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Abstract

I use anchoring vignettes from Indonesia, the U.S., England, and China to study the extent to

which differences in self-reported health across genders and education levels can be explained

by the use of different response thresholds. To determine whether statistically significant dif-

ferences between groups remain after adjusting thresholds, I calculate standard errors for the

simulated probabilities, largely ignored in previous literature. Accounting for reporting het-

erogeneity reduces the gender gap in many health domains across the four countries, but to

varying degrees. Health disparities across education levels persist after equalizing thresholds

across the two groups.
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1 Introduction

One quite persistent puzzle has emerged from studies of self-reported health. From early ado-

lescence to late middle age, women have significantly worse self-reported health than men, de-

spite the fact that they have lower mortality rates (Case and Paxson, 2005; Macintyre et al., 1999;

Nathanson, 1975; Strauss et al., 1993; Verbrugge, 1989). In this paper, I use anchoring vignettes to

quantify the extent to which differences in reporting behavior may drive these differences across

gender and additionally, differences across education levels. I draw on four different datasets from

four different countries: the Indonesian Family Life Survey (IFLS), the United States Health and

Retirement Study (HRS), the English Longitudinal Study of Aging (ELSA), and the China Health

and Retirement Longitudinal Study (CHARLS). All four of these surveys ask respondents to rate

their own health difficulties from 1 to 5 (where 1 represents the least and 5 the most severe prob-

lems) in six domains: mobility, pain, cognition, sleep, affect, and breathing. In addition, for each

domain, all four surveys ask respondents to rate the health of three hypothetical individuals in order

to anchor the respondents’ numerical self-reports. These anchoring vignettes allow me to adjust

for the use of different response thresholds across groups (both gender and education levels) using

a hierarchical ordered probit (HOPIT) model, enabling comparisons that are not confounded by

systematic reporting differences.

In most health domains across countries, I find that the gender gaps are reduced after accounting

for the use of different thresholds, though less drastically in Indonesia and the United States, where

half of the domains still reveal significant gender differences after adjustment. In England, and

China, however, adjusting for thresholds completely eliminates the gender gap in the majority

of domains for which significant gender differences exist in the raw data. This elimination (or

reduction) of significant gender differences after adjusting for response thresholds offers a potential

explanation for the gender puzzle described above: women may report worse health but have better

objective indicators than men because the two genders use different response thresholds when

evaluating a person’s health. This is not the only possible explanation for the gender paradox
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or the first time this particular hypothesis has been proposed.1 However, until now, empirical

evidence for differential reporting behavior across genders has been mixed at best (Macintyre

et al., 1999; Verbrugge, 1989). This paper offers direct evidence for the use of different response

thresholds across men and women, which confound gender comparisons of self-reported health

because women have a higher bar for considering someone “healthy.”

The narrowing or elimination of gender gaps is not a mechanical result of the econometric

exercise: when I repeat this analysis to compare individuals of different education levels, I find

no evidence of existing differences shrinking. In fact, across all four datasets, I find persistent

education differences that do not diminish (and in most cases widen) after adjusting for the use of

different thresholds. While this may be unsurprising given that numerous studies have documented

the positive relationship between education and both subjective and objective measures of health,2

the universality of this pattern is quite remarkable given the different cultural contexts, income

levels, and distribution of covariates across the four countries. This adds further support to the

large literature on the education health gradient, emphasizing that if anything, differential reporting

behavior may result in an underestimation of the strength of the link between education and health.

In addition to offering evidence on the role of reporting behavior in explaining gender and ed-

ucation gaps, this paper contributes to the literature on anchoring vignettes by expanding their use

to within-country gender and education differences in four different countries. Most of the early

anchoring vignettes papers focus on cross-country comparisons: for example, political efficacy in

China and Mexico (King et al., 2004) or work disability and life satisfaction in the United States

and the Netherlands (Kapteyn et al., 2007, 2010). A more recent strand of literature has focused

on within-country differences, particularly in self-reported health (Bago d’Uva et al., 2008; Dowd

and Todd, 2011; Mu, 2014). None of these papers, however, focus on differences across gender

1Mortality selection is one potential reason for the gender paradox, but Strauss et al. (1993) find that adjusting for it
reduces but does not eliminate the gender gap in self-reported health. Case and Paxson (2005) find evidence that men
and women face different distributions of chronic conditions, and for some conditions, the severity is worse for men
than women. The combination of these two findings help explain why women, afflicted with more chronic conditions
that are less fatal, may report worse health yet still live longer than men.

2See Cutler and Lleras-Muney (2006) for a review and Vogl (2012) for a review specifically for developing coun-
tries.
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or education levels. Any discussion of these differences is usually limited to an examination of

coefficients in a pooled HOPIT model, which only allows gender and education to have a level

effect on latent health and response thresholds. Unlike existing work, I estimate the HOPIT model

separately for men and women (and separately for more educated and less educated individuals)

and then simulate self-report distributions using adjusted and unadjusted thresholds. This allows

for gender and education to change how other covariates affect health and reporting behavior.

Kapteyn et al. (2007), Kapteyn et al. (2010), and Mu (2014) all run the HOPIT model separately

for different countries or different regions, but this paper is the first to conduct this exercise for

gender and education levels. This paper is also the first to calculate standard errors for a key esti-

mate: the difference between the simulated proportion of individuals falling into the “healthiest”

category in two different groups. Previously ignored in the literature, standard errors allow me to

conclude whether groups are statistically different before and after allowing for the use of different

response thresholds across groups. Finally, my use of data from multiple countries allows me to

make conclusions that are not specific to just one setting.

The next section outlines how anchoring vignettes help solve the problems that arise due to

individuals’ use of different response thresholds. Section 3 outlines the econometric model, and

Section 4 describes the four datasets used in this analysis. I outline the estimation methods in

Section 5, discuss my results in Section 6, and conclude with Section 7.

2 Anchoring Vignettes

Many economic studies have turned to self-reported health measures as outcome variables (Finkel-

stein et al., 2012; Gertler and Gruber, 2002; Maccini and Yang, 2009; Manning et al., 1987; Strauss

et al., 1993) since objective measures of health are often infeasible to measure for large popula-

tions or too narrow to capture the multidimensional nature of health. The particular type of measure

studied in this paper takes the following form: a response to a question like “overall, in the last 30

days, how much pain or bodily aches did you have?”, chosen from 5 options: none, mild, mod-
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erate, severe, and extreme. These self-reports are simple and may be better suited to capture an

individual’s health as a whole, compared to objective measures that are more specific (like blood

pressure or BMI) or more extreme (like mortality). Moreover, self-reported health has been re-

peatedly shown to have a significant relationship with mortality, robust to the inclusion of a host

of demographic and socioeconomic controls.3

Despite this, subjective scale measures have also long been the source of some controversy, due

to potential differences in reporting behavior across groups. Dow et al. (1997), in their analysis

of the effect of health care prices on health outcomes, highlight that self-reported measures often

suffer from reporting bias that is non-random. The authors argue that this bias may be correlated

with variables like income, or more importantly, healthcare utilization – which is especially prob-

lematic if healthcare utilization is a regressor of interest. Clearly, self-reported measures of health

that assign a quantitative value to how healthy one feels are not perfect measures of actual health.

