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Abstract 

Exposure to violence in childhood is associated with negative health outcomes. We analyze the 

relationship between census tract level violent crime rate and rates of two cardiovascular outcomes, 

hypertension and obesity, among Boston children enrolled in subsidized insurance. We hypothesize 

that these relationships between violent crime and cardiovascular outcomes are structured by spatial 

and/or neighborhood level determinants (educational, social and economic, and health opportunity 

environment). Local Moran’s I measurements show significant spatial autocorrelation in the 

exposure and the outcomes of interest. Ecological (census tract-level) as well as nested (individuals 

within census tracts) regression models were used for each outcome. Given the autocorrelation in 

the variables, spatial lag models were run. We also used neighborhood fixed effects models to assess 

whether the autocorrelation is induced by administrative district. This study underlines the health 

implications of violent crime exposure and the importance of considering spatial and neighborhood 

patterning in assessing its impact.   



I. Introduction 
 

Although an estimated 98% of Boston’s children are covered by health insurance, rates of 
obesity are higher in Boston than those in the state of Massachusetts and in the nation. These rates 
are notably higher among children of low income households (1). Over 25% of Boston families with 
children live below the poverty line, and there are wide disparities in these percentages by 
neighborhood. Children of white race/ethnicity and those living in higher income families are more 
likely to have positive health outcomes and be insured through providers other than 
HealthNet/Medicaid (2). Children living in low income families in Boston are more likely to live in 
areas with higher incidence of violent crime (3). 

The city of Boston has an established neighborhood structure, formed by the amalgamation 
of groups of census tracts and defined by administrative and community boundaries. There are 153 
census tracts and 33 neighborhoods in Boston. The sense of community neighborhood membership 
is strong among citizens and is reflected in health and housing policy, which provides reason to 
believe that administrative neighborhood level characteristics could explain clustering (4). However, 
spatial dependence is also likely to initiate clustering in the exposure and outcome variables as health 
behaviors are known to vary across space, and violence has been shown to exhibit “infectious” 
diffusion qualities (5; 6). Further we recognize that neighborhood level measurements can introduce 
bias, as demonstrated by previous work on context and pediatric health in Boston (7). In order to 
better understand the ways in which violence and cardiovascular outcomes among disadvantaged 
youth in Boston relate and vary across space and community boundaries, this analysis employs 
administrative neighborhood fixed effects and spatial autoregressive Poisson models.  

Previous work regarding urban stressors has identified neighborhood violence as an 
influential factor in cardiovascular health (8; 9; 10; 11). However, the relationship has not yet been 
explored spatially among low income youth in Boston. This paper examines the relationship 
between crime rate and distributions of both obesity and hypertension rates. This exploration is 
motivated and informed by the theoretical framework supporting The Basic Science of Pediatrics, which 
highlights the dynamic interactions between environmental, biological, and developmental aspects of 
child health (12) (Fig 1). We aim to better explain the structure of the spatial relationship between 
violence exposure and cardiovascular outcomes, understanding that all components of this 
framework vary by context. This analysis is conducted on measures by census tracts in Boston, 
examining outcomes among all children in the city receiving clinical care coverage through 
subsidized insurance (13).  

 
II. Methods 

 
Data Sources and Measurement  
 The outcomes of interest are BMI and blood pressure. De-identified, patient level data 
comes from the Massachusetts Health Disparities Repository (MHDR), which contains all clinical 
encounters and observations (recorded in the EHR) for all individuals receiving care coverage 
through the HealthNet insurance program (14; 13). Patients were considered eligible for inclusion in 
the study if they were aged 3 to 18 in 2010 and had at least one clinical encounter or observation 
from January 1, 2010-December 31, 2010 (N=10,873). Eligible patients in this system reside in 106 
of Boston’s 153 census tracts and all of the 33 neighborhoods (15; 16).  

Every recorded measurement of height, weight, and blood pressure (diastolic and systolic) 
taken in 2010 was collected for eligible patients in the MHDR. Gender, race/ethnicity, and census 
tract was also collected for each patient.  To avoid use of inaccurate and unrepresentative measures, 
blood pressures were only included if they were recorded during a “well patient” visit. Implausible 



values were determined to be >15% higher than the 95th percentile for each growth and blood 
pressure measure. Measurements exceeding this limit were excluded as coding errors in the EHR. 

