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The Probabilistic Fertility Table and Its Applications 
 
 
Nan Li, United Nations Population Division1 
  
A fertility table describes the childbearing process of a hypothetical female cohort that 
subjects neither to mortality nor migration. This paper first proposes a concise fertility 
table that could describe family structures such as the proportion families by the number 
of children, or the proportion of children by the number of siblings. The concise fertility 
table, however, is deterministic. In the second part of this paper, this approach is 
extended to reflect the uncertainty of the childbearing process using probabilistic life 
tables instead of deterministic ones. A probabilistic approach allows to test, for example, 
whether a change in total fertility is statistically significant or not. 
 
 
Introduction 

 
Period fertility measurement is affected by the compositional structure of the 

female population in childbearing ages. A female population with more members at the 
age of maximum fertility will bear more births than other populations. But the age pattern 
of a population is a result of historical changes of fertility, mortality, and migration, and 
has nothing to do with current fertility. Following the approach of eliminating the effect 
of age pattern in the survival process of mortality studies, we can use a hypothetical 
cohort of women subject to the age-specific fertility rates in a certain period and do not 
die or migrate. Subsequently, the conventional total fertility, TF, is defined as the average 
number of children that a woman in this cohort would have, and is computed as the sum 
of the age-specific fertility rates.    

 
In the survival process, the hypothetic cohort is only distributed by age, because 

death is an unrepeatable event. Delivering birth, however, is a repeatable event; and 
therefore the childbearing process is more complex than the survival process. In the 
childbearing process, the hypothetic female cohort is distributed along two dimensions: 
age and parity. Here, parity refers to having a certain number of children; and parity i 
stands for having i children. Using TF, however, is insufficient to eliminate the effect of 
the parity pattern. If the probabilities of delivering birth for women in parity one are 
bigger than in other parities at all ages, then, a female population with more individuals 
in parity one will have bigger fertility rate at all ages, and hence a higher TF, than that of 
other populations. Thus, TF changes with parity pattern; but the parity pattern is a result 
of historical events and has nothing to do with current fertility. To deal with the effect of 
parity pattern, an optional approach is to focus on the parity progression and ignoring the 
effect of age pattern (e.g., Chiang and Berg, 1982).  

 

                                                 
1 Views expressed in this paper are solely those of the author’s and do not necessarily reflect those of the 
United Nations. The author thanks Patrick Gerland for his useful comments. 
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To eliminate the effects of the patterns of both age and parity, individuals at 
reproductive ages should be assigned into parities according to the age-parity-specific 
probabilities of delivering birth for the period in question. By doing so, the parity pattern 
of the hypothetic cohort will no longer be a result of historical events, but determined 
only by the fertility of the period in question. Along this line, Park (1976) described the 
lifetime probability of having a certain number of children; and Rallu and Toulemon 
(1994) indicated both the strength and the age pattern of childbearing process. The 
childbearing process of such a hypothetical cohort, with specified parities by age, can be 
called a fertility table, following naming convention used for life tables in mortality 
studies. A more formal format for the fertility table has been proposed by Jasilioniene 
and colleagues (2012). These articles are important and reveal the complexity of the 
childbearing process.    

  
Compared to life tables, less progress has been made in studying fertility tables, 

partly because data are more difficult to collect and organise. Owing to the effort made 
by the Human Fertility Database (2013) on collecting, organizing, and estimating data on 
births and women by age and parity, now fertility tables can be computed for multiple 
countries and periods. Compared to death, another difficulty remains in that birth is an 
avoidable and repeatable event, and therefore fertility table is naturally more complex 
than life table. For this reason, proper attention should be paid to the simplicity of the 
fertility table.  
 

This paper proposes a concise fertility table, which includes one definition and 
two assumptions, and describes the childbearing process of the hypothetic cohort in 
perhaps the simplest way. The definition is about the probability of birth to be discussed 
next. The first assumption is that a woman can deliver at most one birth within one year; 
and the second assumption is that births occur evenly within a one-year interval.  
 

