (blue bars). The G and the ΓG were fitted to
data simulated from a ΓG model with parameters a = 0.00002, b = 0.09 and γ = 0.2.
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Figure 3: Histograms of estimated a,b and c of a Gompertz-Makeham model (red bars) and
estimated a, b and γ of a gamma-Gompertz-Makeham model (blue bars). The GM and the
ΓGM were fitted to data simulated from a ΓG model with parameters a = 0.00002, b = 0.09,
c = 0.001 and γ = 0.2.

Influence of Neglecting the Makeham Term

Neglecting the Makeham term means that a G or a ΓG is fitted to a dataset with a non-zero

c. Empirical evidence for the presence of the latter can be detected if plotted logarithmic
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death rates at adult ages have a “tail” to the right of the log-Gompertz line, i.e., c 6= 0 if

logarithmic death rates grow at a decreasing pace until some adult age, after which they

start increasing linearly (see Figure 4). Fitting a G instead of a GM model (or a ΓG instead

of a ΓGM) can sometimes be misleading about mortality dynamics. For example, in Figure

4 we fitted a G and a GM to mortality data for Italian males and females in 2004, ages 25-80.

We restricted ourselves to the latter age range to avoid the effect of non-zero frailty γ in the

subsequent ages, i.e. in this example we are interested solely in the effect of neglecting c. If

we neglect the Makeham term, the estimated bs suggest that the rate of aging for females

exceeds the one for males. If we include c, though, the results are exactly the opposite – the

rate of aging for males is higher than the one for females.

Neglecting c shifts the estimates of the Gompertz parameters in the same direction as

in the case when frailty was neglected: a is overestimated, while b is underestimated (see

Figures 5 and 6). The estimates for the frailty parameter γ are close to 0, i.e., neglecting

c can result in substantial underestimation of the “amount” of unobserved heterogeneity in

the data.

The Bias in Parameter Estimators Induced by Model

Misspecification

The bias of an estimator θ̂ is defined as

Bias(θ̂) = Eθ̂ − θ ,

where θ is the true value of the study parameter. Other related measures are, for instance,

the relative absolute bias 1 (Pletcher 1999)

1Pletcher calls it “absolute bias”, but we think it sounds better if we add “relative” to this name as we
divide by the true value of the parameter.
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Figure 4: Observed vs fitted mortality in Italy, 2004, ages 25–80. Observed death rates are
represented a green curve for males and by a red curve for females (Source: HMD 2014).
Fitted mortality is presented in brown for the G model and in blue for the ΓG model.

RABias(θ̂) =
|Eθ̂ − θ|

θ

or the mean squared error

MSE(θ̂) = Varθ̂ + [Bias(θ̂)]2 .

We simulated datasets with fixed a = 0.00002, b = 0.09 and varying c or γ and fitted

the corresponding misspecified models. Figures 7-10 show that the relative absolute bias of

all parameter estimators increases as a function of the neglected parameter (c or γ). If we
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Figure 5: Histograms of estimated a and b of the Gompertz model (red bars) and estimated
a, b and c of the Gompertz-Makeham model (blue bars). The G and the GM were fitted to
data simulated from a GM model with parameters a = 0.00002, b = 0.09 and c = 0.001.
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Figure 6: Histograms of estimated a, b and γ of the gamma-Gompertz model (red bars) and
estimated a, b, c and γ of the gamma-Gompertz-Makeham model (blue bars). The ΓG and
the ΓGM were fitted to data simulated from a ΓGM model with parameters a = 0.00002,
b = 0.1, c = 0.001 and γ = 0.2.

disregard a non-zero c, the relative absolute bias of â increases convexly, while the one of

b̂ grows at a decreasing rate (Figures 7 and 8). Note that when c increases, the estimated

γ tends to zero (Figure 8), and moreover, in the presence of extrinsic mortality c that is

comparable in magnitude with a, the fitted ΓG does not detect frailty at all. Neglecting

non-zero γ results in an exponentially increasing relative absolute bias of â and an almost

linearly increasing one for b̂ and ĉ (Figures 9 and 10).
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Figure 7: The relative absolute bias of G parameter estimators as a function of Makeham’s c.
In each case we generated 100 samples of size 5000 from the GM with a = 0.00002, b = 0.09,
and a c corresponding to the marks on the horizontal axis. A G model was fitted to the
generated dataset.
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Figure 8: The relative absolute bias of ΓG parameter estimators as a function of Makeham’s
c. In each case we generated 100 samples of size 5000 from the ΓGM with a = 0.00002,
b = 0.09, γ = 0.2 and a c corresponding to the marks on the horizontal axis. A ΓG model
was fitted to the generated dataset.