BMI was calculated from the growth measures using the formula: 𝐵𝑀𝐼 =
𝑤𝑒𝑖𝑔ℎ𝑡(𝑘𝑔)

𝑚𝑒𝑡𝑒𝑟𝑠2 .  

Standardized z-scores were calculated for each observation of BMI and blood pressure based 
on the BMI and blood pressure distributions of the pediatric US population. BMI distributions are 
known to vary by age and gender, so BMI z-scores standardize based on these factors. Height also 
skews the distribution of blood pressure measurements, so diastolic and systolic blood pressure z-
scores account for age, gender, and height (17; 18). Associated percentile values were calculated for 
the z-scores. Blood pressure measurements at or above the 95th percentile were considered to be 
cases of hypertension, and BMI measurements at or above this cutoff were considered to be cases of 
obesity.  
 The exposure of interest is violent crime rate. A list of violent incidents that occurred in 
Boston between January 1 and December 31, 2009 (including robbery, assault, and murder) was 
compiled from data provided by the Boston Police Department. The address for each incident was 
geocoded to latitude/longitude coordinates using ArcGIS 10.2 (19) and then aggregated to census 
tract-level rates as incidents per square mile (15). There is assumed to be some level of random error 
in the addresses assigned to each incident, but based on the distributions of even and odd address 
numbers, it is unlikely that this error will vary across any variables of interest for this study. 
Outcome variable data was collected from 2010 to ensure that obesity and hypertension cases 
occurred temporally subsequent to exposure to violence.   

Other covariates included to address potentially influential contextual and compositional 
structure are population size and median household income by census tracts, as reported by the US 
Census Bureau (15), and the Child Opportunity Index, which includes indicators related to 
education, social and economic factors, and health environment, as reported by Diversity Data Kids 
(20). Concentrations of poverty and low child opportunity have been shown to be associated with 
concentrations of poor cardiovascular outcomes as well as violent crime (21; 20). Median household 
income is modeled continuously and centered on its population mean.   

 
Spatial Analysis Methods  
 Tests for spatial autocorrelation in the variables were conducted, informed by Tobler’s first 
law of geography (22). Global and Local Moran’s I were estimated for the outcome and exposure 
variables using ArcMap 10.2 to measure any existing positive or negative spatial autocorrelation in 
rates of obesity, hypertension, and violent crime between census tracts (23). Univariate Local 
Moran’s I’s were estimated for each variable. A bivariate Local Moran’s I was estimated to 
understand the ways in which rates of hypertension and obesity are clustered together spatially, as 
these cardiovascular outcomes are clinically related and likely to be correlated (24). Bivariate Local 
Moran’s I’s were also estimated for violent crime rates and each outcome variable.   

A statistically significant Global Moran’s I indicates clustering of the variable of interest in 
space. Local Moran’s I identifies the locations of this clustering and the direction of the relationship 
(high values clustered with neighbors with high values, etc). Sensitivity to different weighting 
structures in clustering results was tested using inverse distance and contiguity (both queen’s and 
rook’s) weighting structures. In final tests, a first-order queen’s contiguity method was used to define 
neighbors, i.e. census tracts sharing borders were considered neighboring (25). The False Discovery 
Rate (FDR) method was used to adjust for multiple testing in the local tests (26).  
 Using the queen’s contiguity matrix that weights the influence of proximal census tracts 
more heavily than distant tracts, a spatially lagged Poisson regression model was used for each 
outcome against the covariates. The spatial lag model assumes that the clustering of each variable is 



a direct result of the influence on that variable in one place on that variable in another place (27). All 
variables in this model are aggregated at the census tract level. The form of the spatial lag model is: 
 
𝑂~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜃, Σ)  

log (𝜃) = 𝛼 +  𝜌𝑊𝑦 + 𝑋𝛽 + 𝜖  

 

where 𝜃 is a vector of counts of cases of obesity or hypertension; Wy is the spatially lagged 
dependent variable by the queen’s contiguity weights matrix W; X is a matrix of observations of the 
included covariates: opportunity index, violent crime rate, median household income, proportion 

black, proportion female, and average age; 𝜖~𝑁(0, 𝜎𝜖
2) is a vector of error terms (random effects); 𝜌 

is the lag parameter; 𝛼 is the fixed intercept parameter; and 𝛽 is a vector of fixed effect parameters 
for the covariates. Incidence rate ratios (IRR) and robust standard errors were estimated for each 
covariate. 
 