They also capture an individual’s interpretation of the response choices: what do mild, moderate,

severe, and extreme really mean?

The idea that individuals may use different reporting thresholds in their self-reports is particu-

larly problematic when making comparisons across groups or individuals. The underlying problem

is that we cannot ascertain whether the differences we see are being driven by actual differences

in health status or simply the use of different response scales, what King et al. (2004) refer to

as “differential item functioning” (DIF), a term originally from the education testing literature.4

Equivalently, we are also unsure if groups that appear similar actually have differences that are

masked by different response scales. In short, with systematically different response scales, we

must first adjust for this DIF before any valid comparisons can be made. Methods recently devel-

oped to make these necessary adjustments involve the use of anchoring vignettes, introduced by

3Idler and Benyamini (1997) review 27 studies conducted in eight different countries. With remarkable consistency,
these studies show that the coefficient on self-rated health in regression on mortality remains significant even when
other covariates and health status indicators are included. A more recent meta-analysis by DeSalvo et al. (2006) finds
that individuals who report being in “poor” health have almost double the mortality risk of those who reported being in
“excellent” health. This calculation included studies which controlled for various covariates like age, socioeconomic
status, and others.

4A test question with “differential item functioning” is one that two people of the same ability but from different
groups (races or genders, for example) have different probabilities of answering correctly.
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King et al. (2004). These vignettes tell a brief story about a hypothetical person and ask respon-

dents to evaluate the severity of the person’s situation. For example,

[John] can concentrate while watching TV, reading a magazine, or playing a game of cards or

chess. Once a week he forgets where his keys or glasses are, but finds them within five minutes.

Overall how much difficulty did [John] have remembering things? 5

A vignette like this one would help anchor respondents’ answers to the question: “Overall in

the last 30 days, how much difficulty did you have remembering things?” In general, vignettes

allow us to evaluate how people set their thresholds and therefore help adjust for differences in

response scales.

A simple figure can summarize why comparisons based on subjective scales can be problematic

and how anchoring vignettes can be used to address these issues. Figure 1, adapted from King

et al. (2004), shows two different respondents: A and B. In Panel A, Self1 represents A’s numerical

response to a subjective question like “how is your health in general?” Self2, in Panel B, represents

B’s response to this same question. A naive comparison of these two numbers would lead to the

conclusion that A is in better health than B. However, these figures also depict how A and B

evaluate three hypothetical vignette individuals, Alison, Jane, and Moses. Even though A and

B are faced with identical vignette descriptions, they give very different evaluations of the three

vignettes, indicating the use of potentially very different response scales. Panel C shows what

B’s responses would look like, if she had instead used A’s response scale. This essentially boils

down to aligning B’s vignette evaluations to A’s and comparing Self1 and Self2 on the new scale.

Comparing Panel A and Panel C show us that B is actually in better health than A but has a higher

bar for defining what is “healthy.”

Anchoring vignettes allow us to infer something about respondents’ internal response scales

that are otherwise completely unobservable to the researcher. When comparing two groups of

individuals, we can use the scale in one group as a benchmark in order to make valid compar-

isons. The validity of these comparisons hinges on two important assumptions. First, we assume

5This vignette is from the cognition domain and used in all four datasets this paper. See Appendix section C for
complete list of vignettes.
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Panel A Panel B Panel C

Figure 1: Comparing Subjective Scales (From King et al. (2004))

response consistency, which means that respondents use the same response scales when evaluating

themselves and evaluating others. The second assumption is vignette equivalence, which means

that the way respondents interpret the scenarios and questions are independent of their individual

characteristics. In other words, respondents only differ in the thresholds they use, not in how they

interpret the question. In the next section, I discuss what both of these assumptions mean in the

context of the econometric model.

Response consistency would not hold if for some reason, the respondents held the hypothet-

ical individuals to a different standard than their own. For example, King et al. (2004) suggest

that response consistency in their study of political efficacy would be violated if respondents felt

inferior to the people in vignettes and set a higher bar for what it means to have “a lot of say” in

the government. Both King et al. (2004) and Van Soest et al. (2011) test for response consistency

by using objective measures: vision tests to validate subjective scale questions about vision im-

pairment (King et al., 2004) and actual counts of alcoholic drinks to validate subjective questions

about the severity of drinking problems (Van Soest et al., 2011). Both find strong evidence to sup-

port response consistency. Unfortunately, tests like these are only possible when relevant objective

measures, which map well to the unobserved latent variable, exist. While the validity of this as-

sumption may depend on the particular context of the vignettes, I argue that the straightforward

nature of the vignettes in this paper make this a reasonable assumption for the self-reported health

setting. The individuals described in the vignettes in this paper suffer from common ailments un-
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doubtedly somewhat familiar to respondents in all countries. This familiarity, combined with the

fact that health is an issue these elderly respondents deal with everyday, unlike the political issues

in King et al. (2004), makes it unlikely that respondents would hold the vignette individuals to a

different standard, or use a different scale to evaluate them.

The second assumption, vignette equivalence, would not hold if there are systematic differences

in the way respondents interpret the questions or vignettes, which is more likely when dealing

with abstract concepts. Since vignettes are brief, vignette equivalence may also be violated if

respondents fill in any gaps they need for a complete picture of the hypothetical person by making

assumptions about them. These assumptions are likely to vary by person and are problematic if

correlated with individual characteristics. Fortunately, all of the vignettes used in this paper are

straightforward and deal with tangible, familiar concepts. However, because of their brevity, they

may be slightly open to interpretation.

In a comparison of models that relaxed various combinations of these assumptions, Van Soest

et al. (2011) found that the model assuming only response consistency performed the best accord-

ing to the Akaike Information Criterion. They tested DIF and response consistency, all the while

maintaining vignette equivalence. In this paper, I test vignette equivalence using methods proposed

by Bago d’Uva et al. (2011).

3 Econometric Model

In order to separately identify the effect of individual characteristics on true health from their

effect on reporting thresholds, I use the same econometric model used in Kapteyn et al. (2007)

and Kapteyn et al. (2010). For each health dimension d, I model the subjective response of an

individual i, Ydi, in the following ordered response equation. Ydi is determined by a latent variable

Y ∗di, which is a function of individual respondent characteristics and an error term. For simplicity,

I drop the subscript d in the model exposition but analyze a separate model for each health domain

in the empirical section.
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1. Y ∗i = Xiβ + εi ; εi is N(0, σε), εi independent of Xi and the other error terms in the model

2. Yi = j if τ j−1
i < Y ∗i ≤ τ ji , j=1,....5

3. τ 0
i = −∞, τ 5

i =∞, τ 1
i = γ1Xi + ui, τ

j
i = τ j−1

i + eγ
jXi , j = 2, 3, 4

ui is N(0, σ2
u) and is independent of Xi and the other error terms in the model.