The concise fertility table is deterministic, in which, for example, the ratio of 
childless women at age a to the starting number of the hypothetic cohort is a certain 
number. When the starting number of the hypothetic cohort is not unrealistically infinite, 
however, this ratio is uncertain, because the childbearing process is uncertain. Here the 
situation is the same as that of life tables, where the ratio of survivors at a given age to 
the starting number of the hypothetic cohort is a certain number, but the survival process 
is uncertain. To describe the uncertainty of survival process, Li and Tuljapurkar (2013) 
and Li (2015) proposed the probabilistic life table. In this paper, the same approach as for 
a probabilistic life table is used to deal with the uncertainty of the childbearing process 
involving not only age but also parity. As a result, the concise fertility table is extended 
from deterministic to probabilistic.  

   
 
The definition and assumptions of the concise fertility table    
 

For the hypothetical cohort, let the number of women having (i-1) children at age 
a be )(1 ali , and the number of births delivered by these women at ages [a,a+1) be )(abi .  
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The probability of delivering the ith child in age interval [a,a+1) ,  namely )(aqi , can be 

defined as    
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 (see Chiang, 1984). The probability for women aged a in the open parity (m-1)+ (having the 
(m-1)th and higher-order births) to deliver the (m)th and higher births at ages [a,a+1) is 
defined formally as,  
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It should be clarified that, although (2) does not specify the population at the risk of 
delivering a specific order of birth, it applies now only to the high-order births that are 
less important. How to compute )(aqi and )(aqm using empirical data is indicated in the 

appendix.     
 
 To construct a fertility table, the first assumption is that a woman can deliver only 
one child within one year. Under this assumption, the childbearing process is modelled as 
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)1()1()( )1()1()1(   abalal mmm .            (4) 

 
The first line on the right-hand side of (3) indicates how the number of childless woman declines 
over age, which is similar to the survival process. The second line of (3) describes how the 
number of women with (i-1) children changes over age; and the change is due only to the (i-1)th 
and (i)th births but not any other order of birth, according to the first assumption that a woman 
can bear at most one birth in a year. Equation (4) indicates the change in the number of women in 
parity (m-1)+. It should be mentioned that, to obtain (3), the age interval must be one year. When 
the data are organized in 5-year age interval, the first assumption would become helpless, and the 
second line of (3) would involve more terms of birth in smaller orders, making the dynamics 
more complicated. It should also be mentioned that, although the age interval must be one 
year, the period to which a concise fertility table refers can be flexible such as 5 years. 
This is important for small populations, and will be indicated in the appendix.    
 
 According to definition (1) and (2), (3) and (4) can be rewritten using )(aqi as  

 
















 ,1),1()1()]1(1)[1(

,1)],1(1)[1(
)(

121

1

1 miaqalaqal

iaqal
al

iiii

ii

i  (5) 



 4

 
)1()1()1()( )1()2()1()1(   aqalalal mmmm .  (6) 

 
Equation (5) and (6) describe the childbearing process, of which commonly used 
measures, such as the total fertility and the mean age of childbearing, can be constructed.  
 
 Following the logic of constructing the conventional total fertility, the fertility-
table total fertility can also be defined as the average number of children per woman at 
the maximum reproductive age, namely maxa . To be distinguished with the conventional 

total fertility, TF, the fertility-table total fertility is denoted as TFf , where the subscript 
stands for fertility table. According to the definition of TFf , there is, 
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where mina represents the minimum reproductive age; and )( min0 al describes the starting 

number of the hypothetical cohort. The nominator and denominator of (7) are the total 
number of births and women, respectively. In the nominator of (7), the first term is the 
number of births summed over age a and parity i, and the second term the number of 
births summed over age a for parity (m-1)+. Fertility-table parity-specific total fertility, 
namely TFf(i) for parity i, can be computed similarly using the births to parity i rather than 
all parities. Using conventional parity-specific total fertility, )(iTF , one may encounter the 

problem of 1)( iTF , especially for 1i , which cannot be interpreted, because on 

average a woman cannot have  more than one first child. This problem will not occur to 
TFf(i) because of the following reason. Noticing )(/)( min01 alali is the probability of 

reaching parity (i-1) at age a from parity 0 at age mina , it is apparent that 
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children, and hence cannot be bigger than 1.  
  
 To compute the fertility-table mean age of childbearing, namely MACf, the second 
assumption, that on average the births to women aged [a,a+1) appear at age a+0.5, is 
needed. Under this assumption, there is 
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For the (i)th parity, the fertility-table mean age of childbearing, MACf(i), can be computed 
similarly, using the births of parity i rather than all parities.  
  

