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1. Introduction 

If a genetic polymorphism has uniformly negative ramifications for fitness, evolutionary theory suggests 

it should be bred out of a population. Given that many seemingly deleterious variants are relatively 

common, it has long been thought that the effects of particular genes may vary as a function of 

environment. For this reason (as well as others), the occurrence of certain genes may vary as a function 

of environment. Gene-environment correlations (rGE) exist when allele frequencies vary across discrete 

physical, social, or behavioral environments. These associations are particularly important for gene-

environment interaction (GxE) research because, as others have argued, failure to address rGE can lead 

to incorrect conclusions about the relevance of GxE (Jaffee & Price 2007; Keller 2014).1 Population 

geneticists have shown that there are allele frequency differences across different socially defined racial 

and ethnic groups, a phenomenon known as population stratification, an extreme version of rGE. 

Population stratification has been a concern in genome-wide association studies (GWAS) since their 

inception. A variety of techniques, from genomic control (Devlin et al., 2001) to the usage of principle 

components (Price et al., 2006) have arisen to help researchers deal with this potential confounder.  

In the same way that population stratification threatened to undermine the results of GWAS, more 

subtle forms of gene-environment correlations may confound inferences of gene-environment 

interaction studies. Simply understanding how to interpret certain genetic phenomena may require us 

to understand how genes are distributed across environments. For example, Fowler et al. (2011) suggest 

that genes, in particular DRD2 and CYP2A6, may play some role in friendship preference. However, 

Boardman et al. (2012B) suggest that the mechanism is perhaps social stratification by genotype (e.g., 

evocative rGE) rather than preference based on genotype. That is, both groups concluded that friends 

are more likely than chance to have similar genotypes at these loci, but they differ in terms of their 

explanations. Whereas Fowler et al. (2011) emphasize the selection of friendships by individuals, the 

Boardman et al. (2012B) group believes that forces outside of an individual’s control (e.g., their school 

tracking) are the primary mechanisms for sorting along genetic lines.  

An understanding of gene-environment interactions and correlations, a crucial topic for demography as 

many population-based studies are now collecting genetic data, is premised upon an understanding of 

how genes are distributed across these environments and what social mechanisms (e.g., institutions) are 

implicated in this sorting process. Perhaps even more fundamentally, understanding gene-environment 

correlations tells us about how genetic differences structure, and are structured by, environmental and 

social differences between individuals. The majority of previous work on this topic has been in either the 
                                                             
1
 It should be noted that rGE refers to whether an environment is associated with genotype while GxE is a question 

of whether an outcome is influenced in an interactive way by both genes and environment. Thus, one could inquire 
about whether the “E” part of GxE may demonstrate rGE. 
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candidate gene or twin literature. Given the increased availability of genome-wide data, there is a need 

to reconsider rGE in the context of this new data type. As we shall demonstrate, understanding rGE in 

genome-wide data is a complicated task. We first document whether rGE exists before focusing on how 

structural differences between environments might be relevant. In particular, we focus on the concept 

of genetic exogeneity, by which we mean environments that are unassociated with genotype (how 

exactly we would measure such an association is a complicated question we tackle in subsequent 

sections). This study addresses several research questions. First, what evidence do we see for rGE across 

a number of environments? Second, do the environments demonstrate patterns of genetic exogeneity 

that are consistent with hypotheses regarding rGE for these environments? Third, what is the 

consequence of ignoring rGE in the G+E paradigm? Finally, we attempt to highlight certain discrepancies 

between the models that might reasonably be considered as generating mechanisms for translating 

genotype to phenotype versus the kinds of models that tend to be estimated in practice.  