What sets this apart from a normal ordered response model is that the thresholds τ ji vary across

individuals. These thresholds are also a function of individual characteristics and an unobserved

individual effect, ui, which allow individuals with identical X characteristics to have different

response scale thresholds. The individual-specific τ ji ’s are the essence of DIF.

Given data on self-reported health and individual characteristics only, it is impossible to iden-

tify β and γ1 separately (but γj for j > 1 is identified through the non-linearity of the exponential

function). For this, we use the three vignette questions asked of each respondent for each health

domain. The vignette responses (of individual i to vignette number l for domain d) can be mod-

eled in a similar ordered response framework. Again, the d subscript is omitted. In this paper,

l = 1, 2, 3.

4. Y ∗li = θl + εli; εli is N(0, σv), εli independent of Xi and the other error terms in the model

5. Yli = j if τ j−1
i < Y ∗li ≤ τ ji , j=1,....5

The non-negative exponential function in threshold equation (3) ensures that τ1 ≤ τ2 ≤ τ3 ≤

τ4. Its non-linearity ends up playing a key role in identifying the γj coefficients for j > 1. The main

results in the paper use the exponential function to define the gaps between different thresholds, as

in equation 3, but I also test the sensitivity of these results by replacing the exponential in equation

3 with a square, as follows.

3a. τ 0
i = −∞, τ 5

i =∞, τ 1
i = γ1Xi + ui, τi = τ j−1

i + (γjXi)
2, j = 2, 3, 4

Comparing Table A3 to A4, the results remain remarkably consistent across alternate functional

forms. This is true for all domains and all four datasets. In Appendix section C, I also explore the

possibility of using a linear specification for the threshold equations.
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The model’s first crucial assumption, response consistency, means that the τi’s in equation 3

are used for both the self-reports (equations 1 and 2) and the vignette responses (equations 4 and

5). Since vignette responses Y ∗li only depend on individual characteristics through their influence

on the thresholds τi, it is possible to identify γ and θ vectors from equations 4 and 5. Here, θl is

a vignette fixed effect that, together with an unobserved individual error εli, completely determine

the latent variable for vignette evaluations, Y ∗li .

The assumption of vignette equivalence implies that θl is constant across all individuals, and the

unobserved error is uncorrelated with individual characteristics. That is, individual characteristics

do not affect the perceived underlying severity of the each vignette. Respondent characteristics

can only affect evaluations of vignettes through their effect on thresholds. This leads naturally to a

test of vignette equivalence which involves including respondent characteristics Xi in the vignette

equation 4. I discuss this vignette equivalence check in section 5.4.

4 Data

4.1 Indonesian Family Life Survey (IFLS)

I use the 2007 wave of the IFLS, an ongoing longitudinal household survey of individuals in 13

out of the 27 Indonesian provinces, representative of 80% of the Indonesian population (Strauss

et al., 2009). This paper utilizes information from the individual-level demographic and health

status modules. IFLS 4 also randomly chose 2,500 households to participate in the health vignette

module. In selected households, all adults over 40 were asked the following health status questions.

1. Mobility: Overall in the last 30 days, how much of a problem did you have with moving

around?

2. Pain: Overall in the last 30 days, how much of bodily aches or pains did you have?

3. Cognition: Overall in the last 30 days, how much difficulty did you have remembering

things?
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4. Sleep: In the last 30 days, how much difficulty did you have with sleeping, such as falling

asleep, waking up frequently during the night, or waking up too early in the morning?

5. Affect: Overall in the last 30 days, how much of a problem did you have with feeling sad,

low, or depressed?

6. Breathing: In the last 30 days, how much of a problem did you have because of shortness of

breath?

Respondents were instructed to respond with a number from 1 to 5, where 1=None, 2=Mild,

3=Moderate, 4=Severe, and 5=Extreme/Cannot Do.

Crucially, the IFLS included three anchoring vignettes per health domain in addition to the

above self reports. While all vignette households were asked all of the questions listed above, due

to time constraints each vignette household was only assigned to respond to anchoring vignettes for

two randomly chosen domains out of the six, leaving between 1100-1300 individuals per domain.

During the interview, the interviewers read aloud a vignette like the one described in Section 2

(see Appendix section D for a list all of the vignettes). They then repeated the domain-relevant

question from the list of questions above (of course replacing the word “you” with the name of

the hypothetical vignette person). The gender of the hypothetical individuals, depicted through

their names, was randomized at the household level. Answers to the health status questions and

anchoring vignettes form the outcome variables of interest for this analysis.

Purposely focusing on a set of simple explanatory variables in order to facilitate comparisons

with the three other datasets, I use gender, age, and education levels. Specifically, I create a dummy

variable for males, a dummy for high school graduates, and a dummy for those who completed

primary but not high school. Discretizing education levels allows me to conduct my simulation

analyses by educational sub-groups.
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4.2 Health and Retirement Study (HRS) 6

Since 1992, the HRS has interviewed a representative sample of Americans older than 50, re-

interviewing the original sample and adding new cohorts every 2 years. In 2007, an “off-year”

in between two main interview years, the Disability Vignette Study (DVS) was sent out as a mail

survey to a subsample, of which 81.7% (over 4,000) responded. This survey included the exact

same anchoring vignettes for the same six domains found in the IFLS vignette modules, except

with American instead of Indonesian names. Unlike the IFLS, two versions of the questionnaires,

which ordered the questions differently and used different genders for the hypothetical individuals,

were used.

I combine data from this off-year study with data from the most recent main survey prior to it,

which took place in 2006. From the 2006 interviews, I obtain the basic explanatory variables: age,

gender, and educational attainment. Since the vast majority of HRS respondents are high school

graduates, I use college graduation as my “high education” group and high school graduates (who

have not completed college) as my “medium education” group.

4.3 English Longitudinal Study of Aging (ELSA)

Similar to the HRS, the ELSA is a longitudinal panel of individuals aged over 50 living in England

(Marmot et al., 2014). Since 2002, the representative sample, which was initially drawn from

the Health Survey for England, has been re-interviewed every two years. The ELSA sample was

also refreshed at waves 3, 4, and 6. I use data from the third wave, collected during 2006 and

2007, which included self-completion vignette questionnaires that were handed out to a randomly

selected third of the sample (and completed by almost 2,500 individuals). Individuals were asked

to rate their own health in the six domains and then to respond to the same vignettes found in the

IFLS and HRS. Unlike the other datasets, which randomized the genders of vignette individuals in

varying ways, the ELSA only had one version of the questionnaire, which had the same names (and

6The HRS (Health and Retirement Study) is sponsored by the National Institute on Aging (grant number NIA
U01AG009740) and is conducted by the University of Michigan.
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thus genders) assigned to the same questions for all respondents. The vignette genders alternated

throughout the questionnaire, with half of the vignette individuals assigned female names and the

other half male names.

