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of outcomes, we estimate that between 50% and 60% of health status can

be attributed to familial or neighborhood characteristics. Taking the princi-

pal component across all outcomes, we obtain a sibling correlation of about

53%. These estimates, which are larger than previous estimates of sibling

correlations in health that rely on linear models, are more in-line with sibling

correlations in income and suggest that health status, like other measures of

socioeconomic success, is strongly influenced by family background. There-

fore, efforts to improve the circumstances of families and communities may

potentially lead to improved childhood health today and also reduce future

health disparities.

Key words: Sibling correlations, Intergenerational mobility, Health, Latent

variable

JEL Classification: I0, I12, J0, D3, J62
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1 Introduction

How important are family background and neighborhood influences in explaining

health disparities? This question is increasingly salient with the rise of inequality

and the growing gap in resources between families in many industrialized countries.

If family and community influences during childhood play a large role then we may

anticipate that health disparities are likely to grow in coming decades as rising in-

equality between families is manifested in adult health outcomes. Therefore policies

that address the growing disparities between families may also be a form of "health

policy" in that it may improve the health of the future population with implications

for social safety nets. A growing literature has also linked childhood health to fu-

ture economic success, e.g. Almond and Currie (2011), suggesting that policies that

reduce health disparities may also reduce inequality in the future.

More generally, social scientists have become increasingly interested in intergener-

ational mobility with respect to socioeconomic status. Clearly, health is an important

component of socioeconomic status but intergenerational influences on health have

been much less studied than other key measures of status such as income, education

and occupation.

As an empirical matter, it is very challenging to measure the importance of family

background on health. One important issue is how exactly to measure family back-
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ground. A small but notable literature has used sibling correlations as a catch-all

measure of family background intended to capture all influences shared in common

by siblings. This sidesteps the difficulty of having to measure each of the multitude of

possible measures of family background —many of which may be unavailable in most

datasets. Indeed, Bjorklund and Jantti (2012) emphasize that sibling correlations

are in general, much more useful than the traditional measures of intergenerational

associations for studying mobility across generations.

A second critical issue is how exactly to measure health. Standard datasets with

health outcomes typically contain dichotomous measures (e.g. asthma, disability,

etc.) that might occur with low frequency. Alternatively, surveys sometimes collect

relatively blunt measures such as self reported health status on a categorical scale.

How can one best use such measures to get at a more ideal concept of underlying

or latent health status? This paper develops the econometric tools that can be

used to estimate sibling correlations in health that overcome some of the limitations

encountered in previous work that, for example, uses linear models in a situation

where they clearly are not appropriate.

Specifically, we consider the inter-generational transmission of health status by

estimating sibling correlations in a battery of health measurements for children in

the Child Development Supplement of the Panel Study of Income Dynamics (PSID-
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CDS). Each of these measurements is modeled as being determined by a latent vari-

able. The arbitrary covariance structures for the individual- and family-specific ran-

dom effects are estimated using Bayesian methods. To account for the possibility

that the measurements are proxies for a more fundamental latent health variable,

we also estimate sibling correlations in the principal components of the covariance

matrices for the two types of random effects.

Our estimates indicate that sibling correlations for a variety of health measures

range between 0.5 and 0.6 with few exceptions. This suggests that over half of a

child’s health status can be attributed to familial or community influences. These

estimates are substantially larger than those from Mazumder (2011) who uses linear

models to estimate sibling correlations in health also using the PSID-CDS; his esti-

mates for health outcomes tend to be on the order of 0.1-0.2. Notably, our estimates

of sibling correlations in health are more in-line with estimates of sibling correlations

in income from Mazumder (2008) who obtains an estimate of about 0.5. Finally, the

sibling correlation is larger for boys than it is for girls suggesting that community or

family influences matter more for boys.

