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Abstract

Cities’ spatial patterns in ethnicity and race can be characterized by large
clusters of blocks with similar composition and sharp boundaries between
those clusters. While most neighborhood research uses fixed boundaries, such
as Census tracts, I argue that boundaries are not predetermined, but emerge
endogenously and can move over time. If we allow for moving boundaries,
a city’s spatial demographics can change in two distinct ways: within-cluster
changes in demographic composition and boundary movements. In this paper,
I develop a Bayesian algorithm, the Space-Time CRP, to identify spatial clus-
ters of households’ race and ethnicity through time from block-level Census
data, and examine changes in those ethnoracial clusters in Philadelphia, PA
from 2000 to 2010. I decompose Philadelphia’s demographic change and find
a previously unmeasured dynamic: Philadelphia’s White and Asian clusters
are growing spatially, even as all clusters are internally becoming proportion-
ately more Black and more Hispanic. Gentrification particularly appears to
occur by boundary moving–White clusters are “spreading”, rather than bound-
aries remaining fixed and the ethnoracial mixtures within those boundaries
changing. I replicate the analysis for the central cities of the 100 largest U.S.
Census Metropolitan Statistical Areas.
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1 Introduction

Do populations in cities “spread”? The answer, when posed to city-dwellers, is an
obvious yes. Residents can quickly point to an unofficial boundary that has moved
over time, as Population X now extends all the way up to Street Y. Methodologi-
cally, however, neighborhoods research often relies on the use of fixed boundaries,
such as census tracts, and models all population change as changes in the demo-
graphic proportions within them. Yet population change would mean a very differ-
ent thing for neighborhoods if it occured by the demographic group(s) of one region
expanding block-by-block into space previously occupied by others, rather than the
demographic mix within a tract uniformly and gradually shifting. How much of city
population change occurs by the movement of boundaries, and how much occurs
by actual changes in residential mixes? This paper provides an answer.

When we look at most American cities, we see substantial ethnoracial residential
segregation (Massey and Denton, 1993). Cities are composed of vast regions of
blocks with similar distributions in household race and ethnicity. In a clustering
model, these spatial clusters can be defined by two attributes: their boundaries
and each cluster’s internal demographic proportions. Over time, then, there are
two ways clusters can change: either (1) their internal demographic compositions
change, as populations mix differently or (2) they keep the same demographic com-
position, but spatially grow or shrink to cover more or fewer blocks.1 Is city popula-
tion being driven by residents truly mixing differently, or by a simple displacement
of one large group overtaking blocks previously inhabited by another?

To answer this question, we first need a method to identify these cluster boundaries
and internal demographic proportions across time. I develop a Bayesian spatio-
temporal clustering method for block-level Census household data. I use the cluster
results to visually explore maps of Philadelphia’s residential change from 2000 to
2010, and then to decompose that ethnoracial change into changes in ethnoracial
mixing and movements in boundaries. I then replicate the analysis for the central
cities of the largest 100 Metropolitan Statistical Areas (MSAs) in the United States.
A substantial amount of the observed demographic change, including all of the
observed increases in the non-Hispanic White population, was due to boundary
shifting.

1There is actually a third way, which completes the accounting: a change in the number of house-
holds in a given block, which doesn’t change the spatial clusters but does their relative populations.
I discuss this later.
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2 Emergent Boundaries

2.1 What are emergent boundaries?

I call the boundaries between demographic clusters “emergent”. By this, I mean
that they are created endogenously, as an outcome of residential decisions rather
than being predefined. Emergent residential boundaries do not simply align with
physical or political lines, though they can. Instead, boundaries between segregated
spaces could emerge along streets that aren’t obviously different from others. Most
importantly, by not being predefined, emergent boundaries can move.

Emergent demographic boundaries have long been theorized and implicitly ac-
cepted, though perhaps without being named and without the necessary fine-scale
data to measure them. Two common families of city model that yield emergent
boundaries help illustrate the ubiquity of emergent boundaries in our understanding
of cities. Schelling’s (1971) foundational model of segregation allowed simulated
agents with weak preferences for the type (e.g. race) of their neighbor to move
around a grid; the result was surprisingly complete segregation with a sharp bound-
ary dividing populations. This boundary was not predefined, but emerged as an
outcome of the iterated sorting by the residents.

Alternatively, economic models of neighborhood formation also allow for sharp
divisions of space to emerge from individual-level choices (e.g. Lucas and Rossi-
Hansberg (2002)). Agents make residential decisions based on a suite of factors,
including local amenities, distance to the urban center, and perhaps, endogenously,
other agents’ choices. Boundaries in such a model emerge, generally speaking, at
points in space where the type of agent who prefers the location switches from one
type to another. In these models, even smooth preferences create discrete bound-
aries at the point of the switch, and these boundaries do not preexist the agents.

These simplifying models have quite different sources of fine-scale boundaries–the
first is only endogenous to residential decisions, the second can rely on both exoge-
nous factors and endogenous preferences for neighbors–but both create boundaries
that do not rely on pre-defined lines. In this paper, I don’t rely on a specific model
as a source of emergent boundaries, but use data to identify the spatial boundaries
that both models are capable of yielding.

Let’s examine some real-world emergent ethnoracial boundaries. Consider Figure
1, which presents maps of the race and ethnicity of households for a section of
North Philadelphia in 2000 and 2010, aggregated to Census Blocks and Census
Tracts (ignoring the third row for the moment). Census blocks are generally equiv-
alent to a “city block”, and are the smallest unit at which Census data is publicly
available, serving as the unit from which tracts and my clusters are built. In the
map, blocks and tracts are colored as a weighted average of their ethnoracial house-
hold composition on the Red-Green-Blue (RGB) color scale. A block that was
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60% White households and 40% Black households, for example, would be shaded
with a mixture of 60% blue ((0, 0, 1) in RGB) and 40% green ((0, 1, 0)), yield-
ing the greenish-blue RGB of (0, 0.4, 0.6). In the map, the extreme segregation
of households is immediate clear. A large region of Black households sits in the
Northwest, a large region of Hispanic households in the Northeast, and regions of
White households sit in the South and East. These clusters sometimes span multiple
tracts and sometimes divide a single tract; they don’t align perfectly with the scale
and boundaries of tracts. The cluster boundaries are not particularly subtle; we
could ask people completely unfamiliar with Philadelphia to try to draw boundaries
using a pen and many of their lines would likely agree. Or we could use a cluster-
ing algorithm to group similar blocks together, creating those lines as the divisions
around the clusters.

[Figure 1 about here.]

Many types of neighborhoods at many scales operate at the same time, there is
no “correct” definition of neighborhood (Sampson et al., 2002; Hipp, 2007). Eth-
noracial clusters are not a “correct” definition of neighborhood, but instead cap-
ture strong spatial demographic patterns which overlay other definitions of neigh-
borhood, and define who lives in those neighborhoods. As such, these clusters
are essential for understanding neighborhoods and their change. As an example,
two particularly powerful forms of neighborhood are cognitive maps and physical
boundaries, and our understanding of each is complemented by ethnoracial clusters.
Cognitive map neighborhoods–a form of neighborhood studied by Hunter (1974)
and Hwang (2007)–are formed by the boundaries perceived by residents. Residents
may intuit the sharp ethnoracial boundaries and use them to inform their own cogni-
tive maps, limiting their daily activities within those lines. Neighborhoods can also
be defined by physical boundaries, such as a large street or a river. The importance
of these boundaries may be mediated the existence of a demographic boundary; if
a physical boundary isn’t matched by an emergent one, that may be evidence that
the physical boundary is less relevant in neighborhood structures. I do not test these
ideas in this paper, but they are plausible and merit further research.

A clearly important type of neighborhood is the political neighborhood, such as
school catchment area or police districtss. The movement of demographic bound-
aries will determine who lives within these other neighborhood boundaries; a school
catchment area with an ethnoracial boundary moving through it will experience
greater, though perhaps short-lived, diversity.