Administrative Neighborhood Fixed Effects Analysis Methods 
 Based on Boston’s administrative neighborhood structure, a neighborhood fixed effects 
model is another reasonable approach to understanding the relationship between the outcomes and 
exposures as well as explaining clustering (4). A model was adopted specifying census tracts (106) 
nested within neighborhoods (33), which were defined a priori (16)(Fig 2). The fixed effects 
structure controls for all unmeasured, time invariant neighborhood characteristics, and it allows for 
within neighborhood estimates of the effects of interest. Variables in this model are aggregated at 
the census tract level. The form of the fixed effects model, i indexing census tracts and j indexing 
neighborhoods, is: 
 
𝑂𝑖𝑗~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜃𝑖𝑗, Σ𝑖𝑗)  

log (𝜃𝑖𝑗) = 𝛼 + 𝑋𝛽 + 𝛿𝑗 + 𝜖𝑖𝑗  

 

where 𝜃𝑖𝑗 is a vector of counts of cases of obesity or hypertension; X is a matrix of observations of 

the included covariates: opportunity index, violent crime rate, median household income, proportion 

black, proportion female, and average age; 𝛿𝑗 represents a binary variable for each of the 33 

neighborhoods; 𝜖𝑖𝑗~𝑁(0, 𝜎𝜖
2) is a vector of census tract level random effects; 𝛼 is the fixed 

intercept parameter; and 𝛽 is a vector of fixed effect parameters for the covariates. Incidence rate 
ratios (IRR) and robust standard errors were estimated for each covariate. 
 
Hierarchical Analysis Methods 
 In order to assess the impact of crime exposure on individuals, a two-level, nested models 
were also used, specifying individuals nested within census tracts. The hierarchical structure allows 
conditionally independent estimation of individual and census tract-level effects. In the random 
intercepts model used, the intercept value was allowed to vary by census-level random effects. This 
corrects for clustering of variables within census tracts. The form of the multilevel model, i indexing 
individuals and j indexing census tracts, is: 
 
𝑂𝑖𝑗~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝜃𝑖𝑗, π𝑖𝑗)  

logit (𝜋𝑖𝑗) = 𝛼 + 𝑋𝛽 + 𝑢𝑗 + 𝜖𝑖𝑗  

 

where 𝜃 is a binary variable of observations of cases of obesity or hypertension, 𝜋𝑖𝑗 is a vector of 

individual probabilities of being a case of obesity or hypertension; X is a matrix of observations of 



the included covariates at the census tract level: opportunity index, violent crime rate, median 

household income and individual level: sex, race, and age; 𝑢𝑗~𝑁(0, 𝜎𝑢
2) is a vector of census tract 

level random effects; 𝜖𝑖𝑗~𝑁(0, 𝜎𝜖
2) is a vector of individual level random effects; 𝛼 is the fixed 

intercept parameter; and 𝛽 is a vector of fixed effect parameters for the covariates. Spatial and 
neighborhood fixed effects specifications were also applied to these hierarchical models. Odds ratios 
and robust standard errors were estimated for each covariate in each model. 
  
