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Abstract

Missov and Finkelstein (2011) prove an Abelian and its corresponding Tauberian

theorem regarding distributions for modeling unobserved heterogeneity in fixed-frailty

mixture models. The main property of such distributions is the regular variation at

zero of their densities. According to this criterion admissible distributions are, for

example, the gamma, the beta, the truncated normal, the log-logistic and the Weibull,

while distributions like the log-normal and the inverse Gaussian do not satisfy this

condition. In this article we show that models with admissible frailty distributions

and a Gompertz baseline provide a better fit to adult human mortality data than

the corresponding models with non-admissible frailty distributions. We implement

estimation procedures for mixture models with a Gompertz baseline and frailty that

follows a gamma, beta, truncated normal, log-logistic, Weibull, log-normal, or inverse

Gaussian distribution.
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Introduction

Fixed-frailty models extend standard survival models by accounting for unobserved hetero-

geneity. In the absence of covariates the hazard function µ(x |Z) for individuals with frailty

Z is defined as

µ(x |Z) = Z µ(x | 1) , (1)

where µ(x | 1) is the baseline hazard and Z is a random variable that captures individual

unobserved or unmeasurable susceptibility to the study event (Vaupel et al. 1979). Frailty

acts multiplicatively on the baseline hazard µ(x) and each individual-specific realization

Z = z stays fixed throughout the observation period, i.e. each individual is characterized

by an “assigned” unknown frailty number throughout his or her life. The multiplicative

connection between frailty and baseline mortality in (1) can be justified in the context of

human mortality by the shape of death rates at the oldest ages (Gampe 2010; Missov and

Finkelstein 2011; Missov and Vaupel 2015). As Z is unobserved, the estimation of frailty

models is carried out by specifying a frailty distribution and working with the resulting

marginal distribution with a hazard function

µ(x) = −µ(x | 1) · d
ds
LZ(s)

∣∣∣∣
s=H(x | 1)

, (2)

where LZ(·) denotes the Laplace transform of Z and H(x | 1) =
x∫
0

µ(t | 1) dt is the baseline

cumulative hazard (for detailed discussion see Vaupel et al. 1979; Vaupel and Yashin 2006;

Vaupel and Missov 2014).

Human mortality by senescent causes at adult ages is well captured by a Gompertz
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distribution (Yashin et al. 2000), i.e. µ(x | 1) = aebx, where a is the starting level of mortality

at adult age x = 0 and b is the rate of aging. The choice of a frailty distribution, though,

is often driven by convenience, i.e. distributions with a closed-form Laplace transform, e.g.,

the gamma and the inverse Gaussian, are preferable as the marginal distribution in (2)

can be obtained explicitly. The general class of three-parameter distributions with closed-

form Laplace transforms is derived in Hougaard (1984) and Aalen (1988, 1992). Another

“convenient” framework arises when (1) is taken on a logarithmic scale:

lnµ(x |Z) = lnµ(x | 1) + lnZ . (3)

In this case (3) is viewed as a regression equation and lnZ as an error term in it. The

standard normality assumption regarding the errors implies that frailty Z has a log-normal

distribution.

Computational convenience – working with closed-form Laplace transforms in a maximum-

likelihood setting or assuming a regression setting that provides closed-form least-squares

solutions – is often decisive for choosing a frailty distribution. Generic properties of frailty,

though, are little known. As it is a measure of unobserved heterogeneity, i.e. variation in

the study population due to covariates we cannot measure or we do not have information

on, it poses a difficult task to characterize the admissible distributions of frailty. By prov-

ing an Abelian and its corresponding Tauberian theorem for frailty distributions, Missov

and Finkelstein (2011) derived a property they should comply with: the p.d.f. of frailty

needs to be regularly varying at zero with power greater than -1 (for details, see Missov and

Finkelstein 2011: p.66–67). One can easily show that this property is fulfilled for the gamma,

beta, Weibull, log-logistic, and truncated (at zero) normal distributions, while popular frailty

“candidates” like the log-normal and the inverse Gaussian are in this sense non-admissible.