Looking across all of the health outcomes using principal components analysis, we

obtain a sibling correlation of 0.531 which tends to be lower than when we consider

only a single health outcome. Here we can draw an analogy to Spearman’s G-factor
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for intelligence where a single incorrect response on an exam does not necessarily

indicate poor intellectual capacity, overall. Similarly, we may think of our principal

component as a measure of general health status so that a high sibling correlation

in one particular outcome (e.g. anemia) does not necessarily indicate a high sibling

correlation in overall health status. On the whole, our results indicate that the role

of family and community influences on health status is large and on par with their

role in determining economic status.

The rest of the paper proceeds as follows. Section 2 describes the structure of

our model using a SUR framework. Section 3 describes the estimation. Section 4

describes how we construct our sibling correlation measures. Section 5 describes the

PSID-CDS data. , Section 6 presents the key results. In section 7, we conclude.

2 A SUR Model of Sibling Correlations

We consider a set of  binary measures of health which we will index with  ∈

{1 }. We observe these measures for sibling  ∈ {1  } in family  ∈

{1  } at time  ∈ {1  }.1 We denote the th measure for individual  in

1We subscripted  with  to denote that different measurements are observed for differing

lengths of time.
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family  at time  with . Each outcome is determined by a latent variable

∗ = β
 + 

 +  +  (1)

where

 = 1
¡
∗  0

¢
 (2)

The first term on the right-hand side, , is 1× vector of observable heterogeneity.

Because most observable variables such as parental characteristics do not change over

time, we only include age and a constant in . The term, 

 , is a family-specific

effect. Next,  , is an individual-specific effect. Neither of these varies with

time. The final component is a time-variant idiosyncratic residual. Each of these

components is specific to a particular measurement and, hence, superscripted .

We define α ≡
¡
1   




¢0
, γ ≡

¡
1   




¢0
and u ≡ (11  

1
1



 1  
 0


)0 Note thatα and γ are×1 and u is ×1 where  ≡
X

=1

.

In practice,  can change across individuals and families but we do not notate this
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to economize in the exposition. Next, we assume that

⎛⎜⎜⎜⎜⎜⎜⎝
α

γ

u

⎞⎟⎟⎟⎟⎟⎟⎠ ∼ 

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝
0

0

0

⎞⎟⎟⎟⎟⎟⎟⎠ 

⎛⎜⎜⎜⎜⎜⎜⎝
Σ 0 0

0 Ω 0

0 0 I

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠  (3)

We normalize the variances of the idiosyncratic components to unity and leave Σ

and Ω unrestricted.

It is useful to write this system as a SUR model in the latent variable. Defining

H∗ ≡
¡
∗11  

∗1
1

  ∗1   
∗


¢0
and x ≡

¡
01  

0


¢0
, we can write

H∗ =

⎛⎜⎜⎜⎜⎜⎜⎝
x1 · · · 0

...
...

0 · · · x

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
β1

...

β

⎞⎟⎟⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎜⎝
11 · · · 0

...
. . .

...

0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎠γ+

⎛⎜⎜⎜⎜⎜⎜⎝
11 · · · 0

...
. . .

...

0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎠α+u

where 1 is a -vector of ones. We can write this more compactly as

H∗ = Xβ +Pγ +Pα + u

where H∗ and u are  × 1, X is  ×  and P is  ×  . If we define

H∗ ≡
³
H∗01  H

∗0


´0
and u ≡

³
u01  u

0


´0
which are both  × 1, then we
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can write

H∗ = Xβ +
£
I
⊗P¤γ+

£
1
⊗P¤α + u

where X≡
³
X0
1  X

0


´0
which is  × and γ ≡

³
γ01  γ

0


´0
which

is × 1. Note that the second term on the right-hand side contains the identity

matrix whereas the third term contains a vector of ones.

Finally, we define  ≡
P
=1

 and stack one more time over families to obtain

the full SUR system. Defining

H∗ ≡ (H∗01  H∗0 )0| {z }
×1



X≡(X0
1 X

0
 )
0| {z }

×



G ≡ I ⊗P| {z }
×



γ ≡ (γ01 γ0 )0| {z }
×1



A ≡

⎛⎜⎜⎜⎜⎜⎜⎝
11 ⊗P 01×

. . .