Model Comparisons 

Descriptive statistics were measured for each variable of interest. For exploratory purposes, 
crude distributions of the outcome variables were mapped. Spatial and non-spatial bivariate analyses 
were conducted between each covariate and both outcomes of interest. Additionally, two non-
spatial, Poisson regression models were run—one for each outcome—against all of the covariates. 
Spatial autocorrelation in the residuals was assessed using the Global Moran’s I test. A spatial 
dependence model was used to account for spatial autocorrelation in the variables (28). The 
residuals from the spatial lag and fixed effects models were assessed for autocorrelation using Global 
Moran’s I in order to test for outstanding spatial clustering. For all the three models, the significance 
of the tests of autocorrelation in the residuals were compared to assess their relative adequacy in 
accounting for clustering in the variables. Additionally, model fit was compared across the three 
types for each outcome using the Akaike Information Criteria (AIC) method (29). All multivariate 
and non-spatial bivariate analyses were completed using Stata 13 (30). 
 

III. Results 
 
 In 2010, there were 5,001 cases of obesity and 485 cases of hypertension among the 10,871 
children, ages 3-18, who were part of the HealthNet system. The average rate of obesity was 47.7 
cases/100 person-years, and the average untransformed rate of hypertension was 5.2 cases/100 
person-years. Summary statistics for each variable and descriptive statistics are listed in Table 1. 
Crude rates of obesity and hypertension cases were mapped by census tract and displayed in Figure 
3. Obesity and hypertension cases are standardized to sex and age, hypertension counts are also 
standardized by height. 
 In the display of crude case rates, there appears to be patterning in increased rates of both 
obesity and hypertension in South, central Boston. Local Moran’s I test results are presented (after 
correction for multiple testing) for both outcomes of interest (Fig 4 and Fig 5) and violent crime rate 
(Fig 6). Clustering tests were not found to be sensitive to changes in weighting structure. The 
patterning of local clustering, based on univariate Local Moran’s I estimates, appears to be 
distributed in a spatially similar way for obesity, hypertension, and violent crime rates. 
Complementing these exploratory assessments, the bivariate tests of local clustering between 
hypertension and obesity rates (Fig 7), obesity and violent crime rates (Fig 8), and hypertension and 
violent crime rates (Fig 9) show significant autocorrelation after adjusting for multiple testing. The 
corrected Local Moran’s I estimate for violent crime rate identifies high-high clustering of crime 
rates in an area of South central Boston (Dorchester, Roxbury, and Mattapan) that appears to 
overlap the high-high clustered areas identified in the univariate Local Moran’s I tests for both 
obesity and hypertension cases. It also identifies low-low clustered areas in West Roxbury and 
Brighton. Additionally, there were small pockets of significant local clustering in some of the 
covariates, but the significant areas do not overlap those in the exposure or outcomes of interest. 
The spatial bivariate results show high-high clustering in south central Boston between obesity rates 
and hypertension rates as well as each of the outcome rates and violent crime rates. Low-low clusters 



were also found in each of these bivariate assessments in West Roxbury, Brighton, Allston, and East 
Boston.  

Non spatial, bivariate tests of the covariates against each showed violent crime rate, 
opportunity index, proportion black, hypertension rate, and median household income to be 
significantly related with obesity rate. The same covariates had a significant relationship with 
hypertension rates. Incidence rate ratio estimates and associated standard errors for the multivariate 
analyses (standard Poisson, spatial, and fixed effects aggregate models) are presented in Table 2. It is 
notable that violence exposure is significantly, positively correlated with cases of obesity in all three 
models. However, the magnitude of association is very small, and the association does not persist in 
the models for hypertension. Median household income has a significant negative relationship with 
both outcomes in all three models for each. The proportion of black patients also has a significant 
positive relationship of great magnitude with both outcomes in all three models. Opportunity index 
has a significant negative association with obesity in all three models but not hypertension. Average 
age and proportion female are not significantly associated with either outcome in any model. This is 
to be expected, as the z-scores upon which cases are based are age and sex standardized.     

Highly significant spatial autocorrelation was detected in the residuals of the standard 
Poisson models. Both Lagrange multiplier statistics were significant for both the obesity and 
hypertension models. In the obesity model, only the robust Lagrange multiplier for the lag model 
was significant. Both robust tests were significant for the hypertension model, but that for the lag 
model was more highly significant. Therefore, the lag model was chosen as the spatial regression 
technique for both outcomes. The lag parameters in both models was significant, and the Breusch-
Pagan tests for heteroskedasticity were insignificant. Additionally, both spatial models resulted in 
improved AIC scores and elimination of significant autocorrelation in the residuals, based on Global 
Moran’s I. The fixed effects models indicated significant neighborhood-level variance. These models 
showed improved further improved AIC scores and accounted for spatial autocorrelation (Table 2).  