In this article we show that models with theoretically admissible frailty distributions

provide a better fit to human mortality data than models with non-admissible frailties. We

use high-quality mortality data for Denmark, France, Italy, Japan and Sweden from HMD
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(2014). The frailty distributions we consider are the gamma, the beta, the Weibull, the

truncated (at zero) normal, and the log-logistic (admissible); the inverse Gaussian and the

log-normal (non-admissible). In all cases we assume a Gompertz baseline µ(x | 1) = aebx

and start fitting each of the frailty models after age 80 to avoid the effect of possible non-

negligible extrinsic mortality. For each year and cohort in each of the five selected countries

we compare the model fits by AIC and calculate the associated Akaike weights (Burnham

and Anderson 2004). We calculate in what proportion of the cases the best-fitting model

has an admissible frailty distribution.

Fixed-Frailty Models with a Gompertz Baseline Hazard

The fixed-frailty frailty (conditional) model with a Gompertz baseline is given by

µ(x |Z) = Z aebx . (4)

The associated marginal model is given by (2) taking into account the Laplace transform for

the distribution of Z.

The gamma frailty model

The gamma-Gompertz fixed-frailty model is given by

µ(x) =
aebx

1 + aγ
b

(ebx − 1)
, (5)

where Z follows a single-parameter gamma distribution with γ = 1/k = 1/λ being the

squared coefficient of variation. In this assumption frailty has a unit expectation which

implies that the “average” individual is exposed to the baseline hazard.

4



Models with other admissible frailty distributions

The beta, Weibull, truncated (at zero) normal and log-logistic distributions do not have

a closed-form Laplace transform, which makes working with them inconvenient. Table 1

provides an overview of the four distributions, including the integral or series representation

of their Laplace transforms.

Distribution Parameters Density Laplace Transform

Beta α, β zα−1(1−z)β−1

B(α,β)
1 +

∞∑
n=1

(
n−1∏
m=0

α+m
α+β+m

)
(−s)n
n!

Weibull a, b a
b

(
z
b

)a−1
exp

{
−( z

b
)a
} ∞∑

n=0

(−s)nbn
n!

Γ
(
1 + n

a

)
Truncated N µ, σ2 1√

2πσ{1−Φ(−µσ )} exp
{
−(z−µ)2

2σ2

}
1−Φ(−µσ+σs)

1−Φ(−µσ )
· e−µs+σ2s2

2

Log-Logistic α, β
β
α ( zα)

β−1(
1+( zα)

β
)2 ∞∫

0

e−sz
β
α ( zα)

β−1[
1+( zα)

β
]2 dz

Table 1: An overview of the beta, Weibull, truncated normal, and log-logistic
distributions – plausible frailty distributions according to the theoretical criterion in
Missov and Finkelstein (2011).

The beta frailty model

The beta distribution has two positive shape parameters α and β. Its p.d.f. arises from the

beta function

B(α, β) =

1∫
0

xα−1(1− x)β−1dx ,

which is closely linked to the gamma function

Γ(t) =

∞∫
0

xt−1e−xdx

by the relationship

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
.
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As a result the beta-distributed frailty can be viewed as a “version” of the gamma-distributed

frailty that is “rescaled” to [0, 1]. However, the Laplace transforms of the gamma and beta

distributions are not linked to one another by a direct relationship. In fact the Laplace

transform of the beta distribution is expressed by

LB(s) =

1∫
0

e−sz
zα−1(1− z)β−1

B(α, β)
dz = 1F1(α;α + β;−s) ,

where 1F1(α;α+ β;−s) = 1 +
∞∑
n=1

(
n−1∏
m=0

α+m
α+β+m

)
(−s)n
n!

is the confluent hypergeometric func-

tion. Hypergeometric functions are series, and in practice one can use just several terms

to get an accurate approximation (for examples of approximation formulae see Missov and

Lenart 2013).

As the support of the beta distribution is in [0, 1], an assumption about unit average frailty

does not make sense. Instead suppose the average frailty is 0.5, i.e., EZ = α/(α + β) = 0.5

which is equivalent to α = β. As a result, we can re-parameterize the beta’s Laplace

transform in terms of α only:

LB(s) = 1F1(α; 2α;−s) = 1 +
∞∑
n=1

(
n−1∏
m=0

α +m

2α +m

)
(−s)n

n!
.

The frailty parameter to estimate is α. If we look for a correspondence with the gamma-

frailty model, in which γ is the variance of frailty at the starting age, then the comparable

characteristic of the beta distribution will be 1
4(2α+1)

.

The Weibull frailty model

The Weibull distribution is the “piece of mystery” in the list of admissible frailties. It

is a generalized extreme value distribution (GEV) and is used exclusively as a baseline

mortality distribution (for further discussion, see Lenart and Missov 2014; Missov et al.