0× 1
⊗P

⎞⎟⎟⎟⎟⎟⎟⎠
| {z }

×
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α ≡ (α01 α0 )0| {z }
×1

and

u ≡ (u01 u0 )0| {z }
×1



we can write

H∗ = Xβ +Gγ +Aα+ u (4)

The task ahead will be to employ methods to estimate and conduct inference on Σ

and Ω and their roots.2

3 Bayesian Inference

The posterior distribution of the model’s parameters will be of the form

 (ΣΩβ γαH∗|HW) (5)

whereW ≡ [XAG]. This posterior distribution has two important features. The

first is that, because the latent variable H∗ is unobserved by the econometrician, it

must be simulated. This can easily be done within the Gibbs sampler by employing

2In the model as written, we have a constant,  individual fixed effects and  family fixed

effects which are not separately identified. So, in what proceeds, we will estimate ( − 1) family

effects and ( −  ) individual effects.
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the data augmentation procedure first described by Albert and Chib (1993). The

second is that once we have simulated the latent variable, we can condition on it as

if it was data.

Conditional on H∗, the model will then have the following hierarchical structure:

 (ΣΩβ γα|H∗W) ∝  (H∗|ΣΩβ γαW)×
Y
=1

−1Y
=1


¡
γ |Ω

¢ −1Y
=1

 (α |Σ)×

 (β)  (Σ)  (Ω) 

The first term on the right-hand side is the likelihood of the latent variable which is,

in fact, the likelihood for the Classical Fixed Effects model in the latent variable. The

second term is the prior on the family and individual specific fixed-effects in equation

(1) and is given by the distribution in equation (3). The final term includes the

priors on ΣΩ and β. We use the following conjugate priors:

β ∼ 
¡
0H−1

¢
Σ ∼  (S )

Ω ∼  (V ) 

11



Note that the second term is conditional on Σ and Ω and that the terms,  (Σ) and

 (Ω), are, in fact, priors on priors or hyperpriors.3

Since conditioning on the latent variable reduces the model to a standard hier-

archical linear model or the variance-components model discussed in Browne and

Draper (2006), we can easily estimate it using the Gibbs sampler. We will proceed

in a series of steps. Before we delineate these, we will first discuss some key condi-

tional distributions that will be needed to implement the Gibbs sampler. First, we

will sample Ψ ≡ [β0α0γ0]0 so that the regression coefficients and the fixed effects

are sampled as a single block.4 The conditional distribution for Ψ is then given by

Ψ|ΣΩXH∗ ∼ 
¡
Ψ∗H

−1
Ψ

¢
(6)

3Because we have a large number of families in our data, the choice of the prior is not terribly

important as it is well known that the posterior and likelihood functions become closer together as

the sample size increases (see Theorems 3.4.2 and 3.4.3 from Geweke (2005)).
4In practice, we also experimented with sampling β, α and γ separately. It turned out that

this was slightly faster because it required the inversion of smaller matrices. So, this is what we

used although to conserve on notation, we only describe sampling them as a single block in the

manuscript. However, the basic ideas are the same in either case.
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where

HΨ ≡W0W+HΨ

HΨ ≡ (HΣ
−1 Ω−1)

bΨ ≡ (W0W)
−1
W0H∗

Ψ∗ ≡ H−1Ψ W0W bΨ

Now that we have sampled (β0 α0γ0)0, we can sample from the conditional posterior

of Σ is given by

Σ|Ωβ αγ ∼ (Σ∗ ∗) (7)

where

Σ∗ ≡
−1X
=1

αα
0
 + S

∗ =  − − 2 + 

Similarly, the conditional posterior of Ω is

Ω|Σβ αγ ∼ (Ω∗ ∗) (8)
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where

Ω∗ ≡
X
=1

−1X
=1

γγ
0
 +V

∗ ≡  −  − − 1 + 

To sample from the posterior in (5), we will sample from these conditional distribu-

tions inside of the Gibbs sampler.5 This will work in the following steps.6

1. Initialize
¡
Σ0Ω0β0 γ0α0

¢
.