2. Background 

2a. Types of rGE 

Theoretically, genetic exogeneity (the complete absence of rGE) occurs when an environment is 

unassociated with allele frequency at a single locus or multiple loci. In a laboratory setting, one could 

imagine placing, at random, certain mice in a cage with plenty of food and water and other mice in a 

cage with scarcer nutritional resources. Some response in behavior could then be observed and there 

may be interest in whether responses are a joint product of genotype and environment (the level of 

available nutrition in their cage). The random assignment of mouse to environment makes it clear that 

the environment is genetically exogenous. Human environments, however, rarely occur at random. In 

observational settings, selection is well known to be a major problem in understanding subsequent 

responses. If genetically endogenous environments are of interest in GxE studies, then there is a 

possibility that this form of endogeneity will confound inference.  

We now discuss three forms of environments: exogenous environments, confounded environments, and 

endogenous environments. Exogenous environments are truly exogenous of genotype in the sense of 

the mice example above. In all likelihood, they are quite rare outside of the laboratory (or without a 

natural experiment) because any environment that has any component of selection is likely to have 

some genetic influence given the range of human behaviors and traits that are heritable. Consider birth 

year. Initially, one may see no reason why there should be genetic associations with birth year. Yet, 

decisions with respect to fertility are related to the larger economic climate (e.g., Sobotka et al., 2011) 

and certain classes of individuals may be less sensitive to these economic swings. This could induce a 

genetic patterning across birth year. Birth year would then be either a confounded or genetically 

endogenous environment, the distinction having to do with the nature of the genetic patterning. 

The distinction between a confounded environment and a genetically endogenous environment is subtle 

and possibly difficult to determine in practice. Confounded environments are those in which there is a 

measurable difference of allele frequencies for populations in two different environments but the 

association is unrelated to any relevant biology. For example, there are large numbers of ancestors of 

Italian immigrants on the urbanized Eastern seaboard of the US and large numbers of ancestors of 

Norwegian immigrants in the more rural Midwest. These migration patterns will be evident in an 

examination of principal components or the MAF or specific loci, but genotype is not the reason for the 

selection into the environment (rather, history is). In the context of GxE studies, earlier work described 
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similar phenomena as causal and non-causal GxE models (Boardman et al. 2012C). Here, the existence of 

rGE may denote some causal association but there is also the possibility that the correlation between 

genotype and environment, albeit real in consequences for statistical inference, is not due to an 

underlying biological mechanism.  Rather, the correlation between genotype and environment is the 

result of larger external forces that shape human history.  

An endogenous environment, on the other hand, is one that is due to biologically relevant differences, 

not those purely driven by population stratification, in genotype across environments. The three 

commonly hypothesized models of rGE (passive, evocative, and active) would all be examples of 

endogenous environments. The first model, passive rGE, occurs when genes are structured by forces 

external to an individual. For example, children inherit their genes from their biological parents but they 

also inherit their social environments. Passive rGE is the least pernicious threat to GxE research since it 

can be potentially controlled for with either family level data, which allows for a focus on between-

sibling differences holding environment constant, or at the very least identified by a comparison of 

between-environment genetic differences. Evocative and active rGE are more problematic since they 

posit interactivity between the individual’s genotype and environment. Evocative rGE suggests that 

environments respond to genotype (e.g., a relatively irritable child may evoke a relatively hostile or cold 

parenting environment) while active rGE suggests that genes influence selection of environments which 

may lead to subsequent phenotypes (e.g., individuals who are genetically more likely to smoke 

cigarettes may select into friendship groups in which people are more likely to smoke). At present, it is 

difficult to distinguish between these different flavors of rGE and this paper does not focus explicitly on 

doing so. This paper tries to solve the simpler problem of identifying when rGE is present. In the context 

of genome-wide data, even understanding this relatively simple issue is challenging. 

2b. Models mapping genotype to phenotype 

We now discuss the models commonly used in the research literature to map genotype to phenotype 

and their theoretical properties in the presence of rGE. Figure 1 contrasts two “G+E” models 

(emphasizing that the genetic and environmental contributions are orthogonal) of some outcome, O.  

M1 is the simplest possible scenario in that genetics, G, and environment, E, both contribute to the 

outcome, but the contributions are completely independent. In this scenario, E is genetically exogenous. 