2.2 Moving boundaries

How do city populations change? Most analyses look at the changes within fixed
boundaries, such as changes in the ethnoracial proportions within each Census tract.
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However, if we allow for emergent boundaries, all of a sudden a new, unmeasured
dynamic of population change becomes possible. Emergent boundaries are not
fixed in space. As the inputs change–as spaces evolve, as residents’ preferences
shift, or as new populations arrive–the boundaries may move, causing the clusters
they define to grow or shrink.

A cluster-aware theory of neighborhood change would posit that tract-level mea-
sures mask an important spatial reality. With fixed boundaries, we have only one
means of population change: change in the internal composition of a unit (e.g.
tract), which is treated as uniform within the unit. If boundaries are not prede-
fined, however, there are two types of dynamics available: those internal mixture
changes and, additionally, boundary movement. Figure 2 presents toy examples of
a single tract experiencing the same tract-level changes by these two very different
dynamics. The first column shows a boundary that remains still through time, with
the internal composition of one cluster changing uniformly. The all-White clus-
ter becomes internally and uniformly more Black, and the tract average changes
accordingly. The second column now shows that demographic boundary moving
while each cluster’s internal demographic composition remains constant. The all-
Black cluster takes over blocks that previously belonged to the all-White cluster,
yielding the same green-ing of the tract average. Clusters can, of course, generally
exhibit both of these dynamics at once.

There is also a third way the tract proportions can change: by differential changes
in the number of households. If new household construction or a decline in vacancy
rates occurred disproportionately in the green cluster, then the tract would overall
be greener without either the boundary moving or the clusters’ colors themselves
changing, but simply because the blocks were weighted differently. This dynamic
will complement the other two in the decomposition I develop later.

[Figure 2 about here.]

Tract-level measurements often display smooth transitions in population, as the av-
eraged proportions change gradually. It is easy to read these models as the blocks
within those tracts experiencing similarly-smooth transitions. If boundary-shifting
is the active dynamic, this straightforward interpretation is wrong. Blocks don’t ex-
perience smooth transitions, but instead sharp ones as an emergent boundary passes
over them and they switch discretely from one type of block to another. What we
interpret as a gradual change within a tract is really two distinct types of blocks that
are being represented in different propotions as a boundary moves through.

Return to the maps in Figure 1. Consider the section of White households in the
Southeast of the map. Between 2000 and 2010, the block-level map shows that the
boundary has sharply shifted North and West; what had been a diverse mixture of
blocks is now almost entirely White. In the tract-level map, the tracts through which
the boundary moved are represented as having a smooth internal shift in ethnoracial
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proportions; they internally became somewhat more White, without the additional–
and readily visible at finer resolution–sense of the line moving within them. We
perceive diversity at the tract level which is really just due to a moving boundary
that is halfway through.

Just as emergent boundaries have long been present in neighborhoods literature,
so too has their movement. In a Schelling-style model, a simple change in the
population proportions would mean that the present clusters needed to expand or
contract. Economic models of spatial equilibrium might identify shifting conditions
or preferences, which would lead to different points of spatial equilibrium where
boundaries form. Predating both, Park and Burgess (1925) wrote of populations
“spilling over” their fixed boundaries. While their metaphor keeps boundaries in
place, their identified dynamic is compatible with the boundary of an emergent
cluster moving up to and beyond their drawn fixed boundaries. Much more recently,
Guerrieri et al. (2013) showed that poor census tracts next to wealthier tracts were
more likely to gentrify than those not neighboring wealthy tracts, a dynamic clearly
compatible with a model of gentrified clusters spreading across tract boundaries. Of
course, the real world is more complicated than these simplifying models; Massey
and Denton (1993) discuss the Great Migration of Southern Blacks to Northern
cities, in which landlords targetted blocks neighboring already all-Black blocks,
and exploited racial fears and the fear of falling housing prices to acquire and then
rent these properties, an active form of cluster expansion. I will not be able to
distinguish among these storylines in this paper, but each suggests a specific kind
of dynamics: blocks near a boundary exhibiting a discrete change from one type to
another, clusters growing and shrinking; not a smooth, uniform change in a tract’s
composition.

Why would correctly identifying emergent moving boundaries be important for un-
derstanding neighborhood change? First, it would illuminate exactly where in a
neighborhood the change happens. If boundary-shifting proves explanatory, then
we would expect most demographic change to occur at the edges of clusters, as
people move into or out of houses at the boundary, causing the observed clusters to
grow or shrink. Second, emergent boundaries complicate our ideas of what gentri-
fication means by disentangling two dynamics: how much of gentrification occurs
by smooth shifts in the racial composition of blocks and how much by wholesale,
discrete changes as a gentrified cluster spreads outward.2

2I use explicitly gentrification here both because it is an important topic in neighborhood change
and because I show later that gentrification was predominantly defined by boundary shifting in 2000-
2010, while increases in non-White households were not.
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3 Analytic strategy

The analysis for this paper consists of two parts. The first identifies ethnoracial
spatial clusters over time from block-level data. I develop a Bayesian model for
this task below. Having identified the clusters, the second examines the story they
tell us. It explores maps of moving boundaries, and then uses the given clusters to
decompose a city’s overall population change into differential construction, internal
changes in composition, and boundary-movements.

The key limiting factors in studying emergent neighborhood boundaries have been
methodological: (1) data availability and (2) computational power and techniques.
First, we need data at a fine-enough scale to identify nuanced spatial boundaries.
Such data is just now becoming easily available. This paper uses only block-level
household data, which has been provided by the U.S. Census since 2000, but future
research can and should exploit the large amounts of newly-available geocoded data
on crime, property attributes, and even cell phone movements.

The second limitation has been computational. A number of geographers have de-
veloped algorithms for identifying fine-scale contiguous neighborhoods in a single
time period, called “Regionalization” in the literature (Duque et al. (2007) provides
a comprehensive review, Spielman and Logan (2013) performed such an analysis
for specifically high-resolution ethnic neighborhoods in a single time period). Here,
I adapt the spatial distance-dependant Chinese Restaurant Process (ddCRP) (Blei
and Frazier, 2011; Ghosh et al., 2011) to a bayesian spatiotemporal model, which
I call the Space-Time CRP. Models using the ddCRP are very similar to the graph-
based spanning tree algorithms of Regionalization first proposed by Maravalle and
Simeone (1995), though the ddCRP was developed in the Machine Learning liter-
ature for Image Segmentation. I discuss this algorithm in the Methodology sec-
tion, but an important point here is that while I prefer this method for a number
of reasons, it does not behave fundamentally differently from any number of spa-
tial clustering algorithms proposed in the literature; the clusters that we are trying
to identify are not particularly subtle (as seen in Figure 1), and most reasonable
clustering algorithms will agree on the broad strokes.

One strength of the Space-Time CRP is that one does not need to specify the types
or number of types of neighborhoods, and the clusters identified are not expected
to be racially homogenous or even defined by the high presence of a single race.
The method clusters blocks that are close to each other with similar compositions,
but those blocks can be similarly diverse as well as similarly homogenous. For
example, in Philadelphia, the cluster including the University of Pennsylvania and
Drexel University was identified as 64% non-Hispanic White, 14% non-Hispanic
Black, 14% Asian, and 6% Hispanic. What’s important is that these proportions
are similar among the blocks, not that they are particularly high for one group or
another.
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For this paper, I measure only clusters of household ethnoracial distribution. I made
this decision in an attempt to keep the analysis–a new form of boundary with a new
method to identify them–relatively simple. Simplifying populations to only residen-
tial race and ethniticity is clearly flawed, and misses too many important aspects of
neighborhoods to enumerate here. However, because of America’s discouraging
correlations among race, income, education, social status, etc., identifying sharp
geographical boundaries in the patterns of household race and ethnicity will to a
first-order capture patterns in most of these other variables. More importantly, this
paper should be read as a purely descriptive analysis; I am simply observing how
ethnoracial populations have spatially changed, without any ability to discuss why.
That being said, I find that this overly-simple characterization still illuminates a
stark process with important implications.