2. Sample from 
¡
H∗|Σ−1Ω−1β−1γ−1α−1 HW

¢
 Specifically, draw

 values of H∗ from the conditional distribution which will be a truncated

Normal distribution. Once these are drawn, they should be treated as data.

This is the data augmentation step.

5To see why this is the number of degrees of freedom, note that the part of the conditional

posterior for Σ ignoring the prior is

|Σ|− 1
2
(−1)

exp

⎛⎝

⎛⎝Σ−1−1X
=1

αα
0


⎞⎠⎞⎠ 

If look at the definition of the Inverted Wishart from p. 305 of Bauwens, Lubrano, and Richard

(1999), we see that

 − 1 =  + + 1

so that the degrees of freedom coming from this portion of the posterior must be  − − 2. The
calculation for Ω is similar.

6We conducted Monte Carlo experiments and found no issues with our Bayesian estimation

procedure. The Gibbs’ sampler that we employed converged to a variety of hypothetical data

generating processes. In addition, we also experimented with a number of starting values for the

Gibbs’ sampler and this did not affect convergence.
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3. Sample from 
¡
Ψ|H∗Σ−1Ω−1HW

¢
using the distribution in (6).

4. Sample from


¡
Ω|γαβH∗Σ−1HW

¢
 (Σ|ΩγαβH∗HW)

using the distributions in (7) and (8).

5. Go back to step 2 and repeat.

4 Measuring Sibling Correlations

We propose two ways of measuring sibling correlations. The first is the most straight

forward. For each of the  health measurements, we sample

 ≡ 
 + 

(9)

and conduct inference on the correlation for theth health measurement. However,

an alternative is to view the different health measures as proxies for a latent health

variable. So, ultimately, we may not care about the intra-household correlation
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in any given measure e.g.  , but rather the sibling correlation in some broader

measure of latent health.

For the second sibling correlation, we will require some way of reducing the in-

formation in the matrices Σ and Ω, so that we can, essentially, operationalize the

notion of "
Σ

Σ+Ω
" into a single correlation. Probably, the most common way of

reducing the information in the vectors α and γ is to conduct a Principal Compo-

nents Analysis (PCA) of Σ and Ω. We can then compute sibling correlations based

on these components.

To fix ideas, we denote these eigenvalues by 1   and 1   of Σ and

Ω in descending order. We define these new intra-household correlations that pool

information across health outcomes as

 =

X
=1



X
=1

 +

X
=1



 (10)

So, if  = 1 then we consider the sibling correlation in only the first principal compo-

nent. If  = then we consider all the components and so  =
 (Σ)

 (Σ) +  (Ω)


For each draw of the matrices, Ω and Σ, from the posterior, we will compute  to

obtain the posterior distribution of our measure of the sibling correlation.
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5 Data

As discussed above, we employ the PSID-CDS on children 18 years of age or younger.

The data come from the years 1997, 2002/2003 and 2007/2008. We used the PSID-

CDS to measure a battery of health outcomes which are listed in Table 1 together

with their descriptive statistics. These measures are binary indicators for various

conditions, disabilities or other outcomes pertinent to a child’s health. Most of

them are self-explanatory except for Self-Reported Health Status (SRHS) which is

a categorical variable in which the respondent classified her own health as excellent

(SRHS = 1), very good (SRHS = 2), good (SRHS = 3), fair (SRHS = 4) and poor

(SRHS = 5). In our analysis, we will break the SRHS measure into three dummy

variables indicating SRHS greater than or equal to 2,3 or 4. As discussed above,

the first stage of the hierarchical model is essentially a Classical Fixed Effects model

and so, there is no need to include time invariant characteristics in it. As such,

the only explanatory variable in the model (other than a constant) is age and its

descriptive statistics are reported in Table 2. Finally, we also estimate the model

for certain subsets of the data. For these, we stratify the data by the average of

parental income over the child’s duration in the sample or by gender.

In Table 3, we report the number of observations that we have for each of our 10

measurements for the first, second and third years present in the sample. For the
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first year that the respondent was present, which we call the baseline, we have 3235

observations. Note that the first year present need not be 1997 since many children

in our data were born after this year. In total, we have data on 3235 individuals in

2173 households.