In the hierarchical models, the effects attenuate for most covariates. Being of black race 
remains a significant predictor of obesity and hypertension. Additionally, individuals with obesity are 
more likely to have hypertension. Consistent with the aggregated models, spatial autocorrelation was 
detected in the residuals of the standard logistic model. The spatial lagged and neighborhood fixed 
effects logistic models correct for this autocorrelation. The distribution of the variance in each of 
the nested models suggests that a large proportion of the variance lies at the individual level, which 
may explain the null findings.  

 
I. Discussion  
 
Significant global and local spatial clustering of cases of obesity and hypertension were detected 

among children enrolled in HealthNet insurance plans in the city of Boston in 2010. Distribution of 
violent crime in Boston in 2009 was also significantly clustered. In all bivariate and multivariable 
analyses aggregated at the census tract level, a significant relationship was detected between violent 
crime exposure and obesity. The spatial lag models accounted for detected autocorrelation in models 
including all covariates. The significance of the lag parameters in both models suggests that a 
substantial amount of the variance in the relationships described is spatial. However, the AIC scores 
indicate that the neighborhood fixed effects models are better fit for the data. The neighborhood-
level variance parameter suggests that a significant amount of the distribution of the relationships 
modeled is explained by neighborhood level effects. While still insignificant, the p-values associated 
with the tests for spatial autocorrelation in the residuals are slightly lower than those evaluating the 
residuals of the spatial models. The covariates at the census tract level did not remain significant in 
hierarchical models predicting individual level obesity and hypertension odds. The high level of 



individual level variation relative to that of the census tract level detected in these models suggests 
that the data was inadequate to detect exposure to violent crime, the variable of interest. Neither 
crime nor patient point location data was available, and both variables were aggregated at the census 
tract level. Point locations for both measures would enable more precise measurement of individual 
exposure through distance to violent crime episodes.   
 
Policy Implications 

These analyses show that disparities in cardiovascular outcomes among Boston’s low income 
youth as well as distribution of violent crime rates throughout the city are spatially patterned. They 
also indicate that the relationship between exposure to violent crime and risk of poor cardiovascular 
outcomes varies across space and administrative district (neighborhood). Boston legislative officials 
should be aware of the spatial patterning of cardiovascular disease risk and violent crime and 
develop targeted policy to maximize impact. The significant spatial and neighborhood effects 
indicate that aiming efforts to diminish violent crime in clustered areas and/or neighborhoods with 
high incidence would be likely to effectively address the related, disparate increases in risk of 
negative cardiovascular outcomes. Addressing economic disadvantages in these areas is also likely to 
be impactful. The neighborhoods that appear to require immediate attention are Roxbury and 
Dorchester.  

 
Limitations 
 While this study introduces an innovative methodological and theoretical approach to the 
life course framework of pediatric science, there were some limitations. This analysis was primarily 
limited by the aggregation of key covariates at the census tract level. Census tract borders are 
administrative districts which do not reflect population distributions well (7). More granular 
measurement of exposure to violent crime, for example point location data, would enable much 
more robust estimation of its impact on individual child health.  
 Additional limitations include data quality and generalizability. Because it is not collected for 
research purposes, data from the EHR and police department are likely subject to misclassification 
and measurement error (i.e. diagnoses and types of crime are often modified to fit available codes). 
Methods of accounting for measurement errors probably did not eliminate all bias introduced. The 
population of interest is relatively narrow, including only children in Boston enrolled in HealthNet, 
who make up about 30% of the Boston youth population. These results are certainly not 
generalizable to the entire pediatric population of Boston, but this probably led to more 
conservative estimates of variation than would have resulted had the entire population been studied 
(as substantiated evidence suggests children in higher income families in Boston have better health 
outcomes (2)). These results are also likely not generalizable to low income pediatric populations in 
other locations outside Boston. Despite these limitations, these analyses provide actionable evidence 
of spatial and hierarchical patterning of factors of health risk for low income children in Boston.  
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Fig 1. Shonkoff & Garner’s proposed theoretical framework behind contemporary basic science of pediatrics (12)       
 



 
Fig 2. Administrative levels in Boston.  