In this paper, we consider outcomes, O, with the following characteristics: 

 They are massively polygenic: there are a large number of causal variants, 

 individual causal variants have small effects, 

 dominant and epistatic effects are second-order phenomena that are safely ignored. 

For such outcomes O, a reasonable data generating process (DGP) would be (where we omit offsets for 

simplicity) 

                   . (Eqn 1) 

Note the additivity of the SNP effects and the fact that the genetic and environmental effects are 

orthogonal. These assumptions are crucial from the perspective of genome-wide association studies 

(GWAS). Without these assumptions, the entire GWAS framework would need to be reconsidered. For 

example, the meta-analysic strategy of combining information from a variety of studies in which the 

respondents are in very different environments may be foolhardy if the effect of G depends upon E.  
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Assuming that M0 is the DGP, what types of models would be used to estimate the effects of genes on 

some outcome? One approach would be that of the polygenic score. For example, there is interest (e.g., 

Belsky et al., 2013; Domingue et al., 2014) in estimates of   from models of the form 

       
          . (Eqn 2) 

Estimates of   are associated with the amount of outcome variation explained by the SNPs implicated in 

a GWAS as being plausibly causal variants (the GWAS generate   
  which are used to construct the 

polygenic score).2 This will be referred to as the “score” approach. An alternative approach (in fact, the 

only possible approach without appropriate GWAS information) would be to estimate genetic influence 

on a trait via estimated genetic similarity as in GCTA (Yang et al., 2010, 2011). In that approach, a very 

different type of model is estimated:  

       (Eqn 3) 

where it is additionally assumed that 

                  
   . (Eqn 4) 

Equations 3 and 4 (which we refer to as the GCTA approach) ignore the environment, but since the 

environment is genetically exogenous this should have no impact on the relevant estimates of variance 

components (    
   and     

  ). A heritability estimate is then produced as 

    
  

    
       

  
 

which is a comparison of the genetic-specific variance of the outcome to its overall variance. It’s 

imperative to note that Eqn 3 is estimated due to a lack of information (specifically about   
  from Eqn 

2), not because it is believe to be the true DGP. This GCTA model draws on the rich tradition of “animal 

models” (e.g., Wilson, 2010), which are widely used when pedigrees (that is, exact relationships 

between individuals) are known in fields such as plant and animal breeding. 

M1 makes the helpful assumption that the environment is genetically exogenous. But this assumption is 

probably rarely true in real-world settings. Let’s now suppose that M2 is the true scenario. In terms of 

Figure 1, what functional form does the top path take? If E is genetically endogenous rather than merely 

confounded, then the true DGP might be something similar to the weighted sum of risk alleles shown in 

Eqn 1. But that is a big “if”. Given that (a) it may be virtually impossible to obtain reliable information on 

which variants are associated with specific environments given the measurement difficulties inherent in 

GWAS and (b) such associations may fluctuate quite strongly over time and place (compared to the 

perhaps more stable associations such as those that exist between genes and a trait such as height), it 

might be that the GCTA approach is actually a more reasonable approximation of how genetic 

patterning across environments develops: genetic similarity induces environmental similarity through a 

                                                             

2
 It’s worth noting that the sample sizes currently available for GWAS are sufficient to produce only relatively noisy 

estimates of   
 . Thus, polygenic scores do not yet predict the amount of variance in outcomes such as BMI that we 

might expect given their heritability as estimated by something like GCTA (which also ignores dominant and 
epistatic effects). 
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variety of different biological mechanisms (perhaps shifting across time, place, and person) without 

there necessarily being a specific set of causal variants that we could reasonably hope to identify. Thus, 

we suppose that  

       (Eqn 5) 

where   is distributed as 

                  
   . (Eqn 6) 

O is then defined as in Eqn 1. 