Distorted Mortality Measures in the Presence of Biased

Parameter Estimators

Misspecified models, i.e., models that disregard non-zero Makeham term c or non-zero frailty

parameter γ, lead to biased parameter estimators. Even if the fit of the observed death rates

by the estimated force of mortality is satisfactory, single-parameter estimates θ̂ that are

not capturing the true θ can lead to wrong calculations of mortality measures in which

parameters θ are involved. Examples of such are the life-table aging rate (LAR), the modal
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Figure 9: The relative absolute bias of G parameter estimators as a function of γ. In each
case we generated 100 samples of size 5000 from the ΓG with a = 0.00002, b = 0.09, and a γ
corresponding to the marks on the horizontal axis. A G model was fitted to the generated
dataset.
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Figure 10: The relative absolute bias of GM parameter estimators as a function of γ. In
each case we generated 100 samples of size 5000 from the ΓG with a = 0.00002, b = 0.09,
c = 0.001 and a γ corresponding to the marks on the horizontal axis. A GM model was
fitted to the generated dataset.

age at death, and the cross-sectional average length of life (CAL).

Life-Table Aging Rate (LAR)

The life-table aging rate (LAR) measures the age-specific pace of mortality change. It is

defined as (Horiuchi and Coale 1990)

LAR(x) =
d
dx
µ(x)

µ(x)
,
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where µ(x) denotes the hazard of death for the population. For contemporary populations

it has a bell-shaped pattern over the adult age range (Horiuchi and Wilmoth 1997) and

the peak of the curve signifies the age of mortality deceleration. Vaupel and Zhang (2010)

present a formula for LAR in a ΓGM setting:

LAR(x) = b

(
1− c

µΓGM(x)

)
− γ

(
1− c

µΓGM(x)

)
(µΓGM(x)− c) .

The age of mortality deceleration x∗ in this case is given by (Missov and Ribeiro 2014)

x∗ =
1

b
ln

(
c(b+ cγ)

2ab
+

√
cγ(b+ cγ)[c(b+ cγ)− 4b(aγ − b)]

2abγ

)
.

Neglecting the Makeham term results in a LAR curve that decreases monotonically, i.e. does

not capture the age of mortality deceleration, and provides an inadequate fit to the empirical

LAR (Figure 11).

The bigger the size of the Makeham term the more the LAR curve based on ΓG model

deviates from the empirical values.
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Figure 11: Empirical, ΓG and ΓGM fitted LAR values. Data simulated from a ΓGM models
with parameters a = 0.00002, b = 0.09, γ = 0.2, c = 0.00002 (left) and c = 0.001 (right).
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Modal Age at Death

The old-age mortality mode M is the age at which the largest number of senescent deaths

occur. Unlike life expectancy e0, i.e., the average lifespan, the modal age at death M is not

influenced by infant and young-adult mortality. As a result, usually M > e0. Knowing M is

important because this is the age around which hospitals, nursing homes and public health

in general spend most resources.

The Gompertz function aebx can be equivalently expressed via M as beb(x−M) (Gumbel

1958), i.e. M can be estimated directly from any model of the Gompertz family by substi-

tuting a = be−bM in (1), (2), (5) and (6) (for further details on the estimation procedure,

see Missov et al. 2014). Note than in all four cases M denotes the Gompertz mode, i.e. the

mode of the distribution of deaths by senescent causes.

The modal age at death can be inaccurately estimated if we fit a G model instead of a

ΓG (Figure 12). The G model overestimates M , and the size of the overestimation depends

on the magnitude of the neglected frailty. Results are similar if we fit a GM model instead

of a ΓGM (Figure 13).
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Figure 12: Distribution of deaths of estimated G and ΓG models. Data simulated from ΓG
models with parameters a = 0.00002, b = 0.09, γ = 0.2 (left) and γ = 0 (right).

Neglecting the Makeham term also results in biased estimates for the modal age at death.