6 Results

6.1 Checking Convergence

We ran the Gibbs sampler for 20,000 iterations. To gauge the convergence of the

sampler, we employed the CUMSUM statistic from Yu and Myckland (1998) which

is given by

 =

Ã
1



X
=1

 − 

!


where  and  are the mean and the standard deviation for all 20,000 iterations.

If the sampler converges to a stationary distribution then  will converge

smoothly to zero. We report the  statistics in Figure 1 for the elements

of β and the diagonal elements of Σ and Ω The figures show a smooth convergence

towards zero as should be the case if the sampler converges. To account for the

“burn-in” phase of the sampler in which it is still converging, for the coming results,

we do not use the first 1000 iterations which this figure indicates may be a bit off
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from the limiting distribution. In Figure 2, we report the time series for all 20,000

iterations for the diagonal elements of Σ and Ω and the three highest components of

the corresponding covariance matrices. The figure reveals that, from an early point

in the sampler, the distribution is stationary.

Finally, in Table 4, we estimate an AR(1) model of the form

 = 0 + 1−1 + 

where  represents a sampled parameter at iteration  using OLS and computing

Newey-West standard errors. We estimate 1 for the diagonal elements of Σ and Ω

as well as for the sibling correlations, . The results indicate that all of the estimates

of 1 are all significantly below one but do indicate a fair amount of persistence in

the sampled parameters.

6.2 Core Results

Our core results can be found in Table 5 where we report the mean, median and

standard deviation of the sibling correlations defined in equation (9) for each of the

twelve outcomes that we consider. We also report the sibling correlations that

are based on the principal components defined in equation (10) at the bottom of

the table. To provide the reader with a visual idea of the distribution of these
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correlations, we plot their distributions in Figure 3 using box plots.

The table and the figure reveal that the sibling correlations for all the outcomes

tend to be between 0.45 and 0.75 indicating that at least half of a child’s latent health

can be attributed to familial or environmental circumstances. The medians and the

means are virtually identical indicating that the distribution of the correlations is

highly symmetric.

When we look at the correlations based on the components of the covariance

matrices at the bottom of the table, we see that they are smaller than for any one

outcome; they are now between 53% and 57%. Perhaps this is not surprising since

these correlations reflect a deeper notion of health status. Just because a sibling

pair has a high propensity for experiencing a particular outcome does not imply that

they have a similarly high propensity for experiencing all of the outcomes that we

consider which suggests that the correlation in the principal components should be

smaller.

6.3 Demographic Subsets

We also estimated the model for certain demographic subsets. The results by gender

are reported in Table 6 and Figure 4. On the whole from looking at the table, it

is hard to tell if the correlations are higher for boys or girls. However, looking at
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the correlation based on the first principal component, 1(which may be viewed as

the best summary of the available information), we do see that the correlation for

girls is 0.540 whereas it is 0.624 for boys. A formal test that the mean of the sibling

correlations for boys and girls is different that utilizes Newey-West standard errors

indicates that these difference are indeed statistically significant (  0001).7

We also estimated the model by parental income quartile. We do not report

these results to save space but they are available in an on-line appendix. On the

whole, these results did not turn up any salient patterns.

6.4 REML Estimates

We now present a set of estimates of sibling correlations from our data using Re-

stricted Maximum Likelihood (REML) which has been commonly used in the liter-

ature.8 Specifically, we estimate a model of the form

 = β
 + 

 +  +  (11)

which is a linear version of the model that we have considered throughout the paper.

The vector  now includes a constant, age and sex.