2014). However, it does satisfy the regular-variation-at-zero property (Missov and Finkelstein

2011) and is in this sense a plausible candidate for a frailty distribution, too. The Weibull is
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described by a couple of positive parameters a > 0 (shape) and b > 0 (scale), and its Laplace

transform is represented by a series:

LW (s) =
∞∑
n=0

(−s)nbn

n!
Γ
(

1 +
n

a

)
.

Suppose the average frailty is 1. This means that bΓ
(
1 + 1

a

)
= 1, i.e., b = 1

Γ(1+ 1
a)

. Thus,

a (the shape of the Weibull) is the only frailty parameter to be estimated, and the variance

of the Weibull distribution at the starting age (a characteristic comparable with γ in the

gamma-frailty model) is equal to

Γ
(
1 + 2

a

)[
Γ
(
1 + 1

a

)]2 − 1 .

The Laplace transform of the single-parameter Weibull is given by

LW (s) =
∞∑
n=0

(−s)n

n!

Γ
(
1 + n

a

)[
Γ
(
1 + 1

a

)]n .
The truncated normal frailty model

The truncated (at 0) normal distribution has the same set of parameters µ ∈ R (location)

and σ2 ≥ 0 (variation) as the generating (not truncated) normal distribution. The two

functions that play an important role for the truncated normal are the p.d.f. of the standard

normal distribution

φ(x) =
1√
2π

e−
x2

2

and the corresponding c.d.f. of the standard normal

Φ(x) =

x∫
−∞

1√
2π

e−
y2

2 dy .

The Laplace transform of the truncated normal is given in an integral form by
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LtN(s) =
1− Φ

(
−µ
σ

+ σs
)

1− Φ
(
−µ
σ

) · e−µs+
σ2s2

2 .

The log-logistic frailty model

The log-logistic distribution has two parameters α > 0 (scale) and β > 0 (shape). It

is another “unexpected” frailty candidate as in survival analysis it is used exclusively as

a baseline mortality distribution. Unlike the Gompertz and the Weibull, the log-logistic

hazard is not necessarily monotonic and, thus, provides additional flexibility in the model.

The Laplace transform of the log-logistic is given by the integral

LLL(s) =

∞∫
0

e−sz
β
α

(
z
α

)β−1[
1 +

(
z
α

)β]2 dz .

Models with non-admissible frailty distributions

The inverse-Gaussian frailty model

The inverse Gaussian distribution with parameters µ > 0 (mean) and λ > 0 (shape) has a

p.d.f.

π(IG)(z) =

(
λ

2πz3

) 1
2

exp

{
−λ(z − µ)2

2µ2z

}
.

It becomes a single-parameter distribution InvG(σ2) when we assume unit average frailty

EZ = µ = 1 and denote the resulting variance VarZ = µ3/λ = 1/λ =: σ2. The inverse

Gaussian distribution has a closed-form Laplace transform, which leads to the following

marginal hazard for the inverse-Gaussian-Gompertz fixed-frailty model:

µ(x) =
aebx√

1 + 2aσ2

b
(ebx − 1)

. (6)
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The log-normal frailty model

Log-normal frailty arises from 3: normally distributed random effect acts on a linear predic-

tor, which suits generalized linear models (GLM) framework (McCullagh and Nelder 1989).

The standard assumption for the error term lnZ is that on average it is 0, i.e. EZ = 1. The

log-normal distribution does not have a closed-form Laplace transform.

Model Fitting

We fit fixed-frailty models with a Gompertz baseline and gamma, beta, Weibull, truncated

normal, log-logistic, inverse Gaussian or log-normal frailty by maximum likelihood.

Frailties with a closed-form Laplace transform

For the gamma and inverse Gaussian distributions we can express the marginal distribution

explicitly. The hazard function is given by (5) and (6), while the survival function equals

the Laplace transform calculated for the baseline cumulative hazard.

Frailties without a closed-form Laplace transform

For the beta, Weibull, truncated normal, log-logistic and log-normal models we use high

accuracy approximations of the series or integrals which appear in the expressions for the

Laplace transform.