As a consequence of fitting a G model instead of a GM (Figure 14) M is underestimated.
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Figure 13: Distribution of deaths of estimated GM and ΓGM models. Data simulated from
ΓGM models with parameters a = 0.00002, b = 0.09, c = 0.001, γ = 0.2 (left) and γ = 0.1
(right).

The magnitude of underestimation depends on the size of the neglected Makeham term.
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Figure 14: Distribution os deaths of estimated G and GM models. Data simulated from GM
models with parameters a = 0.00002, b = 0.09, c = 0.001 (left) and c = 0.00002 (right).

Fitting a ΓG model instead of a ΓGM estimates M correctly if the population is hetero-

geneous “enough” (to “absorb” the bias resulting from having a high value of the Makeham

term. But if we converge to GM data, we see the similar results like G fits instead of GM.).

However, the higher the Makeham term, the more deaths are predicted for ages lower than

M .
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Figure 15: Distribution of deaths of estimated ΓG and ΓGM models. Data simulated from
ΓGM models with parameters a = 0.00002, b = 0.09, γ = 0.2, c = 0.001 (topleft), c =
0.00002 (topright) and γ = 0.1, c = 0.001 (bottom).
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Life Expectancy

Life expectancy is conventionally calculated from a life table which characterizes the distri-

bution of deaths. If we assume a parametric structure for the latter, we can estimate model

parameters and calculate model-based life expectancy (the integral of the explicitly given

survival function). One can use model-based life expectancy to reconstruct exposures (for

discussion and examples, see Missov and Lenart 2013) or forecast mortality.

In the aforementioned parametric setting, the life table is characterized by the true values

of model parameters. If the maximum-likelihood estimators of the parameters are biased,

the resulting model-based (remaining) life expectancy will not match the conventional one

(the e(x) column of the life table) and, as a result, reconstructed exposures and mortality

forecasts can be distorted.

Tables 1-3 show the effect of neglecting γ on remaining life expectancy at different ages. In

all cases the ΓGM model-based life expectancy is the closest to the conventional one. This not

surprising as, among all models in the Gomeprtz family, the ΓGM captures best the observed

S-shaped mortality pattern. Neglecting frailty does not seem to affect life expectancy much.

In the next draft of this manuscript we will study how these small discrepancies affect

exposures and forecasts.

LT GM ΓGM

1900e
f
30 39.23 38.96423 38.87021

1900e
m
30 37.14 37.26261 37.26079

1900e
f
20 46.51 46.65176 46.65493

1900e
m
20 44.26 44.40381 44.40485

2010e
f
50 34.54 34.52609 34.54378

2010e
m
50 31.17 31.19214 31.19471

2010e
f
30 53.99 53.95806 53.95827

2010e
m
30 50.32 50.30969 50.31780

Table 1: Female and male remaining life expectancy estimates for the Swedish cohorts of
1900 and 2010. Conventional life expectancy is represented in the second column, while
model-based life expectancies are listed in columns 3-6.
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LT G ΓG

80 9.43 9.38 9.44
85 6.58 6.76 6.68
90 4.44 4.67 4.67
95 3.05 3.10 3.36
100 2.14 1.98 2.58
105 1.63 1.23 2.17
110 0.50 0.74 1.96

Table 2: Remaining life expectancy for French females, ages 80-110. Source: KTD. Conven-
tional life expectancy is represented in the second column, while model-based life expectan-
cies are listed in columns 3-4.

LT G ΓG

80 7.30 7.39 7.41
85 5.14 5.36 5.33
90 3.51 3.79 3.82
95 2.49 2.60 2.82
100 1.83 1.74 2.19
105 1.55 1.14 1.81
110 - 0.74 1.60

Table 3: male remaining life expectancy, ages 80-110, France, 1999, source: KTD

Conclusion

Neglecting non-zero extrinsic mortality or unobserved heterogeneity distorts parameter esti-

mates of the models from the Gompertz family: a is overestimated, while b is underestimated.

When c is neglected, γ̂ tends to zero. When γ left out of the model, parameter c is under-

estimated. The bigger the magnitude of the neglected c or γ, the higher the bias in the

estimators of the model parameters.

Mortality measures that rely on estimated parameters of the Gompertz family get dis-

torted if the parameters are inaccurately estimated. Among them are the life-table aging rate

(LAR), the age at mortality deceleration, the modal age at death, but not life expectancy.
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