 
The probabilistic fertility table 
 

Based on observed values of )(aqi , a fertility table can be computed according to 

the above formulas, and can be called an observed fertility table. The observed fertility 
table is deterministic, in which, for example, the ratio of  )(/)( min00 alal  is a certain 

number that does not change when choosing different )( min0 al . For this reason, the value 

of )( min0 al  is chosen arbitrarily in deterministic fertility tables. On the other hand, 

denoting the probability of being childless at age a as )(0 ap , and assuming that childless 

women deliver their first births independently each other, then, the ratio of )(/)( min00 alal  

obeys a binomial distribution. In other words, )(/)( min00 alal has a variance that 

is )(/)](1)[( min000 alapap  . Therefore, )(/)( min00 alal is uncertain, unless )( min0 al is 

infinitely large. 
  

 Why is there a fundamental difference about whether )(/)( min00 alal is 

deterministic or probabilistic? The answer is there are two different definitions of 
probability. The demographic definition of probability is (1) and (2), which is the basis of 
the concise fertility table. On the other hand, the statistical definition of probability 
includes not only (1) and (2), but also a condition that the denominators of (1) and (2) are 
infinitely large (see Agresti and Finlay, 1997), which will lead to the probabilistic fertility 
table below. 
 
 Using the statistical definition to describe the childbearing process, the value of 

)( min0 al matters and can no longer be arbitrary. What value should )( min0 al take? In 

developing the probabilistic life table, Li and Tuljapurkar (2013) suggested to estimate 
the stationary-equivalent population, which is a hypothetic cohort with a specific starting 
number that minimizes the difference between the person-years of the cohort and the 
observed population. Since the hypothetical cohort is subject neither to mortality nor 
migration, the number of its population is constant over age, and the value of 
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)( min0 al should be this constant. To describe the person-years of the observed female 

population that changes with age, the value of )( min0 al should be the over-age average of 

the observed person-years according to Li and Tuljapurkar (2013). Thereafter, )( min0 al is 

no longer arbitrary but the average of the observed person-years of women in 
reproductive ages; and the stationary-equivalent population is the hypothetical cohort 
starting with this )( min0 al .  

 
The differences between the age patterns of the hypothetical cohort and the 

observed population are expected; and they are the reason for introducing the 
hypothetical cohort. These differences can be viewed as the effects of historical 
demographic changes, which include fertility, mortality and migration, and have nothing 
to do with current mortality. Subsequently, the rationale of introducing the hypothetical 
cohort can be understood as to eliminate the effects of historical demographic changes on 
the age pattern of the observed population. According to this view, the age pattern of the 
hypothetical cohort would be the age pattern of the observed population, if there were no 
effects of historical demographic changes that made the age pattern of the observed 
population irregular.   

 
Clearly, specifying the stationary-equivalent population is to eliminate the effects 

of historical demographic events on the age-specific person-years of the observed 
population. As a result, the person-years of the stationary-equivalent population would be 
the corresponding person-years of the observed population, if there were no above noted 
effects. Accordingly, the uncertain childbearing process of the stationary-equivalent 
population would be the uncertain childbearing process of the observed population, if 
again there were no above noted effects. Subsequently, using the stationary-equivalent 
population, the uncertainties of the childbearing process of the observed population can 
be utilized to produce insights that cannot be understood otherwise. On the other hand, 
the childbearing process of a cohort with an arbitrary starting number is also uncertain; 
but its uncertainty is meaningless. 
  

When the value of )( min0 al is obtained, the childbearing process can be modelled 

under two assumptions. The first assumption is that an individual woman delivers birth 
independently from others; and the second is that the observed probabilities of delivering 
birth are unbiased, meaning that they differ from the corresponding true values only 
randomly. Let )0,(aqi be the observed probability for a woman aged a with (i-1) children 

to deliver the (i)th child at ages [a,a+1), where index 0 is reserved for the observed 
sample. Then, under the first assumption, the childbearing process at age a can be 
described by a random variable ))0,(,1( aqi that is generated by a Bernoulli distribution 

with probability )0,(aqi , or a binomial distribution with trail 1 and probability )0,(aqi . 

More specifically, ))0,(,1( aqi  takes value 1 to represent the event of having the ith child 

at ages [a, a+1), or 0 otherwise. The values of ))0,(,1( aqi can be generated by almost 

any computing software. For example, if 1.0)0,( aqi , then among 100 sample values of 

))0,(,1( aqi , 1 would appear approximately 10 times, indicating roughly 10 would have 
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the (i)th child among the 100 women aged a with (i-1) children. The exact number 
of 1))0,(,1(  aqi , however, is uncertain.  