7Note that Table 6 reports the standard deviations not standard errors.
8See Mazumder (2008), Björklund, Lindahl, and Lindquist (2010), Mazumder (2011) and Schnit-

zlein (2014).
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In Table 7, we report estimates of  from this linear model. The estimates

from the linear model are smaller than those from the non-linear model for six of

the nine measures excluding the SRHS variables. For example, we obtain a sibling

correlation of 0.277 for asthma from model (11) and an estimate of 0.486 from model

(1). Similarly, for diabetes, we obtain 0.209 from the linear model and 0.628 from

the latent variable model. Of these nine measures, the only REML estimates that

are larger are for anemia, allergies and limitations on school attendance. On the

other hand, the estimates for SRHS are larger in the linear model than in the latent

variable model. On the whole, it appears as if the estimates from the latent variable

model in Table 5 are less variable in that they tend to hover between 0.5 and 0.6,

whereas the REML estimates in Table 7 range from 0.165 to 0.930. It is also

noteworthy that the classical confidence intervals in Table 7 which are based on a

Normal approximation of the finite sample distribution often contain unity which is

a pathology that is not present with Bayesian confidence intervals.

In summary, our estimates from the latent variable model paint a much more

accurate picture of the intergenerational transmission of health status.9 In the

Appendix, we show the results of a simple Monte Carlo exercise in which REML

9The estimates in Table 7 tend to be higher than those in Mazumder (2011) who uses the same

data. The reason for this is that, for many of the variables, Mazumder (2011) uses a variable for

having "ever had" the condition that eliminates the time dimension of these variables.
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estimates which assume that the measurements in equation (2) are linear are severely

biased. Based on this, we conclude that properly modeling the latent variable is

crucial when estimating sibling correlations in health.

7 Conclusion

In this paper, we investigate the role of family background and community influences

in explaining health disparities which is a topic that has received scant attention in

the literature. Using the CDS of the PSID, we estimate sibling correlations across a

battery of health outcomes that are on the order of 0.5 to 0.6 and these appear to be

higher for boys than for girls. If we consider the principal component across all of the

measurements, which can be viewed as akin to the G-factor for intelligence, we obtain

a correlation of 0.531. These findings suggest that at least 50% of the variation in

children’s health can be attributed to family or community influences which is larger

than previous estimates of sibling correlations in health from Mazumder (2011) and

more in line with the estimated sibling correlation in adult wages in the US found

by Mazumder (2008). Importantly, as argued by Bjorklund and Jantti (2012), the

sibling correlation should be viewed as a lower bound of the importance of family

background as there are many important family characteristics that are not shared by

siblings. This suggests that policies that can reduce disparities in resources between
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families and communities can potentially reduce inequality in childhood health today

as well as future disparities in adult health.

There is also a growing literature that shows that improved health early in life

can have lasting effects on economic outcomes later in life e.g. Almond and Currie

(2011). This suggests that efforts to reduce childhood health disparities may also

reduce inequality in the future thereby attenuating the transmission of economic

status across generations.

Future research may wish to better understand the precise mechanisms that un-

derpin the sizable sibling correlations in health. For example, how important are

neighborhood influences such as peers and schools compared to family characteristics

such as income and parental education. A better understanding of the sources of the

sizable sibling correlation in health can provide useful information to guide policy

makers in their efforts to reduce health disparities in the population.

8 Appendix

We report the results of a Monte Carlo exercise. We simulated the model in equations

(1) and (2) for  = 2 ,  = 2000 ,  = 2 and  = 3. As above, we only included a
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constant and a time trend. We employed the following parameter values:

Ω =

⎡⎢⎢⎣ 1 01

01 15

⎤⎥⎥⎦ ;Σ =
⎡⎢⎢⎣ 2 01

01 2

⎤⎥⎥⎦ ; = (02−25 02−3)0 

These parameter values imply that 1 = 067 and 2 = 057We generated 5 samples

using this data generating process (DGP). We then used REML to estimate two

models. The first was the model in equation (1) so that we assumed that we observed

the latent variable; we call this model LV. These estimates should be close to those

from the true DGP. The second model erroneously assumed that the measurements

were linear as in equation (11); we call this model M.

The results are reported in Tables 8 and 9 for  = 1 and  = 2, respectively.