If attempts were then made to estimate Eqn 2, there would be a potential for bias in   , given the 

ignored association between G and O. However, the nature of the bias is difficult to decipher since the 

causal variants underlying the G→E link are unspecified (or even poorly defined). Alternatively, if one 

were to estimate a GCTA model that ignores environment, then the estimated heritability is likely to be 

an overestimate of the direct genetic effect due to the indirect effect from genotype, to environment, to 

outcome. This is due to the fact that GCTA is recovering both the direct influence of genes (G→O) and 

the indirect influence of genes (G→E→O). We demonstrate that this is indeed the case via simulation in 

Section 4.2. 

3. Methods 

3a. Data 

Empirical results are based on data from 8,487 non-Hispanic white respondents in the Health and 

Retirement Study (HRS, data came from the RAND Fat Files) born between 1920 & 1953 (inclusive). We 

focus on non-Hispanic whites since the genetic similarity estimates which are the basis for GCTA 

heritability estimates are sensitive to allele frequency differences that exist between those from 

different ancestral groups. Descriptive statistics and information on how the variables were computed is 

included in Table 1. We divide the variables into 3 sets:  

 Environments: birth.year, birth.month, father.edu, mother.edu, veteran, urban. 

 Behaviors: own.edu, smokev, drinkn, log.income, loneliness, migrant, num.kids. 

 Phenotypes: height, weight, cognitive, bmi, iadla, cesd, self.health, num.conditions. 

One crucial thing to note is that the migrant variable is defined as a person who has lived in multiple 

census divisions and is thus an indicator of a domestic migrant rather than an international migrant. In 

addition, the veteran status indicator has a large number of missing values because we only consider 

male veterans (to capitalize on the fact that the Selective Service Act only applies to males). Table 2 

contains correlations between environments (the columns) and phenotypes and behaviors (the rows).  

We pause to unpack some theoretical notes about the nature of the environments in question with 

respect to whether they will exhibit rGE. For some of the environments, it is easy to wager about their 

rGE status. Parental education should be genetically endogenous given that parents and offspring share 

genes associated to educational attainment (Conley et al., 2015). We assume that birth month should be 

genetically exogenous since there is little reason to suspect differences across month (although this is an 
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empirical question).3 Birth year, veteran status, and urbanicity are more complicated. Birth year and 

veteran status should be largely genetically exogenous although each could be influenced by genes. As 

previously mentioned, birth year may be tied to larger economic trends. Service in the military was due 

to random processes for large numbers of men in the birth cohorts we use, but this was not universally 

true and there still may be important differences (perhaps in terms of health) for those men who do and 

do not serve. Urbanicity could be argued to have elements of both a confounded environment–due to 

ethnicity differences in the US between urban and rural residents–and an endogenous environment–

some individuals may choose to live in an urban or rural location due to personality traits. One 

assumption that seems reasonable to make about these three environments (urbanicity, birth year, and 

veteran status) is that urbanicity should show more signs of rGE than the other two.  

The phenotypes that we consider are either health-related or anthropometric phenotypes measured 

during the data collection process of HRS (e.g., present-day BMI is being reported, not a retrospective 

BMI in the respondent’s youth). The behaviors are not as straightforward as many of these variables 

contain information about the past. For example, an individual’s formal education is presumably long 

finished by the time they are enrolled in the HRS. By the time that an individual is retired, their level of 

education may be considered an environment in some respects (e.g., it is predictive of the SES of their 

friends and associates at time of retirement). We have used this rationale in previous work, for example, 

while studying the genetics of BMI (Boardman et al., 2014a). That study included family-based controls 

in an attempt to reduce confounding due to rGE, but it is possible that these were inadequate. This 

point is made to emphasize that there is likely to be an especially soft division between behaviors and 

environments. More educated people typically associate with more educated people. Smokers associate 

with other smokers. The exact implications of this porous boundary aren’t straightforward but could 

have serious implications for some GxE research. 