4 Methodology

4.1 Generative Model

The first challenge of the project, and a main contribution of this paper, is to develop
an algorithm for identifying contiguous clusters of blocks across space and time. I
develop a Bayesian method which samples cluster assignments using the Space-
Time CRP, a spatiotemporal case of the ddCRP with some modifications.

The intuition in the full generative model is that blocks belong to clusters, and those
clusters have an internal distribution of household race and ethnicity (p). Blocks
can belong to different clusters in different times; in a given time, they draw their
observed households from the distribution of the appropriate cluster. The clusters’
traits themselves can vary over time, so that a cluster’s proportions are correlated
across time but not fixed. Thus, the model allows blocks’ own proportions to change
through time by either the traits of its cluster changing, or by the block switching
clusters.

Let there be N blocks in T time periods. For block i in time t we observe an R-
length vector of data Xit. In this paper, Xit is a vector of household counts in each
of 8 Census ethnoracial groups (Non-Hispanic of each White, Black, Native Amer-
ican or Alaska Native, Asian, Native Hawaiian or Pacific Islander, Other, Two or
More Races; and Hispanic of any race). Each block-time has a cluster membership,
zit, which determines the distribution from which Xit is drawn: a block in cluster
z at time t draws its data from a multinomial distribution with probability vector
pzt, considering the number of households on the block, nit, fixed. To sample pzt,
I model it as a logistic normal distribution, parametrized by γztr; these γ are corre-
lated over time, allowing for inertia in clusters’ compositions. The full data model
is:
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• Hyperparameters:

– ρ ∼ Beta(90, 10).

– σ0, σ1 ∼ LogNormal(0, 1).

• For all blocks and times:

– z1:N,1:T ∼ Space-Time CRP(α, ρ,G).

• For each cluster z and race r:

– γz,t=0,r ∼ N(0, σ2
0).

– γz,t>0,r ∼ N(γz,t−1,r, σ
2
1).

– pztr = exp{γztr}/
∑

r′ exp{γztr′}.

• For each block i and time t:

– Xit,1:R ∼Multinomial(pzit,t,1:R, nit).

I’ll consider the Space-Time CRP in a moment. This model provides the joint
probability, dropping subscripts,

p(z, γ,X, ρ, σ0, σ1|α,G) = p(X|z, γ, n) p(z|α, ρ,G) p(γ|σ0, σ1) p(ρ, σ0, σ1).

Notice that γ perfectly defines p.

Blocks in the same cluster have similar X because they were drawn from the same
multinomial distribution; if a block’s observed population is too unlikely to draw
from that distribution, it will be assigned to a different cluster.

An important benefit of using the generative model is that it is straightforward to
transparently incorporate new data. We might, for example, add a block-level obser-
vation in addition to X . This could be age or household size data from the Census,
or even non-Census data geocoded to blocks, such crime, income, or business data.
Adding in a level of observations here would require multiplying new terms to the
full conditional probability, but could be relatively simple with well-chosen distri-
butions. Adding in new data would allow for identification of new boundaries in
areas where ethnoracial composition was the same but where there was, for exam-
ple, a boundary between younger households and older households, or a boundary
between regions of higher crime rates and lower crime rates.

4.2 The Space-Time CRP

Modeling cluster assignments zit relies on the Space-Time CRP, which itself is a
modified case of the ddCRP. The ddCRP is a distribution over partitions which

9



models clusters by maintaining a network among blocks; disconnected components
of the network are labeled as separate clusters.

First, let’s develop the ddCRP in a single time period. Figure 3 illustrates a sample
realization as a guide. To generate the ddCRP, each block i chooses another block
as an assignment, labeled ci. These assignments are represented as arrows pointing
from block i to block ci in the figure (for example, c4 = 7 would mean that an arrow
points from Block 4 to Block 7, though indices are not labeled in the figure). For this
paper, the probability of block i choosing ci is simply the neighbor function: blocks
can connect to only their neighbors or themselves. The full network of assignments
form a directed graph. Disconnected components in the graph are the clusters, and
we label the cluster assignment of block i as zi. In the figure, the blocks shaded red
form one component of the network, the blocks shaded blue another; these are our
clusters, with perhaps all red blocks having zi = 1 and all blue blocks zi = 2 (the
exact choice of labels for the clusters are interchangeable).

[Figure 3 about here.]

Though the model is typically conceived in a single time period, we can easily ex-
tend it to a multiple-time-period situation by treating time as a third spatial dimen-
sion. Now let there be T time periods, labeled 1 to T . We layer the time periods, as
depicted in the second row of Figure 3 for T = 2. In addition to its neighbors in its
own time period, each block in time period t > 1 can also connect to itself in the
previous time period, t− 1. The two-dimensional single-time map thus becomes a
three-dimensional multiple-time-period map, but the algorithm doesn’t change; all
the general ddCRP requires is a neighbor graph and a distance metric. The clusters
are fit through space-time, eliminating the need to “match” clusters across time.
Notice, in the figure, that two blocks have changed from the red cluster to the blue
cluster between time periods.

We sample cluster assignments by reconnecting a given cit. Let G be the neighbor
graph of the block polygons (not the ddCRP graph, but the full graph with each
block i connected to each of its neighbors). In this multiple time period model, I
assign the probability of block i in time t connecting to block j in time t′ (written
as cit = (j, t′)) as

p(cit = (j, t′)|c−it, α,G, ρ) ∝ pρ(z(c); ρ)× pcomp(z(c);α)× (1)
1, i = j, t′ = t
1, i = j, t′ = t− 1
1, i ∼ j, t′ = t
0, otherwise

, (2)

where c−it is the set of c with cit removed, z(c) is the z assignments implied by
the c network of c−it with the potential cit added. i ∼ j symbolizes that blocks i
and j are neighbors in G. The Space-Time CRP departs from the original ddCRP,
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besides the space-time layering, by the first two terms: the probability depends
on the properties of the clusters produced, through an inertia component pρ, and a
compactness component pcomp.

The inertia likelihood component, pρ(z; ρ), contributes a probability ρ that blocks
will keep the same cluster assignment in consecutive time periods. I treat blocks’
staying in the same cluster as a binomial distribution:

pρ(z; ρ) =
∏
t>0

(
N

St

)
ρSt(1− ρ)N−St

with St =
∑

i δzi,t−1,zi,t simply the number of blocks that have the same cluster
assignment in time t as in time t − 1. Here, δz,z′ is the Kronecker delta, which
equals 1 if z = z′ and 0 otherwise.

The compactness component, pcomp(z;α), models the compactness and number of
the resulting clusters. It contributes an exponential likelihood penalty of

pcomp(z;α) = α ∧

{
1

4π

∑
z′,t

Bound(z′, t)2/Area(z′, t)

}
,

where Bound(z′, t) is the boundary of cluster z′ (in km) in time period t, and
Area(z, t) the area (in km2). The normalization 4π means that the creation of
a new circle cluster contributes a log-likelihood penalty of − ln(α); less compact
clusters will penalize more.3 This compactness penalty is relatively weak, and its
purpose is not so much to encourage circular clusters as to prevent “dumbbell”
clusters that stretch across the city, which both aren’t substantively meaningful and
harm the model’s mixing.

I will somewhat interchangeably use the language "change in blocks’ cluster as-
signment z" and "boundary-shifting"; they are the same process perceived from
different scales. What I explicitly estimate are changes in each block’s cluster as-
signment, a block-level perspective. At a macro level, however, contiguous clusters
of blocks define cluster boundaries as the lines dividing regions of different as-
signments (for example, between the red and blue blocks in Figure 3). A block
switching clusters between time periods would appear on the map as the boundary
between clusters moving through space, from one side of the block to the other.