 
Having the values of ))0,(,1( aqi , the childbearing process of a sample cohort, 

namely the (j)th sample cohort, can now be modelled. For the (k)th women at age a in the 

(j)th sample cohort, denoting her number of children by ),,( kjac , then the values of 

),,( kjac  can be computed as  

 

1),,1()),0,(,1(),,1(),,( 1),,1(   mkjacaqkjackjac kjac .        (9)  

Equation (9) indicates that, for the (k)th woman at age (a-1) with the number of children smaller 

than (m-1), her number of children at age a will be 1),,1(  kjac , if 1))0,(,1( 1),,1(   aq kjac , 

or remain the same as at age (a-1) if 0))0,(,1( 1),,1(   aq kjac . On the other hand, when this 

woman’s number of children reaches (m-1) at age (a-1), she enters the parity (m-1)+ and will stay 

in this parity at older ages. For each woman in the (j)th cohort, her number of children starts with 

0 at age mina , and at some unpredictable age it may increase to 1, and so on. 

 

  Subsequently, the number of women aged a with i children in the (j)th sample 
cohort is computed as:  
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In (10), )(y is a function that takes value 1 for y=0 and 0 for other y. The first line of 

(10) indicates that ),( jali is the total number of ikjac ),,( ; and the second line of (10) 

is obtained from the absence of mortality and migration.  

 

Since multiple Bernoulli distributions with the same probability can be replaced 

by a binomial distribution with multiple trails, namely B(number of trails, probability), 

),( jali could be generated at the cohort rather than individual level. More specifically, 
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),(0 jal  could be obtained as a random sample of ))0,1(1),,1(( 10  aqjalB ; 

and ),( jali a random sample of ))0,1(),,1(())0,1(1),,1(( 11   aqjalBaqjalB iiii . 

This way could remarkably reduce computing time, but may be less transparent in 

describing the childbearing process.  

 

 Recalling that )0,(aqi are observed from a limited population, the (j)th sample cohort 

should have its own sample values of birth probability, namely ),( jaqi , which may differ from 

)0,(aqi . Given ),( jali , ),( jaqi for i<m can be computed using (5), or the demographic 

definition of sample probability, as below  
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For the (m-1)+ parity, since ),1()1( jal m  is obtained from (10), ),( jabm can be 

described by a random sample ))0,1(),,1(( )1(   aqjal mm , which is generated by a 

binomial distribution with ),1()1( jal m   trials and probability )0,1(  aqm . Thus, 
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Having the sample values ),( jaqi , other fertility measures such as )( jTFf and 

)( jMAC f  can be computed according to the formulas of the deterministic fertility table. 

Thus, the (j)th sample fertility table is obtained.  

 

Repeating the above process, the (j)th sample fertility table for j=1, 2, …, ns  are 

computed, where ns  stands for the number of sample cohorts. Using a large ns , an 

approximate probability distribution of the fertility table is obtained, which composes a 
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probabilistic fertility table. According to the second assumption that the values of )0,(aqi  

are unbiased, the estimate true values of the probability of delivering birth, which are 

defined by the statistical definition and cannot be observed exactly when the population 

size is not infinite, are now described by the approximate probability distributions ),( jaqi .  

 

An application of the concise fertility table 

  

 Through its use of parity information the concise fertility table can describe the 

family structures in the stationary-equivalent population. For example, as the lifetime 

probability of having the (i)th child, )(/)( min0max alali  is obviously the proportion of the 

women (or families) who have i children2 at age maxa . For another example, 

)( min0 alTFf  and )( maxali i are the total number of children and the number of children 

who have (i-1) siblings, respectively. Thus, )](/[)( min0max alTFali fi  is the proportion of 

children who have (i-1) siblings when their mothers aged maxa .  

  

 The above examples refer to the population multiplied by the hypothetic cohort. 

Using the age-parity-specific probabilities of delivering birth to replace the age-specific 

fertility rates in the cohort-component model, cohort-component models could be 

extended to include the above family structures.     

 

An application of the probabilistic fertility table 

 

Using probabilistic fertility tables, the statistical significance of a difference, 

between a fertility-table variable observed in two countries or at two times, can be tested 

in the way identical to that of probabilistic life tables (Li and Tuljapurkar, 2013). 