Genetic data for the HRS is based on DNA samples focus on single nucleotide polymorphisms (SNPs) 

collected in two phases. The first phase was collected via buccal swabs in 2006 using the 

QuiagenAutopure method. The second phase used saliva samples collected in 2008 and extracted with 

Oragene. Genotype calls were then made based on a clustering of both data sets using the Illumina 

HumanOmni2.5-4v1 array. SNPs are removed if they are missing in more than 5% of cases, have low 

MAF (0.01), and are not in HWE (p<0.001). We retained 1,698,845 SNPs after removing those which did 

not pass the QC filters. We also computed principal components (PCs) within the sample of non-Hispanic 

whites since there is evidence to suggest population stratification even in groups with a common 

ancestry (Nelis et al., 2009).  

3b. Analyses 

We estimate heritabilities using GCTA (Yang et al., 2010, 2011) for the outcomes discussed in Section 3a. 

We also make use of the fact that GCTA allows for linear predictors to control for principal components. 

We also conduct a simulation (described in detail in Section 4b) to examine the behavior of GCTA 

estimates when relevant environmental variation in genetics is ignored. 

4. Results 

                                                             
3
 Although we suspect that there is little in the way of “information” in terms of birth month, it may still have 

implications for development (e.g., Stebelsky, 1991).  
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4a. Detecting rGE 

Figure 2 contains heritability results (raw in black, adjusted for top 20 PCs in red) for phenotypes, 

behaviors, and environments. The raw estimate of height approaches the 0.4 estimate from the original 

GCTA paper (Yang et al., 2010). Of the behaviors, own education is estimated to have a heritability of 

0.25 after controlling for PCs.4 Smoking and log income are next with heritabilities of 0.21 and 0.2. Of 

the phenotypes, IADLA and cognitive ability have the lowest heritability. With only one exception, 

standard errors for all estimates in black are between 0.05 and 0.06 (the SE for veteran status is 0.12; it 

is larger due to the fact that we computed this based on only the males and thus have a decreased 

sample size). Standard errors for estimates in red are between 0.04 and 0.06. Since the standard errors 

are so consistently similar, we do not include them in Figure 2 but interpretation (with the exception of 

veteran status) is relatively straightforward: Any estimate around 0.1 or below is not statistically 

significant.  

Several facts about controlling for PCs are worth note. For the behaviors, controls for the PCs uniformly 

lead to declines in the estimated heritabilities. The story is more complex for behaviors and 

environments. Heritabilities generally decline after controlling for PCs, but that is not the case for 

smoking (going from 0.21 to 0.24) and migration (0.06 to 0.09). For behaviors, we see large increases for 

birth year and veteran status. An increase in heritability after controlling for PCs would suggest that 

population stratification is leading to a type of Simpson’s paradox. Although this might be theoretically 

possible, we tend to view such increases with skepticism.  

Raw heritabilities for the environments (in black) are in two clusters. Urban environment and parental 

education have relatively large heritabilities (>0.25). Given that parents and offspring share a genetic 

predisposition towards educational attainment (Conley et al., 2015), the parental education results are 

not surprising. To further test this finding, we residualized parental education based on offspring 

education and estimated the GCTA heritability for residualized maternal and paternal education. We 

estimated heritabilities of 0.28 and 0.16 (SE=0.05 for both) for residualized maternal and education 

respectively. Thus, parental education net of one’s own still seems to be heritable. While we anticipated 

some amount of genetic association with urban residence, the fact that heritability of urban 

environment is so large is somewhat surprising. One theory would be that this is due to population 

stratification within the non-Hispanic white sample. However, the result controlling for the top 20 PCs is 

nearly as large as the raw estimate, so perhaps this is not the case. Birth year, veteran status, and birth 

month have heritabilites below 0.1. The result for birth month is unsurprising. While the baseline results 

for birth year and veteran status make some amount of theoretical sense, it is interesting to note that 

these estimates increase when we control for PCs.  

4b. Implications of ignoring rGE 

 We consider the implications of ignoring rGE under the G+E paradigm discussed above in two ways. 