4.3 Sampling from the Model

I identify cluster assignments and cluster ethnoracial proportions by sampling from
the posterior, p(c, p, ρ, σ0, σ1|X,α,G), using a Gibbs Sampling step for c and Metropo-
lis Hastings step for the other parameters, explained in Appendix A. I marginalize
out γ for a given p. Remember that c perfectly determines z.

3I use this parametrization to keep results generally in-line with the original ddCRP, in which
new clusters contributed ln(α) to the log-likelihood.
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4.4 Decomposing Spatial Population Change

Once we’ve fit the model above to sample z and p, we can use the results to de-
compose the city’s popultion change. A powerful feature of the model above, and
the core idea of this paper, is that a block’s ethnoracial household distribution can
change in three ways: (1) by the internal composition of its cluster (pzt,1:R) changing
over time, (2) by its own cluster membership (zit) changing (boundary movement),
and (3) by its number of households nit changing. Substantively, I’m interested in
the first two, but the third is necessary to complete the accounting decomposition.
This section develops a decomposition of the total population change of a city into
these components.

Consider the following equation for the proportion of households of each ethnora-
cial group, conditional on z1:N,1:T :

Xtot,tr

ntot,t
=
∑
i

∑
z

nit
ntot,t

δz,zitpztr,

in which the index i being replaced with tot symbolizes the sum over all blocks,
and δz,zit is the Kronecker delta function which is 1 if zit = z and 0 elsewhere. This
equation simply multiplies a block’s number of households by the correct cluster’s
ethnoracial proportions (δz,zit will be zero for all of the clusters to which block
i is not assigned). If we take p from the posterior of the clustering model, this
is approximate (interpreted as the expected value of the number of households we
would draw, conditional on pztr); if we use p as the observed proportions conditional
on z, so that pztr =

∑
i|zit=zXitr/

∑
i|zit=z nit, then this is an accounting identity. I

will use the latter; in practice the variance of the posterior of p conditional on z is
tiny and the difference between the results of the two are negligible.

With this equation, the change in the population proportions between time t1 and t2
can be written as

Xtot,rt2

ntot,t2
− Xtot,rt1

ntot,t1
=
∑
i

∑
z

((
δz,zit2pzt2r + δz,zit1pzt1r

2

)(
nit2
ntot,t2

− nit1
ntot,t1

)
︸ ︷︷ ︸

D
(n)
r,iz

+

n̄iδ̄zi(pzt2r − pzt1r)︸ ︷︷ ︸
D

(p)
r,iz

+ n̄ip̄zr(δz,zit2 − δz,zit1 )︸ ︷︷ ︸
D

(z)
r,iz

)

(3)

where n̄i = 1
2
(
nit1

ntot,t1
+

nit2

ntot,t2
), p̄zr = 1

2
(pzt1r+pzt2r), and δ̄zi = 1

2
(δz,zit1+δz,zit2 ) . We

can calculate the sum of each of the addends separately, yielding the decomposition

Xtot,rt2

ntot,t2
− Xtot,rt1

ntot,t1
= D(n)

r +D(p)
r +D(z)

r .
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D
(n)
r is the change in the city proportion of households of race r due to differen-

tial changes in the blocks’ numbers of households, at the average racial proportions
of each block’s cluster(s). Suppose we allowed block-level construction and va-
cancy rates to proceed without changing ethnoracial proportions at all (holding p
and z fixed). Differential changes in numbers of households among blocks could
by themselves cause the city-wide proportions to change. For example, in Philadel-
phia from 2000-2010, more construction and a larger drop in vacancy rates occured
in predominantly-White blocks. Without any changes in block-level proportions,
these relative changes would imply a more-White city.

D
(p)
r is the change in city proportions due to clusters’ changing ethnoracial com-

positions, evaluated at each block’s time-averaged number of households and its
“average” cluster membership (for blocks that change clusters, δ̄zi = 0.5 for each
of the z they assume). This supposes we fixed the number of households and didn’t
allow the cluster boundaries to move, but only allowed the internal ethnoracial pro-
portions of clusters to change. This component is illustrated by the internal, uniform
changes in colors in clusters or tracts.

D
(z)
r is the change in city proportions due to changing cluster membership, evalu-

ated at each block’s average number of households and each cluster’s time-averaged
ethnoracial composition p̄. Suppose we fixed the number of households in each
block as well as the internal ethnoracial proportions of demographic clusters. The
only way blocks could change their composition would be by changing cluster as-
signment, having the cluster boundaries move around. This component captures the
extent of that dynamic, and is the new feature that I claim is important. Fixed tracts
assume this to be zero.

Together, these three components completely describe the ways population can
change in this model, with one entirely new component (D(z)

r ) that fixed-boundary
analyses do not allow.

5 Results

I have divided discussion of the results into three sections. The first explores the
clusters produced by the model to assess how the model and its clusters behave. The
second uses those clustering assignments to understand substantively how popula-
tions changed, and the importance of boundary movement, in Philadelphia. The
final section briefly replicates the analysis for the central cities of the largest 100
MSAs in the United States.

I fit all models using Java, using the network package JGraphtT (Naveh and Con-
tributors, 2011). All data preparation used R, relying heavily on the rgeos (Bi-
vand and Rundel, 2013), reshape2 (Wickham, 2007), spdep (Bivand, 2013), and
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dplyr (Wickham and Francois, 2014) packages; and GRASS (GRASS Develop-
ment Team, 2012), accessed via spgrass6 (Roger Bivand and Neteler, 2014). I
created the plots and maps using ggplot2 (Wickham, 2009) and ggmap (Kahle and
Wickham, 2013), with base maps provided by Stamen (Stamen Design, 2014) using
OpenStreetMap (Haklay and Weber, 2008) data.

5.1 Model Settings

I fit the Space-Time CRP model for the city of Philadelphia using block-level U.S.
Census data from 2000 and 2010 for household race and ethnicity (United States
Census Bureau, 2012) and block polygons from TIGER/Line shapefiles (United
States Census Bureau, 2013). I translated blocks in 2000 to blocks in 2010 using
the Census crosswalk, distributing households proportionally to area (changes in
block definitions during the data were not substantial). I measure only the City of
Philadelphia (defined as the Census Place, which is the county) and not the full
MSA. This is an attempt to better target emergent boundaries which occur within
political entities, and to not simply have the measured boundaries identify fixed
municipal boundaries (which are likely very strong, but are not in the scope of
this paper). While I fit the clustering model using eight ethnoracial groups, in my
discussion I’ll use the five ethnoracial categories non-Hispanic White, non-Hispanic
Black, non-Hispanic Asian, Hispanic, and total other (I drop “non-Hispanic” from
the names of the first three for the rest of the paper).

I fit the model using six chains of the Gibbs sampler for each of eight values of the
parameter α, with α = exp{−50,−100,−200,−400,−1000,−2000,−4000,−8000}.
Remember, α is intuitively a likelihood penalty on new clusters, with smaller val-
ues of α (more negative exponents) imposing a stronger penalty and thus yielding
fewer clusters; I chose these values to provide a wide range of cluster sizes, from
clearly-too-small to clearly-too-large. I present results for α = exp{−1000}, with
results for other values of α and a discussion of why α = exp{−1000} appears
to be a characteristic scale left for Appendix B. This value of α corresponds to
quite large clusters; Philadelphia’s population change between 2000 and 2010 can
be well-described as tectonic shifts in population.

The results present 300 samples from each of 6 chains of the Gibbs sampler, yield-
ing 1800 sample cluster assignments from the posterior for each α. Every value
presented has a Gelman-Rubin statistic (Gelman and Rubin, 1992) less than 1.2,
supporting convergence.