Along with respondent age and gender, I use degree qualifications as my education variable

because precise years of schooling are not included in this survey. The “high-education” category

includes those who have received their A-levels or higher, while the “medium-education” category

includes all qualifications lower than A-levels. This leaves those with no qualifications as the

low-education group.

4.4 China Health and Retirement Longitudinal Study (CHARLS) 7

Finally, I also use data from the first wave of the CHARLS, conducted in 2011 (Zhao et al., 2013).

Very similar to the other two longitudinal aging studies described above (the HRS and ELSA),

the CHARLS has interviewed a representative sample of over 17,000 Chinese residents aged 45

and older and plans to follow up with the respondents every two years. The CHARLS is one of

very few Chinese surveys that include domain-specific self-reports and vignette questions, which

are asked as part of the full in-person interview for a random sub-sample of households. Like in

the IFLS, each vignette household is randomly assigned to 2 out of the 6 domains, resulting in

around 1100 to 1300 respondents per domain. The genders of the hypothetical individuals are also

randomized at the household level.

As control variables, I use age, gender, and years of schooling. Because high school graduation

rates for this sample are so low (less than 10%), I use junior high school completion as my “high

education” cutoff and primary school completion as the boundary between the medium and low-

education groups.
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Table 1: Summary StatisticsSumstats

(1) (2) (3) (4)

IFLS HRS ELSA CHARLS

Age 52.00 63.76 65.80 59.57

(9.618) (9.046) (10.30) (10.13)

1(Male) 0.535 0.453 0.461 0.467

(0.499) (0.498) (0.499) (0.499)

1(High Education Group)1 0.218 0.281 0.358 0.334

(0.413) (0.449) (0.480) (0.472)

1(Medium Education Group)2 0.436 0.570 0.225 0.220

(0.496) (0.495) (0.418) (0.415)

Height 155.2 167.7 165.6 158.1

(8.476) (9.793) (9.752) (8.101)

BMI 23.12 29.12 27.96 23.30

(4.600) (5.789) (4.851) (3.552)

1(BMI < 18.5) 0.118 0.00294 0.00919 0.0670

(0.323) (0.0542) (0.0955) (0.250)

1(BMI > 30) 0.0630 0.381 0.289 0.0409

(0.243) (0.486) (0.453) (0.198)

Waist Circumference 81.35 100.1 95.91 84.34

(10.54) (15.95) (13.42) (10.82)

1(Low-Risk Waist Circumf) 0.822 0.184 0.373 0.654

< 102 cm for men, < 88 cm for women (0.383) (0.387) (0.484) (0.476)

1(High Blood Pressure) 0.437 0.315 0.379 0.332

Systolic > 140 or Diastolic > 90 (0.496) (0.465) (0.485) (0.471)

Mobility Self-Report 1.430 1.742 1.644 1.311

(0.848) (0.910) (0.944) (0.814)

Pain Self-Report 1.815 2.366 2.288 1.900

(1.027) (0.871) (0.932) (1.132)

Cognition Self-Report 1.687 1.834 1.801 1.756

(0.989) (0.776) (0.815) (1.037)

Affect Self-Report 1.678 2.309 2.278 1.743

(1.034) (0.922) (1.044) (1.069)

Sleep Self-Report 1.473 1.777 1.583 1.500

(0.896) (0.876) (0.836) (0.904)

Breathing Self-Report 1.282 1.450 1.408 1.348

(0.727) (0.772) (0.782) (0.797)

Average Pairwise Correlation 0.39 0.42 0.34 0.34

Year of Vignette Survey 2007 2007 2006-2007 2011

Observations 3058 4158 2192 3647

Notes:

IFLS

self1 self2 self3 self4 self5 self6

self1 1 0.38753333

self2 0.5745 1

self3 0.353 0.3817 1

self4 0.3626 0.4082 0.4135 1

2. IFLS: primary but not high school; HRS: high school but not college; ELSA: any degree lower than A-levels; CHARLS: 

primary but not junior high

1. IFLS: high school graduates; HRS: college graduates; ELSA: A-levels and above; CHARLS: junior high and above

- All data are weighted using individual cross-sectional sampling weights (without adjustment for non-response or 

attrition), provided by each dataset to make summary statistics representative of the United States for the HRS, England for 

the ELSA, China for the CHARLS, and the 13 IFLS provinces in Indonesia for the IFLS.

Page 1
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4.5 Summary Statistics

Table 1 lists summary statistics for all four datasets, including only individuals who responded to

all questions for at least one of the domains and who were not missing any of the other covariates

of interest. Each survey represents one cross section of data, with the IFLS and HRS sampled in

2007, the ELSA sampled during 2006 and 2007, and the CHARLS sampled in 2011. The first

and the fourth columns report summary statistics for the whole IFLS and CHARLS samples of

vignette respondents with non-missing covariates. Both of these sample sizes are much larger

than the sample sizes in each individual domain, however, since individuals only responded to two

domains each. The second and third columns summarize the HRS and ELSA samples, respectively,

and these are roughly the same as the domain-specific sample sizes since everyone was asked to

respond to all domains.

Although t-tests are not reported here, there are large and significant differences across all

four countries that arise from differences in survey parameters, covariate distributions within each

country, or a combination of both. For instance, the HRS and ELSA samples are older on average,

which could be due in part to the higher life expectancies in these two countries but is likely driven

primarily by the higher age threshold for inclusion in these datasets: 50 compared to 40 in the

IFLS and 45 in the CHARLS. Rather than drop all IFLS and CHARLS respondents younger than

50, I choose to include everyone and control for age in order to retain as many observations as

possible.8

The longer life expectancy of females relative to males is reflected in the fact that less than half

the population is male in all samples except the IFLS (which is also the youngest sample). This

disproportionate female share is particularly apparent in the older HRS and ELSA samples, which

have significantly higher female proportions than the other two: again, most likely an artefact of

the survey design but potentially also generated by demographic differences across countries.

7CHARLS is conducted by the National School of Development (China Center for Economic Research) at Beijing
University. See http://charls.ccer.edu.cn/charls/ for more detail.

8In the specification presented in this paper, I include three age dummies, but the results are robust to the use of
quadratic age controls instead.
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The education statistics must be interpreted with caution because the “high education,” “medium

education,” and “low education” category definitions differ across the samples. These categories

were defined in order to maintain sufficient mass in the highest education category that was similar

across all datasets (ranging from 22% to 36%). This is roughly equivalent to using the 75th per-

centile as a high education cutoff. Keeping this in mind, it is clear that there are large differences

in the levels of educational attainment across countries. Over 80% of the American sample are

high school graduates, while this figure is less than a quarter for Indonesian respondents, an older

cohort in a developing country. In the CHARLS sample, less than 10% of the sample graduated

from high school, which is why I use junior high school completion as a the cutoff for high educa-

tion: around 30% of the CHARLS sample completed middle school education. 36% of the ELSA

sample received their A-levels or higher, which is a similar yet slightly more stringent qualification

than high school graduation in the United States.