Not surprisingly, model LV delivers the correct answer in all cases. In contrast,

model M delivers very biased estimates. The estimates of the variance components

are substantially biased. For example, in Table 8, the estimates of 2 are about

0.15% of the true values from the DGP. For the misspecified model M, the estimates

of  for  = 1 2 are slightly more accurate but still severely biased. In Table 8,

the estimates of 1 range from 0.564 to 0.623 when the value implied by the DGP

is 0.667. In Table 9, the estimates of 2 range from 0.410 to 0.458 when the DGP

implies a true value of 0.571.
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Table 1: Health Outcomes
Mean

(SD)

Asthma
0139

(0346)

Diabetes
0004

(0059)

Anemia
0052

(0223)

Development Delay
0052

(0223)

Hyperactivity
0064

(0225)

Allergies
0161

(0368)

Limitations on Athletics
0042

(0200)

Limitations on School Attendance
0018

(0132)

Limitations on School Work
0032

(0176)

Self-Reported Health Status∗
1675

(0813)
∗Denotes 5-point categorical variable. All others are binary.
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Table 2: Exogenous Covariates
Mean

(SD)

Age - 1st Year Present
6178

(3632)

Age - 2nd Year Present
11125

(3696)

Age - 3rd Year Present
13486

(2198)
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Table 3: Sample Sizes by Measurement
Health Measure 1st Year Present 2nd Year Present 3rd Year Present

Asthma 3235 2783 1344

Diabetes 3235 2784 1345

Anemia 3235 2785 1344

Development Delay 2325 2785 1344

Hyperactivity 3235 2782 1339

Allergies 3235 2789 1345

Limitations on Athletics 3235 2785 1345

Limitations on School Att. 3235 2784 1339

Limitations on School Work 3235 2784 1333

SRHS 3235 2780 1337
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Table 4: Autogression Coefficients for Variance Components and Sibling Correlations
Omega Sigma Rho

Asthma
0908

(0003)

0933

(0002)

0824

(0004)

Diabetes
0985

(0001)

0989

(0001)

0980

(0002)

Anemia
0979

(0002)

0971

(0002)

0969

(0002)

Development Delay
0930

(0002)

0951

(0002)

0875

(0003)

Hyperactivity
0957

(0002)

0938

(0002)

0914

(0003)

Allergies
0946

(0003)

0929

(0002)

0918

(0003)

Limitations on Athletics
0941

(0002)

0949

(0002)

0901

(0003)

Limitations on School Att.
0970

(0002)

0982

(0001)

0948

(0002)

Limitations on School Work
0944

(0002)

0950

(0002)

0908

(0003)

SRHS = very good
0936

(0002)

0885

(0003)

0907

(0003)

SRHS = good
0950

(0002)

0964

(0002)

0910

(0003)

SRHS = fair
0986

(0001)

0990

(0001)

0978

(0001)

Note: For a given sampled parameter, , this table reports an OLS

estimate of 1 from the regression  = 0 + 1−1 +  with its

Newey-West standard error in parentheses from the final 19,000 iterations.
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Table 5: Sibling Correlations: Core Results
Outcome Mean Median Std Dev

Asthma 0.486 0.486 0.031

Diabetes 0.628 0.630 0.085

Anemia 0.750 0.750 0.056

Development Delay 0.504 0.504 0.037

Hyperactivity 0.634 0.634 0.042

Allergies 0.569 0.568 0.045

Limitations on Athletics 0.532 0.532 0.042

Limitations on School Att. 0.633 0.630 0.054

Limitations on School Work 0.570 0.570 0.043

SRHS = very good 0.628 0.628 0.040

SRHS = good 0.614 0.613 0.042

SRHS = fair 0.623 0.623 0.083

1 0.531 0.531 0.029

2 0.515 0.515 0.023

3 0.537 0.537 0.022

4 0.551 0.551 0.021

5 0.560 0.560 0.021

6 0.565 0.565 0.020

Note: We ran the sampler for 20,000 iterations but report results

for the last 19,000 iterations.
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Table 6: Sibling Correlations: Core Results by Gender
Boys Girls