5.2 Philadelphia’s Clusters

Philadelphia is in many ways a typical large northern U.S. city, experiencing Black
hypersegration amid extensive White flight up to the 1980’s (Massey and Denton,
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1993), then some small regions of gentrification beginning in the 1990’s (Hack-
worth, 2007). While the public discourse has recently focused on gentrification, the
city as a whole saw a decrease in the proportion of householders that were non-
Hispanic White (from 47.9% in 2000 to 42.6% in 2010), and an increase in the
proportions Hispanic (6.4% to 9.3%), Asian (3.6% to 5.2%), and Black (40.3% to
41.0%).4 How did this change occur? Did every cluster become more Hispanic,
Asian, and Black? Or did the clusters keep their initial compositions and simply
grow and shrink spatially to accomodate the changing populations?

The third row of Figure 1 maps a single realization of cluster assignments. As for
the maps before, clusters are shaded using a weighted average on the RGB scale.

There are two strong trends that the cluster reveal; one a boundary movement and
one a change in ethnoracial composition. First, notice that the White cluster in the
South expanded, taking over blocks that had been Black. In the western part of
the map, the boundary moved north by a few blocks; in the easterern section, the
boundary moved West. The second noticeable trend is that the Hispanic cluster in
the Northeast became more Hispanic (more orange). In 2000, this cluster was 47%
Hispanic, 25% White, 21% Black, and 5% Asian; in 2010 it was 59% Hispanic,
11% White, 24% Black, and 5% Asian.

Figure 4 presents a map of clustering results for the whole city. This sample identi-
fied 12 clusters; the full results at this scale produced a mean of 12.3 clusters with
95% of the samples in [10,15]. This map gives a sense of the sheer size of the clus-
ters. First, notice how much inertia the clusters have; both the boundaries and the
internal compositions seem to stay the same more than they change. However, trac-
ing the lines carefully will find boundaries that did move nontrivially; the extension
Westward of the White cluster in the center of the city (by the label “Philadelphia”),
for example, is the much-publicized gentrification of University City.

[Figure 4 about here.]

5.2.1 Moving Boundaries

Let’s quantify boundary movements. Again, I present results for α = exp{−1000};
the results are generally robust across scales, though with stronger evidence of
boundary movement at the larger scales. Appendix C presents decomposition re-
sults for all of the values of α in the previous section.

The population change was not gradual at the block level. It was extreme. Figure 5
shows the proportions of each race for blocks in 2000 and 2010; points below the

4It is worth noting that White households make up a larger proportion of Philadelphia’s house-
holds than the White population does of the total population, as White households are on average
smaller than non-White households.
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45-degree line saw proportionate declines in the respective race, points above the
line saw increases. What stands out is the enormous variance in the plots. White
and Black proportions often changed dramatically, particularly for blocks that were
diverse in 2000 (in the middle of the plots). It was not uncommon for a block that
was 50% White in 2000 to be 20% White in 2010. These sharp leaps in blocks’
proportions, while possible in a model with fixed boundaries if the internal compo-
sitions changed sharply enough, would be a hallmark of boundary-shifting. Blocks
would change dichotomously when a boundary passed over them, differing from the
more gradual tract- and city-level trends. Interestingly, Hispanic and Asian propor-
tions seemed to increase more gradually and consistently across blocks, suggesting
a systematic increase across the city rather than sharp, dichotomous switches.

[Figure 5 about here.]

The cluster results tell a similarly extreme story. From 2000 to 2010, 6.0% of
Philadelphia blocks, representing 6.6% of all households, changed cluster assign-
ments. Given that these are large-scale clusters which have strong boundaries,
changing clusters means changing between two very different racial compositions.

Are certain types of clusters–for example, more-Hispanic clusters–growing and oth-
ers shrinking, leading to the overall city trends? Figure 6A presents the clusters’
proportionate growth (defined as the change in the number of blocks divided by the
average number of blocks: nbz2−nbz1

n̄bz
) versus each 2000 ethnoracial proportion for

a single realization of the clusters. The fitted lines are from a regression weighted
by the clusters’ average number of households, n̄bz; each regression was run sep-
arately, so the White regression, for example, does not control for the proportion
Black in the cluster. The White clusters grew, with a mean coefficient across all
samples of 0.12 (the 2.5-97.5 credible interval is (0.04, 0.23)); this means that a
cluster that had a proportion White 10 percentage points higher grew at a rate 1.2
percentage points higher. Black clusters shrank, with a mean coefficient of -0.10,
(-0.22, -0.05). Asian clusters grew sharply in this sample, but there was large vari-
ance across samples due to their low representation, with a mean of 0.52 (-0.88,
1.94). Hispanic clusters didn’t display a tendency to grow or shrink, with a mean
of -0.07 (-0.55, 0.31); notice that the single highly-hispanic cluster exhibits strong
leverage.

[Figure 6 about here.]

5.2.2 Changing Internal Composition

How could the Black population have grown and the White population shrunk from
2000 to 2010 if the clusters with more Black people are shrinking, and the clusters
with more White people are expanding? And how could the Hispanic population
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display such growth if clusters wth more Hispanic people are not themselves grow-
ing? The answer is that clusters are becoming internally more Black and Hispanic
and less White. Figure 6B plots the ethnoracial proportions for clusters in 2000
and 2010 for the same cluster results; points below the 45-degree line experienced
a drop in that race’s proportion, points above an increase. Almost all of the clusters
fall below the line in the White facet, and above the line in the Black, Asian, and
Hispanic facets. Clusters became internally less White and more Black, Asian and
Hispanic across the board.

5.3 Decomposing Spatial Population Change

The decomposition presented in Eq. 3 disentangles the competing boundary and in-
ternal composition effects in terms of their impact on the city population as a whole.
Figure 7 displays decomposition results for the entire city for each race/ethnicity,
comparing the clusters with tracts (these results are, again, for α = exp{−1000},
the results for all values of α are presented in Appendix C). The y-axis is the value
of the component, which represents the change in the city-wide proportion of a
given race/ethnicity due to the given dynamic; for example, a value of -0.01 for
D

(z)
wht means that the city-wide proportion White decreased by 1 percentage point

due to boundaries moving. The first column, dXtot, shows the overall proportion-
ate change in household races/ethnicities. These are, by the accounting definition,
the same for every α and for tracts. The proportion of households that were White
fell 5.4 percentage points, while Hispanic households led the other groups with an
increase of 2.8 percentage points. The second column plots D(n), the component
representing changes in blocks’ numbers of households. Increases in households
predominantly occured in clusters/tracts that were already White and decreases in
units that were Black; if we were to only allow the number of households on each
block to change as observed, we would have a 0.6 percentage point increase in
the city’s proportion White, and a 0.8 percentage point decrease in the proportion
Black. Asian and Hispanic proportions would have increased slightly. These results
are similar for clusters and tracts.

[Figure 7 about here.]

The city-wide trends were produced mostly by changes in clusters’ internal compo-
sitions. The third column presents D(p), the change in population due to allowing
only the clusters’ (or tracts’) internal ethnoracial compositions to change as ob-
served. This produces an average 7.5 percentage point drop in the White popula-
tion (greater that what we actually observed), and a 3.0 percentage point increase in
Black population, 2.9 increase in Hispanic, and 1.4 increase in Asian. The values
for cluster assignments are not different from the values for tract-level measures ex-
cept for Black households; the tract measures assigned only a 1.6 percentage point
growth to internal mixing.
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The movement of boundaries worked in the exact opposite direction. The fourth
column plots D(z), the change in population that would have occurred had only the
cluster assignments changed (and the boundaries moved). Tract measures assume
that boundaries don’t move, fixingD(z) at zero. We saw before, however, that White
clusters did tend to grow; here, D(z) contributes a city-wide 1.5 percentage point
increase in the proportion White. Conversely, boundary movements caused a 1.5
percentage point decrease in the proportion Black. We don’t see large effects for
Hispanic or Asian; boundary movements across the city simply didn’t impact these
populations in a consistent way.