First, we consider the implications of ignoring a genetically endogenous environment when estimating 

                                                             
4 In previous work (Boardman et al., 2014), we noted a larger estimate for the heritability of education (0.33 after 
controlling for PCs). This was based on a different set of markers and respondents from HRS than what is used 
here. Both estimates are in the range of results from other sources. Rietveld et al. (2013) show estimates of 0.36 
(the QIMR cohort) and 0.23 (the STR cohort). Marioni (et al., 2014) shows an estimate of 0.21 using the Generation 
Scotland cohort.  
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GCTA heritability. Second, we examine the empirical implications for outcomes where (1) an 

environment is associated with the outcome and (2) the environment has estimated non-zero 

heritability. We begin by discussing results of a simulation. We first simulated an environment via the 

GCTA model using the estimated genome-wide similarities computed for all respondents and choice of 

    
  (the error variance,     

 , is fixed at 1). We then construct the purely genetic component of the 

outcome via the risk score model based on drawing causal effects for 50,000 SNPs from the standard 

normal distribution.5 Both the environment and the purely genetic component are then standardized to 

have SDs of 1. Finally, the outcome is computed as the sum of (1) the purely genetic component, (2) the 

environment, and (3) error (with variance   
 ). Both     

  and   
  are random draws from the uniform 

distribution on [0,2].  

Figure 3 shows the results for 25 iterations of the simulation. The x-axis shows the true ratio (where the 

relevant quantities are known, not estimated) of                , where    are the individual entries of 

  from Eqn 5 (estimates of these quantities are of interest in plant and animal breeding, see Kruuk, 2004 

for thoughts on estimation of these parameters in the presence of substantial environmental variation). 

This is the direct genetic influence of genotype on phenotype. The y-axis shows the estimated GCTA 

heritability when we ignore the environment. The dashed black 45 degree line shows where we would 

expect GCTA heritability estimates in the absence of the endogenous environment. However, when we 

ignore the endogenous environment, we consistently overestimate the true genetic contribution to 

phenotypic variance (by an average of 37%).  

We also conduct an empirical test of whether ignored environmental associations tended to upwardly 

bias heritability estimates of behaviors by examining the estimated heritability of own education, 

drinking, and log income after considering the influence of urban environment. The top row of Table 3 

contains heritability estimates for own education, drinking, and log income (the raw estimates in black 

from Figure 2). The second row contains estimates based on including the urban indicator as a predictor 

via GCTA. The third row contains estimates based on residualizing the outcome using the urban 

indicator. Rows 2 and 3 are generally quite similar and show slight declines in the estimated heritability 

as compared to the estimates from row 1. Although the reductions may seem slight, they are 

meaningful compared to the lack of change shown in the last row (italicized) in which GCTA models 

were estimated using the uninformative birth month variable as a control. We discuss the implications 

of this research in the subsequent section.  

5. Discussion 

Figure 2 suggests that some environments–specifically urbanicity and parental education–are genetically 

endogenous. This was as hypotheiszed, but it is interesting to note that parental education even net of 

offspring education continues to be heritable. This suggests that we are not picking up simply the fact 

that parents and offspring share half of their genetic material. The raw results for birth year and veteran 

status suggest that they are largely genetically exogenous. The results based on controlling for PCs are 

more complicated. Given the theoretical reasons to suspect that these variables are largely genetically 

exogenous, we are skeptical about the findings based on the PCs at present. The most important 

                                                             
5
 The normal distribution is possibly an inappropriate model for causal effects given its thin tails, but GCTA seems 

relatively robust to different types of genetic architecture (Speed et al., 2012). 
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findings are that we do see some support for our hypotheses about genetic exogeneity and endogeneity 

being present in the data.  