I also report summary statistics on various physical measurements collected in all surveys:

height, weight, waist circumference, and blood pressure. Although I do not include these variables

in my model,9 they are informative about the differences in objective health measures across the

various populations. Americans and English are significantly taller, more likely to have high-risk

waist circumference, and have higher BMI’s than the other two samples. Indonesians are the most

likely to have high blood pressure.

Table 1 also lists the self-report means for each health domain, and the average of all pair-wise

correlations between self-reports for different domains. The correlations are positive but weak for

all four datasets. For IFLS and CHARLS respondents, all self-report means fall between 1 and 2

(the lowest and “best” two possible answers). Pain and to a lesser extent, cognition, appear to be the

most serious afflictions for these two groups. The U.S. sample reports the worst health on average

across all domains; pain and affect appear to be the most serious problems for this group. These are

also the two most serious afflictions for the ELSA sample, whose self-report averages are almost

9Doing so does not alter my main conclusions. However, I do not include them in the specification discussed in
this paper because I am not interested in seeing how specific objective measures influence self-reports, but rather how
other demographic characteristics influence latent health and response thresholds.
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on the same level as the HRS. Given the significant differences in covariates across groups, the

different formats and languages of the surveys, and of course, the possibility of different response

thresholds across countries, it is difficult to use these raw differences in self-reports to draw any

conclusions about the true health levels of these countries.10

Table 2 reports the responses to the hypothetical vignettes for each sample and each domain. I

report the domain-specific sample size at the bottom of each column. In all interviews and ques-

tionnaires, the self reports were asked before the anchoring vignette questions, therefore making

it unlikely that the vignette questions introduced bias into the self-reports.11 Here, I number the

vignettes in order of increasing intended severity based on the IFLS sample and questionnaire.12 In

all samples, the average perceptions of severity are generally in accord with the intended relative

levels. With the exception of the sleep domain for the HRS, ELSA, and CHARLS samples (which

is one of the least straightforward of all vignette domains), the first vignette is on average rated

healthier than the second, which in turn is rated healthier than the third.13

As shown in Figures A1 and A2, there are substantial within-country differences in self-

reported health across gender and education. For all datasets, there are at least three domains

which show significantly different distributions for men and women and at least four domains for

which highly educated and less educated individuals have significantly different distributions. I in-

vestigate these differences using the HOPIT model discussed in Section 3, which I estimate using

the methods described in the following section.

10Molina (2014) demonstrates that response thresholds play a large role in explaining the drastic cross-country dif-
ferences between these four countries. Although the HRS and ELSA samples seem less healthy in initial comparisons,
they are in fact significantly healthier than both the IFLS and CHARLS respondents once thresholds are equalized
across countries.

11While this is standard practice, recent concerns about response consistency have led to the suggestion that switch-
ing the order may prime respondents to use the same response scales in both the self-reports and the vignette responses.
(Bago d’Uva et al., 2011)

12The vignettes in the IFLS are grouped by domain and within each domain appear to be ordered with the least
severe vignettes at the beginning and the most severe at the end. For most domains, the ordering is quite clear, while
domains like cognition and sleep are more open to interpretation. However, the data confirms that the relative severity
perceived by respondents is consistent with the ordering of vignettes in the interview.

13The differences in the average rating of the second and third sleep vignettes are very small for these three samples,
but the data confirms that indeed, the second vignette is considered more severe than the third. It should be noted that
my arbitrarily chosen ordering is irrelevant to the estimation of the model, as I will actually estimate parameters that
capture the relative severity. In the ELSA and CHARLS, vignette 3 is considered significantly more severe than
vignette 2, and in the HRS, this relationship is marginally significant.
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Table 2: Vignette Responses
Sumstats VG

IFLS Mobility Pain Cognition Sleep Affect Breathing

Vignette 1 2.352 2.525 2.536 2.712 2.508 2.794

(1.047) (1.006) (1.000) (1.018) (0.966) (1.064)

Vignette 2 2.843 2.726 2.884 3.058 3.025 3.330

(1.065) (0.971) (1.050) (1.042) (1.002) (1.056)

Vignette 3 3.520 3.457 3.175 3.396 3.703 3.758

(1.081) (1.076) (1.093) (1.094) (1.175) (1.142)

Observations 1003 1027 1018 1122 944 996

HRS Mobility Pain Cognition Sleep Affect Breathing

Vignette 1 2.461 1.902 1.948 3.030 2.567 3.092

(0.722) (0.652) (0.735) (0.721) (0.693) (0.769)

Vignette 2 3.708 3.187 2.796 3.852 3.357 3.973

(0.817) (0.739) (0.769) (0.837) (0.762) (0.804)

Vignette 3 3.834 3.790 3.776 3.858 4.532 4.382

(0.802) (0.775) (0.759) (0.780) (0.761) (0.767)

Observations 4118 4123 4127 4126 4113 4119

ELSA Mobility Pain Cognition Sleep Affect Breathing

Vignette 1 2.485 1.967 2.098 2.994 2.627 3.197

(0.770) (0.569) (0.680) (0.718) (0.709) (0.789)

Vignette 2 3.616 3.035 2.888 3.649 3.274 3.865

(0.878) (0.733) (0.745) (0.890) (0.777) (0.816)

Vignette 3 3.860 3.902 3.690 3.582 4.318 4.434

(0.796) (0.785) (0.834) (0.778) (0.840) (0.808)

Observations 2115 2145 2121 2148 2088 2085

CHARLS Mobility Pain Cognition Sleep Affect Breathing

Vignette 1 1.784 2.081 1.879 2.351 2.121 2.715

(0.929) (0.802) (0.889) (0.933) (0.873) (1.090)

Vignette 2 2.425 2.096 2.496 3.162 2.729 3.453

(1.077) (0.813) (0.936) (1.159) (0.952) (1.056)

Vignette 3 3.524 3.250 2.654 3.029 3.789 3.918

(1.004) (0.961) (1.067) (0.992) (1.105) (1.098)

Observations 1073 1049 1141 1163 1120 1088

Notes:

All data are weighted using individual cross-sectional sampling weights (without adjustment 

for non-response or attrition), provided by each dataset to make summary statistics 

representative of the United States for the HRS, England for the ELSA, China for the 

CHARLS, and the 13 IFLS provinces in Indonesia for the IFLS.