Outcome Mean Median Std Dev Mean Median Std Dev

Asthma 0.535 0.534 0.060 0.422 0.421 0.053

Diabetes 0.500 0.488 0.162 0.640 0.652 0.149

Anemia 0.716 0.730 0.114 0.756 0.765 0.096

Development Delay 0.717 0.720 0.073 0.528 0.525 0.084

Hyperactivity 0.730 0.733 0.077 0.576 0.572 0.087

Allergies 0.694 0.695 0.082 0.547 0.545 0.073

Limitations on Athletics 0.633 0.630 0.085 0.557 0.553 0.081

Limitations on School Att. 0.616 0.612 0.095 0.660 0.659 0.102

Limitations on School Work 0.630 0.628 0.082 0.665 0.667 0.084

SRHS = very good 0.662 0.664 0.072 0.678 0.679 0.069

SRHS = good 0.771 0.778 0.094 0.681 0.684 0.069

SRHS = fair 0.821 0.843 0.113 0.645 0.657 0.173

1 0.624 0.626 0.054 0.540 0.540 0.049

2 0.603 0.604 0.043 0.523 0.523 0.041

3 0.625 0.627 0.040 0.548 0.549 0.040

4 0.642 0.644 0.039 0.557 0.557 0.039

5 0.649 0.650 0.038 0.561 0.561 0.038

6 0.653 0.655 0.038 0.561 0.562 0.038

Note: We ran the sampler for 20,000 iterations but report results

for the last 19,000 iterations.
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Table 7: Sibling Correlations: REML Estimates

Outcome
Estimate

(Std Err)
95% Confidence Interval

Asthma
0277

(0040)
[0199 0354]

Diabetes
0209

(0072)
[0068 0351]

Anemia
0926

(0111)
[0708 1143]

Development Delay
0308

(0058)
[0194 0421]

Hyperactivity
0314

(0048)
[0220 0408]

Allergies
0725

(0083)
[0562 0889]

Limitations on Athletics
0430

(0075)
[0283 0576]

Limitations on School Att.
0827

(0240)
[0358 1300]

Limitations on School Work
0165

(0076)
[0016 0315]

SRHS = very good
0916

(0060)
[0798 1034]

SRHS = good
0930

(0069)
[0794 1066]

SRHS = fair
0926

(0012)
[0903 0949]

Note: Estimates of  from model (11).
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Table 8: REML Monte Carlo, m = 1
2 = 2 2 = 1  = 0667

Sample LV M LV M LV M

1
2095

(0089)

0030

(0002)

0967

(0041)

0022

(0001)

0684

(0014)

0568

(0024)

2
2073

(0089)

0029

(0002)

1012

(0043)

0023

(0001)

0672

(0015)

0564

(0025)

3
2027

(0088)

0029

(0002)

0990

(0043)

0021

(0001)

0672

(0015)

0576

(0025)

4
2044

(0089)

0034

(0002)

0992

(0042)

0022

(0001)

0673

(0015)

0604

(0023)

5
2088

(0088)

0032

(0002)

0917

(0040)

0019

(0001)

0695

(0014)

0623

(0024)

Notes: LV corresponds to Monte Carlo simulations in which REML was

estimated using the latent variable and M corresponds to simulations in

which REML was estimated using the measurements as in equation (11).

Standard errors in parentheses.
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Table 9: REML Monte Carlo, m=2
2 = 2 2 = 15  = 0571

Sample LV M LV M LV M

1
2051

(0010)

0018

(0001)

1591

(0061)

0025

(0001)

0563

(0017)

0426

(0026)

2
1952

(0095)

0016

(0001)

1485

(0057)

0022

(0001)

0568

(0017)

0419

(0028)

3
2011

(0094)

0017

(0001)

1350

(0053)

0020

(0001)

0598

(0017)

0458

(0027)

4
1958

(0096)

0019

(0001)

1527

(0059)

0026

(0001)

0562

(0017)

0428

(0026)

5
1867

(0093)

0015

(0001)

1511

(0058)

0022

(0001)

0553

(0018)

0410

(0028)

Notes: Per Table 8
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Figure 1: CUMSUM Statistics
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Figure 2: Time Series for Family and Individual Variances
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Figure 3: Sibling Correlation Distributions
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Figure 4: Sibling Correlation Distributions - Boys and Girls
Boys Girls
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