What, exactly, are the implications of Figure 3? Why would the consistent overestimation of heritability 

be problematic? We believe that most environments are genetically endogenous and most phenotypes 

and behaviors are jointly influenced by both genes and environments. Thus, GCTA estimates of 

heritability may frequently be capturing the indirect pathway (G→E→O)through which genes influence 

environments and outcomes. The G→E pathway may be especially problematic given that it may be due 

to population stratification. Thus, GCTA estimates which are interpreted as explaining the variance 

associated with the direct G→O pathway may substantially overestimate the role that specific causal 

variants have directly on an outcome. Table 3 demonstrates this directly via a reduction in the estimated 

heritability in own education, drinking, and logged income when adjusted for urbanicity. Although the 

declines aren’t huge (and are consistent with similar earlier work, Conley et al., 2014), we emphasize 

that they are due to controlling for only a single environment. Considering the range of possible 

environments which may be both genetically endogenous and causally implicated in these three traits, it 

is possible that direct GCTA estimate of these traits may substantially overestimate their actual 

heritability.  

If one believes Turkheimer’s (2000) “first law of behavior genetics” (all human behavioral traits are 

heritable), then there is a reason to ask why we are concerned about heritability estimates in the first 

place? There are many potential answers to that question and it would be encouraging to see more 

research attempt to understand the role of environment in their analyses. As one illustration, we 

critique an earlier study of our own (Boardman et al., 2014b) in which we asked whether education and 

various measures of health perhaps share a common genetic origin. While we attempted to minimize 

the role of population stratification through the use of principal components in our GCTA analyses, the 

results here suggest perhaps that such an approach may be difficult to interpret. One could imagine 

asking whether the results are robust to more stringent approaches. Programs like admixture (Alexander 

et al., 2009) or structure (Pritchard et al., 2000) could be used to extract a more ethnically homogenous 

group. Environmental factors are virtually impossible to rule out via GCTA, but we could also reconsider 

whether polygenic scores (if available) show the same pattern of correlations. In particular, would we 

see a correlation between a score for educational attainment and a score for depression? Would we fail 

to find a correlation between a score for educational attainment and BMI? Such inquiries would help us 

to ensure that we were accurately identifying pleiotropic effects (the goal of that research) rather than 

merely picking up on subtle environmental confounding that is common to both traits.  

5b. Implications for GxE Research 

This study has focused on the G+E paradigm. For social scientists, the GxE paradigm is much more 

interesting since it explicitly offers a mechanism through which environments might moderate the 

genetic influence on a trait. The candidate gene literature focused on interactions between variants of 

the candidate gene and environments. A classic example in this literature is the work of Caspi et al. 

(2003) in which a variant of 5-HTTT is shown to moderate the influence of life stress on depression. The 

twin literature, on the other hand, has seen focus on environments moderating the overall heritability of 
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a trait, Turkheimer et al’s (2003) work on the heritability of IQ as a function of SES being a classic 

example. These are different ways of operationalizing GxE. While some work has attempted to blend 

these views (Boardman et al.’s (2012A) work on the influence of APOE as a function of neighborhood 

context being one example), it is worth carefully considering the implications of these different models 

in the context of genome-wide data.  

Suppose that an outcome has a genetic component generated by the risk score model. The most 

intuitive formulation would be a GRSxE data generating model: 

                                . (Eqn 7) 

There is already research attempting to estimate   (e.g., Qi et al., 2012; Li et al., 2010; Meyers et al., 

2013).6 While this might be worthwhile research, there is a tough question easily obscured about the 

relationship between the causal variants (     ) and the environment. If there is a correlation between 

          and   , then a significant estimate of the interaction,   , can result even if the DGP for the 

outcome O is Eqn 7 with    . Thus, trying to understand rGE should be a necessary starting point for 

any GxE study. 

  

                                                             
6
 It’s worth noting that Qi et al. (2012) and Li et al. (2010) are examining what this paper would frame as behaviors: 

intake of sugary beverages and physical activity. 
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Table 1. Descriptive statistics for HRS variables used in study. 