Page 1
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5 Estimation Strategy

5.1 Estimating the Model

I use maximum likelihood to estimate the model described in Section 3. I normalize σ2
ε = 1 and

estimate σ2
u, as these are not separately identified. I also normalize θ3 = 0. Due to the independence

of εi and vi, the individual likelihood contribution, conditional on ui, is simply the product of four

cumulative normal probabilities (one for the latent health equation and one for each of the three

vignettes). I calculate the unconditional likelihood contribution of each individual using simulated

methods, drawing 50 ui’s from a normal distribution and taking the average of the individual

likelihood contribution over the ui draws.14 The likelihood function can be found in Appendix

section A.

I estimate the model separately for each health domain, as common response scales across

health domains is a strong assumption (Kapteyn et al., 2007). My specification includes the fol-

lowing in the vectorXi: three age dummies (for those aged 56 to 65, 66 to 75, and older than 75), a

male dummy, a dummy for high education, and a dummy for medium education, which essentially

breaks down the sample into three groups, where the omitted category is the low education group.

I also include interactions between the age dummies and all other indicators (sex, high education,

and medium education).

In order to illustrate the difference between the HOPIT and a normal ordered probit model,

I first run a simple ordered probit on the IFLS data, using the same explanatory variables listed

above. I then estimate the HOPIT model using the same sample and explanatory variables.15

14In practice, results were not sensitive to the number of draws used. I ran the analysis using 10, 20, 40, 50, 80, and
100 draws, and obtained very similar results in all attempts.

15For detailed econometric analyses of the HRS, ELSA, and CHARLS vignettes, see Dowd and Todd (2011),
Bago d’Uva et al. (2011) and Mu (2014) respectively. Dowd and Todd (2011) and Bago d’Uva et al. (2011) use
the exact same data as I use here, while Mu (2014) uses the pilot wave of the CHARLS. I use a slightly different
specification from these papers.

19



5.2 Simulating Distributions

The main part of my empirical analysis utilizes all four datasets and focuses on the significant

within-country differences across genders and education levels that were highlighted in Section

4. While the pooled specification described in Section 5.1 includes dummies for gender and edu-

cation, this only allows these characteristics to affect the intercepts in equation 1 (the self-report

latent variable equation) and equation 3 (the threshold determination equations). In order to allow

for the slope coefficients and error variances to differ across groups, I run the analysis separately

for men and women, and then separately for high education individuals and all others.

Using my estimates from the separately estimated models, I simulate the distribution of self-

reports for the separate groups in several ways. For instance, I simulate the distribution of self-

reported mobility separately for males using their own thresholds, females using their own thresh-

olds, and then males using female thresholds. By comparing the distribution of male self reports

predicted from using their own thresholds to the distribution of male self reports predicted us-

ing female thresholds, I will be able to determine whether using different thresholds drastically

changes the predicted distributions. By comparing the simulated distribution of male self reports

using female thresholds to female self reports predicted using their own thresholds, I will be able

to determine whether, after adjustment, males and females are still different.

5.3 Standard Errors for Predicted Probabilities

In previous literature that has conducted these simulations, most analysis and interpretation has

been conducted by simply comparing the distributions calculated using own-group threshold and

then the same thresholds for both groups. Without standard errors, however, it is difficult to draw

definitive conclusions about how much the thresholds matter and whether significant differences

still exist after adjustment. In order to conduct statistical inference, I calculate standard errors

analytically.

As mentioned in Section 5.2, I am interested simulating distributions in two ways – without

and with adjustment for DIF. As a summary measure for each simulated distribution, I calculate
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the simulated proportion of males and females (or high and lower-education groups) who fall into

the healthiest category. Therefore, to analyze the differences between groups, I can look at two

estimates. The first is the difference between the simulated proportion of males and females (or

high vs lower-education groups) in the healthiest category, calculated using their own group’s coef-

ficients estimated from the model. The second comparison is the difference between the simulated

proportion of healthy males predicted using female thresholds and the simulated proportion of

healthy females using female thresholds. This can be thought of as a DIF-adjusted gender com-

parison, and an analogous analysis can be conducted to compare high and lower education groups.

This DIF-adjusted comparison essentially asks how different the two groups would be if they used

the same reporting thresholds.

The standard errors I calculate (equation A11 and A12 in Appendix section B) take into account

correlations in covariates across individuals in a married couple. Appendix section B goes into

greater detail about the derivations of all the formulas used.

5.4 Testing Vignette Equivalence

Vignette equivalence is an important assumption underlying this model, which is not always tested

in existing applications of this methodology. I test for vignette equivalence using the methods

outlined by Bago d’Uva et al. (2011). This test is based on the idea that vignette equivalence

rules out systematic differences in respondents’ understanding or interpretation of the vignettes.

In other words, covariates can be excluded from the equation for the latent variable for vignette

health, Y ∗li = θl+εli. In order to test this necessary condition for vignette equivalence, Bago d’Uva

et al. (2011) suggest including covariates in all but one of the vignette equations. This allows for

systematic variation in vignette responses that are not captured by the different response thresholds.

In other words, I replace the original vignette equations (equation 4) with the following:

4a. Y ∗1i = θ1 + ε1i

4b. Y ∗li = θl + αlXi + εli, l 6= 1

Under the null of vignette equivalence, αl = 0 for l = 2, 3. The results for these checks, as well as
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the previously described estimation methods, are discussed in the following section.

6 Results

In this section, I first discuss the results from the pooled HOPIT estimation of the IFLS. I then

move on to the simulation results by gender and by education, which I discuss for all four datasets.

6.1 HOPIT Estimation of the IFLS

Table 3 reports the coefficients from the main self-report equation (β in equation 1) using both an

ordered probit and the HOPIT model, for each of the six health domains. The threshold equations

for the cognition domain are discussed in this section, and the threshold equations for the remainder

of the domains are available upon request. Since a “1” represents the healthiest response choice,

negative coefficients mean the regressors are associated with better health.

More educated people appear to be healthier in the HOPIT model, across all domains except

affect and breathing. Interestingly, the coefficient on the high school graduate dummy is often

smaller and sometimes even indistinguishable from zero in the ordered probit model but negative

and significant in the HOPIT model, suggesting that ignoring the possibility of DIF underestimates

the positive relationship between educational attainment and health. The threshold equations for

the cognition domain in Appendix Table A3 shed light on this hypothesis. In the first threshold

equation, the coefficients on both education dummies are negative and significant, which means

that more educated people have lower τi’s. In other words, they set a higher bar for what they

deem as having “no difficulty,” in both their own self-reports and for the hypothetical vignettes.

Failing to account for thresholds makes it seem like high school graduates are no different from

non graduates, even though there are significant differences in both the true latent variable as well

as the reporting behavior across groups. Although the high school graduate coefficient is positive

and significant in the next threshold equation, coefficients in higher threshold equations are harder

to interpret as they represent the effects of the covariates on the relative distance between one

22



threshold and the next. Furthermore, higher thresholds are less important because the majority of

individuals in the full sample fall in the “healthiest” category.