 

Denote a fertility-table variable for populations 1 and 2 by 1x  and 2x , and the 

corresponding sample values by )(1 jx and )(2 jx for j=1,2,… ns .  Here populations 1 and 

                                                 
2 Here the deaths of children are neglected. 
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2 could be that of two different countries, or one country at two different times. To test 

the significance of the difference between the mean values of 1x  and 2x , the null 

hypothesis can be set as Ho: )()( 21 xmeanxmean  . Under this hypothesis, a test statistic 

can be constructed as 
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where 2
1̂  and 2

2̂  are the estimated variances of 1x  and 2x , and can be computed from 

the sample distributions as 
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On the other hand, without the null hypothesis, the observed value of the test statistic z is  
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where the observed values of the fertility-table variable in question, namely )0(1x  and 

)0(2x , are computed from the corresponding deterministic fertility tables. 

     

In the usual applications of significance test, the analytic distribution of z is 

known as standard normal; and accordingly the 95% confidence interval is [-1.96, 1.96].  

If z(0) falls outside [-1.96, 1.96], then the Ho is rejected at 0.05 level; and the conclusion 

is that the difference between the mean values of 1x  and 2x is statistically significant. 

Otherwise, the difference between the mean values of 1x  and 2x cannot be claimed 

statistically significant. 
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Here we do not know the analytic distribution, but we have the approximate 

probability distribution, of z. Since the rank, j, are chosen randomly for )(1 jx and )(2 jx , 

the approximate probability distribution of z can be constructed as 
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Using the approximate probability distribution of z, we can find out the 95% confidence 

interval, namely [ 1c , 2c ], numerically and approximately. Subsequently, a significance 

test can be carried out by looking at whether z(0) falls outside [ 1c , 2c ], following the 

same logic as using analytic distributions. 

 

Examples 
 
 

For the purpose of illustration, the examples choose a country with roughly the 
median population size among the countries of the world, Switzerland3. The data on the 
age-parity-specific fertility rate and female population of year 2008, 2009, and 2010 are 
downloaded from the Human Fertility Database (2013). The values of mina , maxa , and 

ns are taken as 15, 49, and 1000, respectively. The observed age-parity-specific 

probabilities of delivering birth are then computed according to the formulas in the 
appendix. 

 
The values of the conventional total fertility (TF) and the fertility-table total 

fertility (TFf) are displayed in Figure 1. First, Figure 1 shows that the values of TFf are 
larger than that of TF. Second, it can be seen that fertility level increased faster in 2008-
2009 than that in 2009-2010 according to TFf; but the TF shows otherwise. Noting that 
TF suffers the effect of parity change but TFf does not, and that the significance of a 
change in TF cannot be tested but for TFf the test can be done, the recommendation is to 
use TFf, when it could be computed.  

  

                                                 
3 Among the world’s 201 countries and areas with 90 thousand and more residents in mid-2010, the number 
of countries and areas with population larger than that of Switzerland was 95 (source: United Nations 
(2013). World Population Prospects: the 2012 revision). 
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Figure 1. Conventional total fertility (TF) and fertility-table 
total fertility (TFf) of Switzerland
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The concise fertility table can also describe family structures and provide 

informative insights, as are displayed in Figures 2 and 3. 
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Figure 2 indicates the most common families still have two children, although the 

TFf is lower than 1.56 as is shown in Figure 1. Furthermore, Figure 3 shows that the 
proportion of single child is smaller than that of the children who have two siblings, 
although one-child families are more than those of three children.  

 
 
The TFf in Figure 1 are observed samples and not necessarily the true values, 

which cannot be exactly observed unless )( min0 al is infinitely large. Nonetheless, the 

approximate probability distributions, or sample distributions, of the estimate true values 
are provided by the probabilistic fertility table, in the first and second panels of Figure 4 
for 2009 and 2010, in which the vertical axis indicates the number of samples in each bar. 
Subsequently, although the true values of TFf cannot be observed exactly, whether the 
difference between them is, or is not, statistically significant could still be inferred. It can 
be seen that the sample mean increased from 2009 to 2010, but the increase is not 
statistically significant, because the observed value of the test statistic, z(0), falls in the 
95% confidence interval [ 1c , 2c ]. What conditions could make the difference between the 
mean values more likely significant? One is a bigger difference between the observed 
samples, which will push the z(0) far away from zero. And another is a larger )( min0 al that 