  



 

 

 

Fig 3. Categories of crude rates of obesity (left) and hypertension (right) by census tract.  

  



 

Fig 4. Significant Local Moran’s I results for obesity rate, at the census tract level, after correcting using False Discovery 
Rate method. 



 

Fig 5. Significant Local Moran’s I results for hypertension rate, at the census tract level, after correcting using False 
Discovery Rate method. 



 
Fig 6. Significant Local Moran’s I results for violent crime rate, at the census tract level, after correcting using False 
Discovery Rate method. 



 

Fig 7. Significant bivariate Local Moran’s I results for obesity and hypertension rate, at the census tract level, after 
correcting using False Discovery Rate method. 



 

Fig 8. Significant bivariate Local Moran’s I results for obesity and violent crime rate, at the census tract level, after 
correcting using False Discovery Rate method. 



 

Fig 9. Significant bivariate Local Moran’s I results for hypertension and violent crime rate, at the census tract level, after 
correcting using False Discovery Rate method. 



Table 1. 
Measure Mean (SD) 

Subjects per census tract 102.6 (47.9) 
Age (years) 9.82 (5.14) 
Gender (% female) 0.49 (0.35) 
Cases of obesity per 500 person-years 47.7 (4.37) 
Cases of hypertension per 500 person-years 5.21  (0.73) 
Violent crimes per square mile 42.5 (13.2) 
Median Household Income (US $) 40811.42 (14477.65) 
Racial Composition (% black) 0.26 (0.12) 

 
Table 2. 
Multivariable Poisson models for rates of obesity, then hypertension by Boston census tract 
Obesity Standard Poisson Lagged Spatial  Neighborhood FE 

 IRR Robust SE IRR Robust SE IRR Robust SE 

Constant 14.81 ** 1.79 14.34 ** 1.77 15.49 ** 3.52 

Hypertension 1.04 ** 0.01 1.04 ** 0.01 1.04 ** 0.04 

Proportion black 2.20 ** 0.19 1.99 ** 0.18 1.32 * 0.15 

Proportion female 0.96 0.16 0.94  0.16 1.01   0.26 
Average age 1.00 0.86 1.00 0.19 1.00 0.19 
Median income 0.98 ** 0.00 0.99 ** 0.00 0.99 ** 0.00 
Opportunity Index 0.34 ** 0.02 0.35 ** 0.02 0.73 ** 0.05 
Violent Incidents/mi2 1.01 ** 0.00 1.01 ** 0.00 1.01 ** 0.00 

Spatial Lag (Rho)   1.00 ** 0.00   

AIC 627.905  555.448  551.238  

Global Moran’s I p-value <0.0001  0.531  0.394  

Hypertension Standard Poisson Lagged Spatial  Neighborhood FE 

 IRR Robust SE IRR Robust SE  IRR Robust SE 

Constant 1.70  0.65 1.61  0.62 11.80 ** 5.30 

Obesity 1.01 ** 0.00 1.01 ** 0.00 1.01 ** 0.00 

Proportion black 6.31 ** 1.86 5.92 ** 1.78 2.35 * 0.84 

Proportion female 2.97 1.71 3.04 *  1.67 1.67   1.12 

Average age 1.99 1.25 2.14 1.78 1.53 1.07 

Median income 0.99 ** 0.00 0.99 ** 0.00 0.99 ** 0.00 

Opportunity Index 1.30  0.21 1.32  0.22 1.31 0.28 

Violent Incidents/mi2 1.01 ** 0.00 1.00  0.01 1.00 0.01 

Spatial Lag (Rho)   1.01 ** 0.00   

AIC 242.673  200.589  173.433  

Global Moran’s I p-value <0.0001  0.307  0.267  

*p<0.05 **p<0.001 
IRR: Incidence Rate Ratio 
FE: Fixed Effects 
 