Var Name Min Max Mean SD # NA Notes 

own.edu 0.00 17.00 13.19 2.53 37 HRS variable raedyrs 

birth.year 1920.00 1953.00 1937.62 8.83 0 HRS variable rabyear 

birth.month 1.00 12.00 6.52 3.44 0 HRS variable rabmonth 

father.edu 0.00 17.00 9.93 3.53 889 HRS variable rafeduc 

mother.edu 0.00 17.00 10.34 3.03 587 HRS variable rameduc 

veteran 0.00 1.00 0.59 0.49 4809 HRS variables ravetrn, for males only 

height 1.37 2.26 1.70 0.10 0 Max height over all waves 

weight 38.94 174.29 79.21 17.37 3 Mean weight over all waves 

cognitive 7.00 35.00 26.41 3.60 99 Max cognitive functioning over all waves (based on rXcogtot variables) 

bmi 15.67 61.23 27.48 5.03 3 Mean BMI over all waves 

iadla 0.00 3.00 0.26 0.62 0 Max IADLA over all waves 

cesd 0.00 8.00 1.20 1.33 0 Mean CESD over all waves 

self.health 1.00 5.00 2.55 0.86 0 Mean self-reported health over all waves 

num.conditions 0.00 8.00 2.47 1.50 0 Max of rXconde variables which tabulate number of diagnosed 
conditions (high BP, diabetes, cancer, lung disease, heart problems, 
stroke, mental health problems, arthritis) 

smokev 0.00 1.00 0.57 0.49 29 Whether a person ever reports having been a smoker 

drinkn 0.00 7.57 0.71 0.98 1 Mean number drinks when drinking over all waves 

log.income 6.40 15.72 10.84 0.77 0 Log of mean total income (rXitot variables) 

loneliness 0.00 1.00 0.12 0.21 0 Mean of variables indicating whether a respondent felt lonely (rXflone) 

urban 0.00 1.00 0.42 0.49 103 Respondent lived in an urban environment in 2008 (Based on HRS 
variable urbrur08). 

migrant 0.00 1.00 0.66 0.47 5 Whether a person reports living in more than one census division 

num.kids 0.00 14.00 2.61 1.64 12 HRS variable raevbrn 
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Table 2. Correlations between environments (columns) and phenotypes and behaviors (rows). 

 
birth.year birth.month father.edu mother.edu veteran urban 

height 0.05 -0.01 0.07 0.10 -0.06 0.00 

weight 0.17 0.00 0.01 0.05 -0.09 -0.04 

cognitive -0.08 0.01 0.14 0.12 0.05 0.08 

bmi 0.16 0.01 -0.04 -0.01 -0.07 -0.06 

iadla -0.18 0.00 -0.11 -0.09 0.03 -0.02 

cesd 0.04 -0.01 -0.13 -0.11 -0.04 -0.02 

self.health -0.10 -0.02 -0.20 -0.19 0.00 -0.08 

num.conditions -0.26 -0.02 -0.18 -0.16 0.13 -0.05 

own.edu 0.16 0.02 0.40 0.39 0.00 0.13 

smokev 0.00 0.01 0.00 -0.01 0.14 0.04 

drinkn 0.15 0.02 0.14 0.15 0.00 0.11 

log.income 0.33 0.02 0.30 0.31 -0.12 0.13 

loneliness -0.05 -0.01 -0.10 -0.10 -0.03 -0.01 

migrant 0.01 0.00 -0.10 -0.06 -0.02 -0.16 

num.kids -0.22 0.01 -0.10 -0.11 0.06 -0.07 
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Table 3. Heritability results for key behaviors net of environmental controls. 

 

Own 
education SE Drinkn SE log Income SE 

GCTA Raw 0.295 0.053 0.181 0.051 0.208 0.054 

GCTA, control for urban 0.268 0.054 0.156 0.052 0.18 0.054 

GCTA on residualized outcome 0.264 0.054 0.153 0.052 0.178 0.054 

GCTA, control for birth month 0.295 0.053 0.182 0.051 0.208 0.054 
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Figure 1. G+E models for mapping genotype to phenotype.  
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Figure 2. Heritability estimates, both raw and with controls for top 20 PCs, for phenotypes, behaviors, and environments.  
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Figure 3. Comparison of “True h2” (the direct G→O link from M2) to GCTA h2 when M2 is the true DGP. 

 