will narrow the probability distributions of TFf  and reduce [ 1c , 2c ].   
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Compared to sample surveys often providing standard error of TF such as in the 

reports of the Demographic and Health Surveys (http://www.dhsprogram.com/), 
uncertainties can hardly be found for fertility measures derived from vital registration at 
national level. Explanations to this situation could be summarised into two parts. The first 
is that national population sizes are large; and therefore the uncertainties must be too 
trivial to be useful. This explanation is quantitative, and is quantitatively rejected by the 
example in Figure 4. The second explanation is that, when errors in counting all births 
and women are negligible, as can be assumed for developed countries, resulted fertility 
measures are ‘population parameters’ or the true values. Here we may recall that although 
tossing a perfect coin subjects no error, the proportion of observed face is not necessarily 
close to 0.5, unless the number of tossing is infinitely large.   

   
The first and second panels of Figure 5 describe the sample distributions of MACf 

in 2009 and 2010. The sample mean of MACf also increased, and again the increase is not 
statistically significant, as is indicated by the third panel of Figure 5. Since the changes of 
TFf and MACf are both statistically insignificant, one may conclude that the observed 
fertility change in 2009-2010 is more likely a random fluctuation.  
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 Turning to the fertility change in 2008-2009, however, the situation is different. 
Figure 1 shows that the change in 2008-2009 is bigger than that of 2009-2010. Further, 
Figure 6 indicates that the increase of TFf in 2008-2009 is statistically significant. The 
sample mean of MACf also increased in 2008-2009, and the increase is again statistically 
significant, as is shown in Figure 7. 
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Between 2008 and 2009, TFf and MACf  both increased significantly. It is 

interesting to note that this is different from the argument that, postponing childbearing 
(an increase of MACf) would cause the level of fertility to decline (a decrease of TFf). 
Furthermore, the test can be extended to specific birth parities, and to family structures, 
when they are required.  

 
 
The above examples indicate that the concise and probabilistic fertility tables 

could provide relevant insights into family structures and fertility change. These insights 
are especially informative for low-fertility countries, where the changes of fertility are 
subtle and important, for example, to population and other projections. Nonetheless, the 
conclusions obtained from these examples are based on one country in three recent 
successive years, and may not apply to other countries and times. 
 
 
Summary  
 

This paper proposed a concise fertility table, which requires a demographic 
definition of the probability of childbearing by age and parity, and two assumptions, 
namely that a woman can bear at most one birth in a year and this birth occurs by even 
chance during the year. Using a concise fertility table, family structures such as the 
proportion of families by the number of children, or the proportion of children by the 
number of siblings, can be explored. The concise fertility table is deterministic, because it 
is based on the demographic definition of probability.  

 
A concise fertility table only describes a sample scenario of the uncertain 

childbearing process of the hypothetic cohort. To model the uncertain childbearing 
process itself, this paper extended the concise fertility table from deterministic to 
probabilistic, using the statistical definition of probability and the approach used for 
probabilistic life tables (Li and Tuljapurkar, 2013). This extension does not require 
additional data, but needs two additional assumptions, which are independent birth 
deliveries between individual women and unbiased data. In a deterministic fertility table, 
a variable has a sample value for a given parity and age. In a probabilistic fertility table, a 
variable has a probability distribution for a given parity and age.  

 
Using probabilistic fertility tables, the statistical significance of a difference, 

between the values of a fertility-table variable observed in two countries or at two times, 
can be tested. This test could help avoid two mistakes: explaining a difference that might 
be a random event, or ignoring a difference that may turn out important.  

      
 In this paper, the data used to compute probabilistic fertility tables are collected 

from the Human Fertility Database (2013). Such data can be assumed unbiased, and 
could also be available for most developed countries and some developing nations. When 
the observed data cannot be assumed unbiased, however, computing probabilistic fertility 
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tables may not make much sense, because the resulting probability distributions may not 
refer to the estimate true values, and what they refer to are unknown. 
 