It appears that the boundary movements occured dominantly in the growth of White
clusters. To further explore this, let’s examine separately the blocks that increased
in White proportion, and those that decreased. Figure 8 shows the decomposition
when we limit our analysis to only the blocks that increased in proportion White
(N = 3,829). To accomplish this, in Eq. 3, I change the sum over i to include
only those i which experienced an increase in White population, and recalculate
ntot only among these blocks. I define dXtot as the sum of the three components;
the accounting identity no longer holds because some clusters will have blocks that
both increased and decreased in proportion White, and are thus included in differ-
ent summations. Furthermore dXtot is no longer the observed changes among the
blocks because pwill tend to smooth the population changes in clusters where some
blocks increased and some decreased. However, we can recover the full decompo-
sition using a household-weighted sum of the increasingly-White and increasingly-
non-White decompositions.

The increasingly-White blocks experienced a 4.5 percentage point increase in pro-
portion White using tract proportions, which was smoothed out to an average 1.2
percentage point increase by the clusters. Notably, however, more than all of that
increase in White population comes from boundary movement; the internal com-
position changes would suggest a decrease in the White population. The compo-
nent D(z) reveals that boundary movements were responsible for a 4.4 percentage
point increase in the proportion White, and a 5.0 percentage point decrease in the
proportion Black. These blocks actually initially belonged to clusters that would
experience drops in White proportion (D(p) is negative for White), but their White
proportions increased because they switched to Whiter clusters. Tracts have the
opposite sign for D(p) of White; the tract-level measure says that White blocks
changed because the tracts they belonged to were internally becoming Whiter. It
has completely misattributed the change because it didn’t realize a boundary was
moving through the tracts. Notice that boundary shifting explained very little of the
Asian and Hispanic changes; for both tracts and clusters those proportions changed
mostly due to D(p).

[Figure 8 about here.]
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While moving boundaries defined the dynamic among blocks that became Whiter,
the blocks that became less White were driven exclusively by their clusters’ chang-
ing compositions. Figure 9 shows the decomposition for these blocks (N = 7,413).
The cluster measures are almost indistinguishable from the tract measures; these
blocks belonged to clusters that became more Black, Asian, and Hispanic, and
boundary movements had a net zero effect on these blocks.

[Figure 9 about here.]

5.4 National Analysis

These results are forthcoming.

6 Discussion and Implications

Decomposing the spatial change in the emergent demographic clusters in Philadelphia–
and then the 100 largest cities in America–reveals a dynamic that hasn’t been mea-
sured before: the movement of boundaries represents a substantial piece of neigh-
borhood change. Boundary-shifting is particularly responsible for changes among
blocks that increased in proportions White. Gentrification specifically, then, is oc-
curing by an existing population spreading into neighboring regions. Rather than
gradual changes in mixing, boundary movement’s component of change occurs by
blocks along demographic boundaries switching sharply from one cluster to an-
other. What does this distinction imply for theories of neighborhood change? A
number of new questions are raised.

First, do other neighborhood definitions and neighborhood ecologies correlate to
these emergent demographic boundaries? Those relationships, if they exist, could
be causal or not: neighborhoods could be established with these demographic bound-
aries in mind (either explicitly or implicitly), or boundaries could be an outcome of
residential sorting within other neighborhoods.

As a specific example, do these demographic boundaries structure the everyday ex-
periences of residents? If residents are using these emergent boundaries to constrain
their daily activities and social interactions, then when neighborhoods changed by
boundaries moving, residents would expand or shrink the space within which they
operate accordingly. In the extreme case where these boundaries completely bound
movements, neighborhood change that occurred by moving boundaries would lead
to exactly zero new mixing of populations; residents would simply reshape their
activities to continue to operate within the same cluster. Neighborhood change via
changes in cluster composition would not have this effect.
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In fact, there is previous research that suggests that emergent boundaries do impact
residents’ cognitive maps. Hwang (2007) studied perceived neighborhood bound-
aries in a gentrifying neighborhood in South Philadelphia for a time in between
these two maps. Hwang found that White residents’ boundaries were based on
housing values and perceived crime, while Black residents more often used physi-
cal landmarks or natural boundaries. It seems that the White residents were creating
boundaries based on ecological feel of the neighborhood and their activity space.
We don’t have the exact household-level data in 2007 to corroborate, but a naive
guess is that their perceived boundaries might align with the blocks that had al-
ready gentrified, and that these fine-scale ethnoracial boundaries were constraining
their neighborhood defintions. This difference could also explain why gentrification
is more dependent on boundary-shifting than other ethnoracial change.

How does boundary movement compare among American cities? Hackworth (2007)
argues that neoliberalism and access to financial markets has changed the nature
of gentrification, with Philadelphia relatively early in adopting strategies to attract
large-scale financing. Particularly because boundary shifting appears to have its
strongest effect in the process of gentrification, we might expect cities in different
parts of the country, with different changes in demographics and different access to
financial markets, to experience very different types of boundary shifting. Future
research should explore the determinants of differences in boundary shifting among
cities.

This paper simply measures where the boundaries moved; it leaves open why. What
are the determinants of a boundary moving? What other spatial variables either
precede or follow their movement? Bringing in other fine-scale variables–be they
economic data, business data, crime data, or other variables that are structured at the
“neighborhood”-level–as both an input into the identification of boundaries and as
correlates of boundaries’ moving would help us better understand why boundaries
move.

Boundary moving exists and represents an important and distinct component of
population change; once we’ve accepted this, many questions about its specific
impact need to be explored.
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A The Gibbs Sampler

To fit the model in Section 4.1, I use a Gibbs Sampler to iteratively sample each ci,
with γ marginalized. I use a Metropolis Hastings step to sample σ0, σ1, and a Gibbs
step for ρ. Once we’ve sampled c, which defines z, it is straightforward to calculate
the posterior p(γ|X, z(c),Σ).
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A.1 Sampling ci

First, let’s calculate p(c|X,α, ρ,G, σ2
0, σ

2
1), in which I’ve suppressed the subscripts

for readability and have marginalized out γ. Note that c perfectly defines cluster
membership z and γ perfectly defines p (I will denote the z defined by a given c
as z(c) and the p defined by γ as pγ). For each set of c, we can then calculate
p(p|c,X, σ2

0, σ
2
1). The conditional distribution is

p(c|X,α, ρ,G, σ2
0, σ

2
1) =

∫
γ

p(c,X, γ|α,G, σ2
0, σ

2
1, ρ)

p(X|α,G, σ2
0, σ

2
1, ρ)

dγ

=
p(c|α,G, ρ)

p(X|α,G, ρ, σ2
0, σ

2
1)

∫
γ

p(X|pγ, z(c))p(γ|σ2
0, σ

2
1)dγ. (4)

The numerator is given by Eq. 2. The denominator p(X|...) is intractable–it requires
summing over all possible combinations of c–so we turn to Gibbs Sampling. This
sampler iterates through each individual cit, sampling from it’s current distribution
conditional on the current values of all other c, which I denote as c−it.

Let’s simplify the integral. Notice that the full γz,1:T,r is distributed as a multivariate
normal with mean 0. The variance of a given γztr is σ2

0 + tσ2
1 and the covariance

between γzt1r and γzt2r is σ2
0 +min(t1−1, t2−1)σ2

1 , yielding the T ×T covariance
matrix ΣT for γz,1:T,r :

ΣT =


σ2

0 σ2
0 σ2

0 ...
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0 σ2
0 + σ2

1 σ2
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1 ...
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1 ...
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...

 .

Writing γz as a TR-length stacked vector with r varying fastest, γz = (γz,1,1,
γz,1,2,...,γz,1,R,γz,2,1,...,γz,T,R), we can write the covariance matrix as ΣTR = ΣT ⊗
IR, with ⊗ the Kronecker product and IR the R × R identity matrix. We can sim-
ilarly stack the γz to form the ZTR-length vector γ, which is similarly distributed
with p(γ|z,ΣZTR) a multivariate normal with mean 0 and covariance ΣZTR =
IZ ⊗ ΣT ⊗ IR.