Across all health domains except mobility and breathing, gender is significantly related to self-

reported heath at the 5% level in the ordered probit, with males seemingly healthier. Moreover,

males also appear significantly healthier in the HOPIT models for pain, sleep, and affect, suggest-

ing that response thresholds do not explain much of the gender gap in these domains. In cognition,

however, it appears as though the gender gap can be explained by threshold differences since the

gender dummy is no longer significant in the HOPIT specification.

Across all domains except affect and breathing, older people appear to be in worse health

in both the ordered probit and HOPIT models (the omitted category in these regressions is the

youngest age category, 55 and younger). However, overall, there is little evidence that age changes

the effect of gender and education on health, as most interactions are insignificant. In the next

section, I discuss the results from simulating distributions using separately-estimated models for

males and females and then high-education and lower-education groups.

6.2 Simulations

While the tables from the previous section are instructive about the direction and statistical signifi-

cance of the correlations between various characteristics and self-reported health, they do not offer

a quantitative answer to a crucial question: how important is DIF in accounting for differences

across sub-groups? In order to answer this question, I use the HOPIT model to simulate the distri-

bution of self-reports in various ways. I conduct two types of subgroup analysis: males vs. females

and high education vs. low/medium education, which I will refer to as the “lower education” group

for the remainder of the paper.

Before the simulations, I first re-estimate the model separately for each subgroup. The models

estimated for the IFLS in the previous section only included gender and education dummies (and

their age-dummy interactions), allowing the intercepts to vary across these subgroups, but imposed

the equality of the other slope coefficients as well as error variances across groups. I then use these
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estimated parameters to simulate distributions in various ways, which are summarized in Table

4 and Table 5. Table 4 reports the results of various simulations that compare males to females.

Each panel summarizes the results from a different dataset, and each column represents a different

domain. Every cell in the table reports the same summary measure of the simulated distribution:

the proportion of individuals (in the given subgroup, either in the raw data or simulated using the

specified parameters) that fall into the healthiest category (corresponding to a self-report response

of “1”).

The first row of each table simply reports the proportion of 1’s in the self-reports raw data for

men, while the last row reports the proportion among women. These reflect the same numbers

represented graphically in Figure A1. The second row uses the coefficients estimated using the

male-specific HOPIT model to simulate the distribution of self-reports. Taking the explanatory

variables for males as given, I use the male-specific coefficients to predict the proportion of the

male sample in each self-report category and report the proportion in the healthiest category. The

fourth row conducts the same exercise for the female sample. The middle row is the most infor-

mative. These calculations once again take the male explanatory variables and β coefficients as

given, but instead use the female thresholds (γ coefficients) to predict the distribution of self re-

ports among men. This essentially predicts what the male distribution would look like if they had

the same thresholds as women.

In the IFLS data, the middle row narrows the gap between males and females in all domains

except affect. In the HRS, the gap is narrowed for cognition, sleep, affect, and breathing, but

widened in mobility and pain. The ELSA data also show substantial reductions in differences

across all domains. In the CHARLS, the gender gap is close to eliminated in the pain domain and

is narrowed in several others. In all of the datasets, the significance of the reductions or increases

that take place are often unclear.

On the other hand, Table 5, which summarizes the results of this same analysis conducted

instead to compare high-education to lower-education individuals, shows a more universal pattern

across countries. Across the overwhelming majority of domains and datasets, using the same

26



thresholds for both groups does not narrow the education gap and in fact, seems to widen it. In

all domains for the IFLS, all domains for the HRS, and at least four domains in the CHARLS

and ELSA, the numbers in row 3 are of larger magnitude than those in row 2, indicating that

the proportion of high education individuals falling into the healthiest category increases when

predicted using the same thresholds as lower-education individuals. As discussed in section 6.1,

this is because high education individuals usually have a lower first threshold: although they may

be healthier than lower-education individuals, they are also less likely to categorize themselves

or others as having absolutely no difficulty with a particular health problem. This results in an

understatement of differences across education levels.

6.3 Standard Errors for Simulated Probabilities

The preceding discussion about the importance of response thresholds has been based on simply

comparing one simulated proportion to another, without considering standard errors. Not only are

the simulated proportions calculated from estimated parameters, but they are also calculated using

the distribution of covariates in a sample of the true population. Despite this, existing literature has

conducted this type of analysis without calculating standard errors for the simulated proportions.

For many comparisons, including some of the education comparisons discussed here, standard

errors may be less important because definitive conclusions can be drawn without them. For the

domains where significant education differences existed in the raw data, if adjusting for DIF widens

the difference between the proportion of high education and low education individuals that fall into

the healthiest category, it is clear that the use of different thresholds at the very least does nothing

to explain the education gap, and at most, masks even larger differences.

However, certain types of analysis, like that of the gender gap, require more subtlety. For in-

stance, in the sleep domain of the IFLS, where using female thresholds to predict male distributions

appeared to narrow the gender gap slightly but not completely (dropping the male proportion of

66% to 62%, bringing it closer to but still somewhat higher than the female proportion of 54%) , it

is unclear whether males and females remain significantly different even after the same thresholds
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are used. The opposite problem exists with, for example, the mobility domain of the HRS, where

the groups seemed similar initially but diverged when the same thresholds were used. Are the

groups significantly different from each other after the threshold adjustment? This second issue

is also relevant to some education comparisons, where differences appeared trivial to begin with

and widened after the DIF adjustment: in short, standard errors are necessary in order to determine

whether the groups are significantly different before and after adjustment.

In order to assess the statistical significance of the differences between sub-groups, before and

after accounting for thresholds, I calculate standard errors for two differences: first, the differ-

ence between the male (high-education) proportion in the healthiest category, predicted using male

(high-education) thresholds, and the female (lower-education) proportion in the healthiest category,

predicted using female (lower-education) thresholds (row 2 minus row 4); second, the difference

between the male (high-education) proportion in the healthiest category, predicted using female

(lower-education) thresholds, and the female (lower-education) proportion using female (lower-

education) thresholds: row 3 minus row 4. The formulas for the estimated variances, which take

into account correlated covariates within married couples) are in Appendix section B (equation

A11 for the gender differences and A12 for the education differences).

In Tables 6 and 7, I report gender and education differences, along with their respective standard

errors and t-statistics, for differences calculated using group-specific thresholds and differences

calculated using the same thresholds for both subgroups. Each panel represents a different dataset,

and each row represents a different domain. Perhaps the most informative comparisons to make

are between columns 3 and 6. Those comparisons indicate whether significant differences between

gender and education exist before adjustment for DIF and after adjustment for DIF. For instance,

the second rows of Table 6 and Table 7 (the pain domain of the IFLS) report two significant t-

statistics for both the gender differences and the education differences, implying that the significant

differences that existed before adjustment remained even after the DIF-adjustment of thresholds.