Optimization Strategies

Three different optimization strategies are applied to maximize the log-likelihood functions

of the aforementioned frailty models given the data. All strategies are tested on the same

data and with the same objective functions. In this section we compare the three methods

in terms of parameter estimates and overall model fit.
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optim is a quasi-Newton algorithm for optimization (see Dalzell 2013) for an interview

with the developer of optim). Method L-BFGS-B is used to be able to apply the box-

constraints [1e − 8, 1] on all parameters. The initial parameters are a = 0.01, b = 0.1

and σ2 = 0.01. Default values for the optimization options are used.

goptim Using the observed survival data, a Gompertz model is estimated as a Poisson regres-

sion. The resulting values for a and b constitute the baseline starting values for optim.

On each data subset ten different models are computed with these baseline values, but

different initial frailty values (σ = {0.01, 0.03, 0.05, 0.07, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7}). The

best model in terms of the AIC is chosen to be the final model.

DEoptim This genetic algorithm (see Mullen et al. 2011) evaluates the constrained parameter

space (see optim for constraints) initially at multiple random positions (NP = 100).

Through differential evolution the parameters estimates converge towards a global

maximum. The number of iterations (generations) until final estimation is 200.

Computation speed

A total of 12 468 models are fitted across the dataset dimensions Timeframe (Period/Cohort),

Country (Denmark, France, Italy, Japan, Sweden), Sex and Year. For each subset of the mor-

tality data four models are estimated: the gamma-Gompertz, inverse-Gaussian-Gompertz,

log-normal-Gompertz and the zero-truncated-normal-Gompertz frailty model. This consti-

tutes a non-trivial computational task and calculation takes minutes to hours, depending on

model, method and hardware.

The models are not dependent on one another and therefore parallel computation across

the dataset dimensions is used to allow for faster results. The computations takes place on

a remote 24 core 3.33 GHz Intel Xeon X5680 workstation.

Results: Standard optim is the fastest method, followed by gomptim. Despite calculating

ten models instead of a single one in each run, the goptim method does not run ten times as
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long. This might be because the precomputed starting values for a and b allow for a quick

convergence. DEoptim is by far the slowest method.

All models except the log-normal-Gompertz are estimated in a matter of minutes up

to half an hour. The log-normal-Gompertz model computations take hours. The objective

function includes an integral which has to be numerically calculated in order to get the

log-likelihood. This is a likely cause for the slow performance.

Convergence

DEoptim is the only algorithm which converges for all models; optim and goptim are not

able to estimate the zero-truncated-normal-Gompertz model. optim gets stuck at the initial

values while goptim changes only the a parameter (σ2 gets stuck at the starting value and

b stays at the upper bound).

All methods are able to converge for the gamma-Gompertz, the inverse-Gaussian-Gompertz,

and the log-normal-Gompertz model. Most of the time the parameter estimates stay within

the bounds. The frequency of the estimates being right at the bounds changes by method

with optim achieving a low count of outliers and DEoptim hitting the wall more often.

Model Comparison

Differences in parameter estimates

For the gamma-Gompertz model there are no meaningful differences among parameter es-

timates by each method. Most differences are in the magnitude of 1E-04 or smaller (see

Figure 1). For the inverse-Gaussian-Gompertz model the estimates for the parameter a are

stable across methods. For b and the frailty parameter, however, a significant number of

estimates differ by more than 0.01 units in different methods. The log-normal-Gompertz

model yields the biggest estimation differences. For all three parameters a large amount of
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estimates differs significantly across methods. Note that estimation differences for the zero-

truncated-normal-Gompertz model could not be computed because only DEoptim converged.

Overall there are smaller differences in parameter estimates between DEoptim and goptim

than between optim and the former two methods.
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Figure 1: Density of absolute differences in parameter estimates between estimation
methods

Comparing the distributions of the frailty parameter estimates by model shows a tendency

of the DEoptim and goptim methods to produce higher frailty estimates compared with

optim (see Figure 2). For the inverse-Gaussian-Gompertz and log-normal-Gompertz models

not only is the median of the frailty estimates higher for these methods, but also a significant

share of estimates for the frailty parameter are close to the upper boundary.