Turning to the first multiplicand in the integral of Eq. 4, X is multinomial, which
means that

p(X|pγ, z,ΣT ) =
∏
t,z

∏
i|zit=z

nit!

Xit1! · · ·XitR!
pXit1
zt1 · · · p

XitR
ztR

=
∏
t,z

∏
i|zit=z

nit!

Xit1! · · ·XitR!
exp

{
γzt1Xit1 + · · ·+ γztRXitR − nit log

∑
r

exp{γztr}

}

=

(∏
it

nit!

Xit1! · · ·XitR!

)
exp

{
γ′X(z) −

∑
zt

nzt log
∑
r

exp{γztr}

}
,
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whereX(z) is aZTR-length vector constructed similarly to γ, andX(z)
ztr =

∑
i|zit=zXitr

is the blocks’ X aggregated to their respective clusters.

Including p(γ), the full integral in Eq. 4 becomes∫
γ

p(X|γ, z,ΣT )p(γ|z,ΣT )dγ =

(∏
it

nit!

Xit1! · · ·XitR!

)
(2π)−ZRT/2|ΣT |−ZR/2×∫

γ

exp

{
−1

2
γ′Σ−1

ZTRγ + γ′X(z) −
∑
zt

nzt log
∑
r

exp{γztr}

}
dγ.

(5)

This is again not tractable, but can be approximated with its own multivariate nor-
mal distribution. Approximate the term in the exponent with a quadratic expansion:

f(γ) = −1

2
γ′Σ−1

ZTRγ + γ′X(z) −
∑
zt

nzt log
∑
r

exp{γztr}

≈ f(γ̂) + J ′γ̂(γ − γ̂) +
1

2
(γ − γ̂)′Hγ̂(γ − γ̂)

= f(γ̂)− 1

2
J ′γ̂H

−1
γ̂ Jγ̂ +

1

2
(γ − γ̂ +H−1

γ̂ Jγ̂)
′Hγ̂(γ − γ̂ +H−1

γ̂ Jγ̂). (6)

where γ̂ is the point about which we are approximating and Jγ̂ and Hγ̂ are the
Jacobian and Hessian of f evaluated at γ̂, respectively. The last step illustrates that
this exponent is simply a constant term plus an unnormalized multivariate normal
term with covariance−H−1

γ̂ and mean γ̂−H−1
γ̂ Jγ̂ . We can optimize γ̂ to maximize

f , strengthening this approximation.

With Eq. 6, we can calculate the normalization factor of the implied multivariate
normal, and the integral is thus tractable:∫

exp {f(γ)} dγ ≈ exp

{
f(γ̂)− 1

2
J ′γ̂H

−1
γ̂ Jγ̂

}
× (2π)ZRT/2| −Hγ̂T |−1/2

which yields the full integral in Eq. 5 as∫
γ

p(X|γ, z,Σ)p(γ|z,Σ)dγ ≈
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it

nit!

Xit1! · · ·XitR!

)
×

exp

{
f(γ̂(z,ΣT ))− 1

2
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−1
γ̂(z,ΣT )Jγ̂(z,ΣT )

}
×

| −Hγ̂(z,ΣT )|−1/2|ΣT |−ZR/2

where I’ve added the parentheses to γ̂ to emphasize that it depends on z and ΣT .
Combining these results and dropping terms that are constant with respect to z, we
get the convenient approximation:

p(c|X,α,G, ρ,Σ) ∝∼ p(c|α,G, ρ) · exp
{
f(γ̂(z(c),ΣT ))− 1

2
J ′γ̂H

−1
γ̂ Jγ̂

}
×

| −Hγ̂(z(c),ΣT )|−1/2|ΣT |−ZR/2.
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The complete conditional for cit is, finally,

p(cit|c−it, X, α,G, ρ, σ2
0, σ

2
1) ∝∼ p(cit|c−it, α,G, ρ) · exp

{
f(γ̂(z(c),ΣT ))− 1

2
J ′γ̂H

−1
γ̂ Jγ̂

}
×

| −Hγ̂(z(c),ΣT )|−1/2|ΣT |−ZR/2, (7)

with the first term the ddCRP distribution given in Eq. 2. At each step, you can
optimize for γ̂.

The Gibbs Sampler proceeds by deleting a given cit, calculating the clusters that
would be produced by every possible connection (all of the block’s neighbors, and
itself in this time period and the previous one), calculating the approximation in Eq.
7 for every possible connection, and sampling cit with those probabilities.

A.2 The posterior of γ

Once we have sampled a set of c with γ marginalized out, we can calculate the
posterior distribution of γ (which itself yields the more intuitive p) as

p(γ|X, z(c),Σ) =
p(X|γ, z(c))p(γ|z(c))

p(X|z(c))

∝exp{f(γ;X, z(c))},

in which f is the function defined in Eq. 6, with dependence on X and z made
explicit. In this paper, the clusters are broad enough that X is large, meaning this
distribution sharply peaks at the family γzrt = log(X

(z)
zrt)− log(nzt) +C, so that the

distribution of pγ collapses to the observed proportions. For that reason, I simply
use the observed proportions of each cluster; this also makes the decomposition
in Section 4.4 an accounting rule rather than the clunkier “expected value of the
posterior distribution of the decomposition”.

B Clustering Results at Other Scales

The results presented in this paper focus on the scale of α = exp{−1000}. Here, I
discuss the choice of that scale and what the clusters look like at other scales, each
of α = exp{−50,−100,−200,−400,−1000,−2000,−4000,−8000}.

First, let’s consider the size of these clusters. Figure A1 presents the number of
clusters identified for each scale. With 18,872 blocks, the cluster sizes range from
18,872/5.5 = 3,431 blocks for α = exp{−8000} to 18,872/104 = 181 blocks for
α = exp{−50}.

[Figure A1 about here.]
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Given the different cluster sizes, the results vary in the types of boundaries they
identify and how those clusters smooth the differences among blocks. Figure A2
presents the map of North Philadelphia clustered at different scales. Notice that for
α = {−200}, the gentrified region of White blocks appears in the center of the map
(at Temple University). This region was too small to be represented at larger scale.
The boundaries at the small scales are somewhat weaker, in that they divide clusters
that are less different; the single Black region at larger scales was divided into two
regions with slightly different compositions.

Most importantly, though, the model at α = {−200} identified a new, diverse
cluster at the boundary of the Hispanic and White cluster in 2010. Rather than
stating that the White cluster spread northward, this model created a new cluster
which changed internally. This is the danger of using a scale that creates clusters of
the same size as the typical boundary movement: rather than realizing that change
occurred due to a larger cluster shifting over time, the model will create small new
diverse clusters that change internally.

[Figure A2 about here.]

Let’s quantify the notion that the boundaries are stronger at the larger scales. I mea-
sure the strength of a boundary as the euclidean distance between the 8-dimensional
proportion vector pz (one dimension for each ethnoracial group) for two neighbor-
ing clusters z, z′, normalized: strength = ||~pz − ~pz′||/

√
2, averaged over all pairs

of neighboring blocks with different cluster assignments. For two clusters that were
each 100% of a different race, the magnitude of the difference in pz–the numerator
of the strength calculation–would be

√
2, so the normalization places strength on a

0-1 scale: 0 if all neighboring clusters have the same pz, 1 if neighboring clusters
are each homogenous of a different race. Figure A3 presents the boundary strengths
for different α; we see a steady increase in strength as the α become smaller and
thus the clusters larger.

[Figure A3 about here.]