 
 
Appendix 
 

This appendix discusses how to compute )(aqi . Using population data from 

census and estimates and vital registration for births, the values of the age-parity-specific 
fertility rate for a certain period can be computed as: 

 

)1,[)1(
)(




aaagesatchildrenihavingwomenofyearsPerson

womenbelowbydeliveredbirthsofNumber
aMi . (a.1) 

 
In (a.1), both the numerator and the denominator refer to a certain period, which may or 
may not be a calendar year. It should be mentioned that, although the age interval must be 
one year for the concise fertility table, the period to which a fertility table refers can be 
flexible such as 5 years. This is important for small populations, of which a longer period 
should contain more births and hence make the age-parity-specific fertility rates more 
robust.    
 

Because fertility may change only slightly in one year interval of age and a 
moderate period of time, there is approximately (see Preston, Heuveline, and Guillot, 2001) 
 

)()( amaM ii  ,  (a.2) 

 
where )(ami represents the age-parity-specific fertility rate of the hypothetic cohort, and 

is defined as 
 

)(

)(
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1 aL

ab
am

i

i
i



 .  (a.3) 

 
The target of this appendix is to compute )(aqi using )(ami .  

 
In (a.3), )(1 aLi represents the person-years of the (i-1)th parity in [a,a+1): 

 





 

1

11 )()(
a

ay

ii dyylaL ,  (a.4) 

 
where )(1 yli represents the number of woman of parity i-1at age y. For i=1, )(0 aL is the 

population exposed to the chance of having the first child at ages [a,a+1). For i>1, 
however, )(1 aLi is not the population exposed to the chance of having the (i)th child at 
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ages [a,a+1), because some women entered parity (i-1) by bearing the thi )1(  child at 
ages [a,a+1) and thence are not exposed to the chance of having the ith child within the 
rest of the calendar year, according first assumption that a woman can bear at most one 
birth in one year.  

Under the second assumption that the births occur evenly in each age interval, 
both the decline (due to delivering the (i)th births) and the increase (due to delivering the 
(i-1)th birth) of )(1 ali are linear functions of age. Thus, )(1 ali changes with a linearly 

and therefore 
 

)]1()([5.0)( 111   alalaL iii . (a.5) 

 
 
For the case of i=1, (a.5) leads to  
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Using the first line of (5), (a.6) is rewritten as 
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which yields 
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Equation (a.8) is identical to the corresponding formula in life tables, because )(0 aL is the 

population exposed to the chance of having the first child at ages [a,a+1).   
 

For the cases of 1 im , (a.5) still yields 
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But now the second line of (5) applies and leads to 
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Rewriting (a.10), there is 
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The difference between (a.8) and (a.11) is caused by that, although )(1 aLi is still the 

person years, it is no longer the population exposed to the chance of having the (i)th child 
at ages [a,a+1) for i>1. This provides an explanation as below. For i>1, the (i-1)th births 
make )(1 aLi larger than the population exposed to the chance of bearing the (i)th birth, 

and the )(ami smaller, comparing to that of i=1. Thus, as a compensation, (a.11) includes 

an additional term, compared to (a.8). This additional term makes the calculation slightly 
complicated.  

 
In (a.11), )(aqi and )(1 ali  are unknown, and can be solved iteratively together 

with the second line of (5): 
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The iteration starts from 2i , of which )(1 aq and )(0 al  for all a are already computed as 

the result of 1i . Using the first line of (a.12), )1( min1 al is obtained, because it is 

known that 0)( min2 aq  according to the assumption that a woman could deliver only one 

child in a year. Subsequently, )1( min2 aq is obtained from the second line of (a.12). 

When )1( min2 aq is known, )2( min1 al is obtained from the first line of (a. 12), and so is 

the )2( min2 aq from the second line of (a.12). Repeating this process, )(2 aq and )(1 al for 

all a are obtained. Now the iteration reaches 3i , of which of which )(2 aq , )(1 aq , 

)(1 al and )(0 al are already computed. Here )(3 aq and )(2 al for all a can be computed in the 

way similar to that of 2i , starting from 0)(3 aq for )1( min  aa according to the 

assumption that a woman could deliver only one child in a year. Repeating the process, 
)(aqi and )(1 ali for all )1(  mi  are obtained.  

 
For the open parity )(aqm , the assumption that the births occur evenly in each 

age interval still leads to  
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Using (6), there is 
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which is 
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Different from the case of i<m in which )(aqi are computed iteratively, all )(aqm can be 

computed by (a.15), this is because )()1( al m  can be calculated according to that the 

hypothetical cohort subjects neither mortality nor migration: 
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