Different parameter estimates imply differences in the log-likelihood’s maximum that the

optimization methods found. To answer the question which estimation method to trust, we

compare the differences in model AIC values for different methods: a smaller AIC implies a

better model fit. Figure 3 shows the densities of the model AIC differences by method.
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Figure 2: Density of frailty estimates by estimation method

The AICs of the estimated gamma-Gompertz models do not differ substantially depend-

ing on the optimization method. The differences in model fit follow a normal distribution

with a median at a magnitude of about 1e-04. As previously, things look different when con-

sidering the mathematically more complicated inverse-Gaussian-Gompertz and especially

the log-normal-Gompertz model. Here we see larger differences between estimation meth-

ods. While a large amount of differences still happens around the magnitude of 1e-04 the

distribution exhibits a second local peak at around 1e+00. This compound distribution of

differences in AIC between method reveals that for the inverse-Gaussian and log-normal-

Gompertz models, different methods produce either normally distributed small differences

or normally distributed large differences in AIC – no method produces vastly better fits in

all cases. Regardless of the model the DEoptim method produces the smallest AIC in nearly

all cases while the optim method produces the largest AICs.

Among the three applied estimation methods DEoptim was the only one able to handle the

zero-truncated-normal-Gompertz model. It also consistently found the highest log-likelihood

value. From a theoretical standpoint DEoptim is especially suited to maximize likelihood

functions which are not smooth or might have multiple local maxima (see Mullen et al.

2011). While the gamma-Gompertz model does not produce such a likelihood function, the

log-normal-Gompertz and the zero-truncated-normal-Gompertz models might do. On the
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Figure 3: Density of differences in model AIC between estimation methods

other hand the DEoptim method produces wildly varying frailty estimates over time – a

characteristic which is not so well detected by optim. Keeping that in mind, DEoptim is the

only option if one seeks to optimize complicated likelihood functions.

Conclusion

Missov and Finkelstein (2011) derive a formal criterion to check whether a frailty (or, what

is equivalent, mixing) distribution is plausible (admissible) in a fixed-frailty model. The

gamma distribution, a popular mixing distribution in frailty models, as well as the zero-

truncated-normal are among the admissible distributions. The inverse Gaussian and the

log-normal are not admissible within this framework. We compare admissible and non-

admissible frailty distributions by fitting the corresponding frailty models on mortality data

from HMD (2014) and comparing the fit of the different models. The relative likelihood
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derived from the AIC is suited for comparing the fit of non-nested models: the AICs of

all models are compared to the lowest AIC of all models, and a probability that model i

minimizes the estimated information loss can be derived. The resulting statistic is called

Akaike weight (see Burnham and Anderson 2004).

For the optim-based optimization methods the Gamma-Gompertz frailty model pro-

duces the best model fit in roughly 2/3 of all cases (see table 2). However, including the

zero-truncated-normal-Gompertz model in the “competition” by applying the DEoptim op-

timization algorithm changes the picture. In 42 % of all cases estimated with DEoptim, the

zero-truncated-normal-Gompertz model produced the smallest AIC, leaving all other com-

peting models behind with gamma-Gompertz coming in second. Regardless of the estimation

method, the inverse-Gaussian-Gompertz model is the least likely to have the best model fit.

The zero-truncated-normal-Gompertz model performs especially well on cohort data

whereas the gamma-Gompertz model has the strongest explanatory power when applied

to period data. There are strong geographic effects on the relative differences of the model

fit. In Sweden and Denmark the best models are for the most part only marginally better

than all other competing models. This might be an artifact of the relatively small population

sizes of these countries. In France, Italy and Japan the Akaike weights of the winning models

are more equally distributed across the range of possible values. While the gamma-Gompertz

model is not the overall winner, it does produce the most Akaike weights near the value of

1, so if a model wins by a high margin, it is most likely the gamma-Gompertz.

Our preliminary results show that fixed-frailty models with admissible (according to the

criterion by Missov and Finkelstein 2011) frailty distributions (and a Gompertz baseline)

are the ones that provide the best model fit for the majority (between 60.5% and 74%) of

the high-quality human-mortality datasets we study.
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DEoptim goptim optim

Gamma-Gompertz 987 31.7 1886 60.5 2137 68.6
Inverse-Gaussian-Gompertz 224 7.2 533 17.1 473 15.2
Lognormal-Gompertz 587 18.8 698 22.4 507 16.3
Zero-truncated-normal-
Gompertz

1319 42.3 . . . .

Absolute counts and column percent.
The zero-truncated-normal model was not estimated with the goptim and optim

methods.

Table 2: Count of minimal AIC among competitive models estimated
with DEoptim
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Figure 4: Akaike weights of winning models estimated with DEoptim
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