The ddCRP model assumes that neighboring clusters have independent ethnoracial
compositions, ~pz. It doesn’t model, for example, White clusters tending to neighbor
other White clusters. This might still happen in the observed data, and be produced
in the results even though the model assumes it to not exist. In Figure A2, this in
fact seems to happen at small scales, as a number of the small clusters have similar
ethnoracial compositions to their neighbors. In the style of a residual-analysis, we
can evaluate the assumption by measuring if the pz of identified neighboring clus-
ters are, in fact, more correlated than would occur randomly. I test this by taking the
observed clusters’ proportions and randomly reassigning them among the clusters,
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then calculating the simulated boundary strength of the random clusters. If the ob-
served neighboring clusters were truly independent, their boundary strength would
fall in this simulated distribution.5 If the observed neighboring clusters instead had
correlated pz, the observed boundary strength would be weaker, as neighboring
clusters would have smaller differences in pz than clusters sampled at random. The
rectangles in Figure A3 show the results from reshuffling the ~pz for each of the 1600
samples for each α; the rectangles reach from the 2.5th to the 97.5th percentile of
the simulated boundary strengths. Notice that the larger values of α (with smaller
clusters) exhibit much weaker boundaries than the random simulations, indicating
that at this level neighboring clusters are more similar to each other than the model
assumes. Only for α = exp{−400} and smaller–especially smaller–do the clusters
exhibit neighboring independence. The assumptions of the model I am fitting here
are most representative of the dynamics at large cluster sizes.

Figure A4 presents the proportion of blocks that change cluster assignments be-
tween 2000 and 2010, weighted by average household population n̄i (and thus
presents the proportion of households that change clusters). Many more households
change clusters at smaller scales; mostly because with more clusters there are many
more boundaries that can move. At the larger scales, fewer households–though still
6.6% of households for α = exp{−1000}–change cluster. However, the boundaries
are much stronger, so the households that do change clusters are experiencing more
drastic change.

[Figure A4 about here.]

With all of this evidence, I argue that the results for larger scales such as α =
exp{−1000} are both conservative and best representative of the true dynamic.
Larger scales are conservative because the boundaries are stronger, less noisy, and
fewer. Because of this, a block changing clusters is a significant event. Larger scales
are best representative of the spatial change dynamic because they do not overfit
diverse clusters at boundaries of change, and the results best satisfy the assumptions
of the model. Smaller scales may be desired for substantive reasons for a given
study, but the population change of Philadelphia can be well-described by tectonic
shifts.

C Decomposition for Philadelphia at multiple scales

The results for the decomposition across values of α are generally consistent, though
with stronger evidence for the importance of boundary shifting at larger scales (and

5Actually, the boundaries that we identify should be stronger than this simulation, as the algo-
rithm would tend to group two neighboring clusters with randomly similar ~pz into the same cluster,
thus undercounting weak boundaries. We do notice that at the larger scales the results are above the
center of the random values.
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smaller α). This corroborates the ‘characteristic scale’ of the model, as the bound-
aries become more representative at larger scales (see Appendix B). Figures A5,
A6, and A7 present the results for all, increasingly-White, and increasingly-non-
White blocks, respectively.

[Figure A5 about here.]

[Figure A6 about here.]

[Figure A7 about here.]
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Figure 1: South Philadelphia household race and ethnicity aggregated to the block,
tract, and cluster level, 2000 & 2010. Units are shaded using a weighted average of
the legend colors on the RGB scale based on their Census household composition;
gray blocks have no Census households.
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Figure 2: A toy example of a single rectangular tract exhibiting two types of spatial
change, and the tract-level averaged population. Column A presents a boundary
that remains stationary, but with the internal composition of the White cluster be-
coming more Black. Column B presents a boundary between an entirely Black and
an entirely White region which moves over time; each cluster remains internally
homogenous. Both tracts move from 75% White-25% Black to 50-50 to 25-75.
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Figure 3: A sample cluster assignment of the ddCRP for one time period and two
time periods. Arrows represent block assignments c, while the color represents the
cluster assignments z.
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Figure 4: A sample cluster assignment produced by α = exp{−1000} for all of
Philadelphia.
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Figure 5: The relative proportions of each race and ethnicity in Philadelphia house-
holds for blocks in 2000 and 2010 (N = 18,872). The 45◦ line represents the points
where racial proportions would remain the same.
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Figure 6: The changes in clusters’ sizes and ethnoracial composition for a single
cluster realization. Sizes of the dots are the average number of households in the
cluster, (nz,t=1 + nz,t=2)/2. N(clusters) = 12. (A) The proportionate change in
clusters’ sizes, measured in blocks, as a function of the proportion of each ethno-
racial group in 2000. Fitted lines are from univariate regressions weighted by the
average number of households in each cluster, n̄bz. (B) Clusters’ ethnoracial pro-
portions in 2000 vs. 2010. Clusters along the 45-degree line experienced no change
in proportions.
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Figure 7: The cluster-based decomposition of Household ethnoracial change in
Philadelphia from 2000-2010 for cluster results with α = exp{−1000} and tracts.
Columns are components of the decomposition, and error bars are 2.5th and 97.5th
percentiles of the posterior samples (2.5-97.5 credible intervals). D(n) represents
the change due to within-block household numbers, D(z) due to cluster changes,
and D(p) due to within-cluster level changes. Tracts fix D(z) at zero. N = 18,872
blocks, 1800 samples from posterior cluster assignments.
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Figure 8: The cluster-based decomposition of Household ethnoracial change in
Philadelphia from 2000-2010 for clusters with α = exp{−1000} and tracts, limited
to only blocks that experienced an increase in the proportion White. Columns are
components of the decomposition. Tracts fix D(z) at zero. N = 3,829 blocks.
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Figure 9: The cluster-based decomposition of Household ethnoracial change in
Philadelphia from 2000-2010 for clusters with α = exp{−1000} and tracts, limited
to only blocks that experience an increase in the proportion non-White. Columns
are components of the decomposition. Tracts fix D(z) at zero. N = 7,413 blocks.
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Figure A1: The number of clusters produced for samples from six chains of cluster
assignments for each value of α, jittered. N(blocks) = 18,872.

41



Figure A2: Cluster results for a single sample of the chain for α =
exp{−1000,−400,−200}, for the same section of North Philadelphia pictured in
Figure 1. Clusters are shaded using a weighted average of the legend colors on the
RGB scale based on their Census household composition.
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Figure A3: Mean boundary strength for realized cluster assignments, measured as
the mean valwue of ||~pz − ~pz′ ||/

√
2, where z, z′ are cluster assignments of neigh-

boring block pairs with different cluster assignments. Shaded rectangles represent
2.5th and 97.5th percentiles of the boundary strength achieved by randomly reas-
signing observed ~pz among clusters. Observations outside of the rectangles are
evidence that neighboring clusters are not independent, as the model assumes.
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Figure A4: The proportion of households that change cluster assignments between
2000 and 2010, jittered, for each α. Because number of households for each block
can change, this is a weighted proportion of blocks that change, weighted by blocks’
average numbers of households, n̄i.
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Figure A5: The cluster-based decomposition of Household ethnoracial change in
Philadelphia from 2000-2010 for cluster results for each α and tracts. Columns are
components of the decomposition, and error bars are 2.5-97.5 credible intervals.
D(n) represents the change due to within-block household numbers, D(z) due to
cluster changes, and D(p) due to within-cluster level changes. Tracts fix D(z) at
zero. N = 18,872 blocks.
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Figure A6: The cluster-based decomposition of Household ethnoracial change in
Philadelphia from 2000-2010 for cluster results for each α and tracts, limited to
only blocks that experienced an increase in the proportion White. Columns are
components of the decomposition, and error bars are 2.5-97.5 credible intervals.
Tracts fix D(z) at zero. N = 3,829 blocks.
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Figure A7: The cluster-based decomposition of Household ethnoracial change in
Philadelphia from 2000-2010 for cluster results for each α and tracts, limited to
only blocks that experience an increase in the proportion non-White. Columns are
components of the decomposition. Columns are components of the decomposition,
and error bars are 2.5-97.5 credible intervals. Tracts fix D(z) at zero. N = 7,413
blocks.
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