On the other hand, in the cognition domain of the IFLS, the gender difference starts out significant

but becomes insignificant after adjustment (in Table 6), while the opposite is true of the education
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Table 6: Standard Errors and t-statistics for Simulated Gender Differencesstd errs

IFLS (1) (2) (3) (4) (5) (6)

Domain

Gender 

Difference

Standard 

Error t-statistic

Gender 

Difference

Standard 

Error t-statistic

Mobility 0.0532 0.0326 1.6328 0.0114 0.0423 0.2702

Pain 0.1009 0.0304 3.3228 0.0962 0.0373 2.5809

Cognition 0.0901 0.0313 2.8747 0.0553 0.0360 1.5361

Sleep 0.1182 0.0299 3.9489 0.0813 0.0313 2.6012

Affect 0.0979 0.0336 2.9149 0.0982 0.0443 2.2185

Breathing -0.0040 0.0299 -0.1332 -0.0335 0.0355 -0.9431

HRS

Domain

Gender 

Difference

Standard 

Error t-statistic

Gender 

Difference

Standard 

Error t-statistic

Mobility 0.0058 0.0195 0.2956 0.0673 0.0302 2.2287

Pain 0.0218 0.0118 1.8507 0.0328 0.0159 2.0686

Cognition 0.0442 0.0178 2.4831 -0.0213 0.0336 -0.6349

Sleep 0.0484 0.0141 3.4432 0.0466 0.0204 2.2846

Affect 0.0929 0.0183 5.0751 0.0058 0.0376 0.1528

Breathing -0.0037 0.0205 -0.1783 -0.0377 0.0410 -0.9209

ELSA

Domain

Gender 

Difference

Standard 

Error t-statistic

Gender 

Difference

Standard 

Error t-statistic

Mobility 0.0505 0.0210 2.4016 0.0342 0.0313 1.0947

Pain 0.0733 0.0172 4.2600 0.0156 0.0220 0.7109

Cognition 0.0375 0.0209 1.7979 -0.0378 0.0435 -0.8692

Sleep 0.1256 0.0189 6.6610 0.1122 0.0247 4.5330

Affect 0.1124 0.0202 5.5600 0.0225 0.0479 0.4688

Breathing 0.0412 0.0186 2.2163 -0.0442 0.0447 -0.9887

CHARLS

Domain

Gender 

Difference

Standard 

Error t-statistic

Gender 

Difference

Standard 

Error t-statistic

Mobility 0.0415 0.0433 0.9582 0.0223 0.0487 0.4591

Pain 0.0835 0.0357 2.3382 0.0166 0.0360 0.4607

Cognition 0.1111 0.0484 2.2959 0.0722 0.0483 1.4944

Sleep 0.1573 0.0431 3.6529 0.0713 0.0423 1.6877

Affect 0.0899 0.0420 2.1387 0.0240 0.0516 0.4651

Breathing 0.0420 0.0420 1.0003 0.0714 0.0513 1.3909

Using Different Thresholds Using Same Thresholds

Using Different Thresholds Using Same Thresholds

Using Different Thresholds Using Same Thresholds

Using Different Thresholds Using Same Thresholds
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Table 7: Standard Errors and t-statistics for Simulated Education Differencesstd errs

IFLS (1) (2) (3) (4) (5) (6)

Domain

Education 

Difference

Standard 

Error t-statistic

Education 

Difference

Standard 

Error t-statistic

Mobility 0.1094 0.0519 2.1081 0.1879 0.0592 3.1753

Pain 0.0962 0.0433 2.2190 0.2108 0.0549 3.8402

Cognition 0.0125 0.0421 0.2980 0.1136 0.0471 2.4133

Sleep 0.0883 0.0417 2.1173 0.1013 0.0446 2.2692

Affect 0.0208 0.0510 0.4081 0.0996 0.0596 1.6716

Breathing -0.0009 0.0458 -0.0195 0.0499 0.0501 0.9965

HRS

Domain

Education 

Difference

Standard 

Error t-statistic

Education 

Difference

Standard 

Error t-statistic

Mobility 0.1688 0.0240 7.0444 0.2219 0.0367 6.0434

Pain 0.0727 0.0150 4.8450 0.1545 0.0263 5.8707

Cognition 0.1186 0.0214 5.5520 0.2855 0.0479 5.9636

Sleep 0.0484 0.0171 2.8278 0.2087 0.0296 7.0611

Affect 0.1041 0.0221 4.7165 0.1602 0.0460 3.4842

Breathing 0.1292 0.0249 5.1989 0.2259 0.0455 4.9676

ELSA

Domain

Education 

Difference

Standard 

Error t-statistic

Education 

Difference

Standard 

Error t-statistic

Mobility 0.1286 0.0214 6.0014 0.0962 0.0330 2.9133

Pain 0.0628 0.0180 3.4887 0.1066 0.0273 3.9062

Cognition 0.1087 0.0213 5.1001 0.2225 0.0466 4.7772

Sleep -0.0042 0.0198 -0.2149 0.1593 0.0264 6.0434

Affect 0.0230 0.0210 1.0928 0.1749 0.0454 3.8519

Breathing 0.1004 0.0192 5.2360 0.1248 0.0460 2.7123

CHARLS

Domain

Education 

Difference

Standard 

Error t-statistic

Education 

Difference

Standard 

Error t-statistic

Mobility 0.1099 0.0535 2.0541 0.0759 0.0587 1.2933

Pain 0.1524 0.0397 3.8423 0.1590 0.0424 3.7526

Cognition 0.1703 0.0531 3.2080 0.1179 0.0514 2.2922

Sleep 0.1745 0.0499 3.4976 0.1931 0.0552 3.5009

Affect 0.1623 0.0517 3.1409 0.2081 0.0651 3.1944

Breathing 0.1248 0.0559 2.2328 0.1786 0.0660 2.7053

Using Different Thresholds Using Same Thresholds

Using Different Thresholds Using Same Thresholds

Using Different Thresholds Using Same Thresholds

Using Different Thresholds Using Same Thresholds

Page 1
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difference (in Table 7).

The gender results reported in Table 6 reveal an important role for reporting behavior in ex-

plaining the gender gap in two out of the four datasets. In the ELSA, five domains show signif-

icant differences before adjustment, but only one (sleep) remains significant after using the same

thresholds to simulate the probabilities. In the CHARLS data, four domains start out with dif-

ferences significant at the 5% level, but none remain significant after adjusting for DIF. For these

two datasets, it is clear that reporting differences are driving the majority of the significant gender

differences that show up in naive comparisons.

On the other hand, in the IFLS, out of the four domains which show significant differences prior

to adjustment, the differences in pain, sleep, and affect remain significant even after adjustment,

although all of the differences are narrowed. In the HRS, significant differences in mobility, pain,

and sleep remain even after adjusting for thresholds. Interestingly, the significant difference in the

mobility domain arises only after adjusting for thresholds, suggesting that DIF does distort naive

comparisons, although instead by masking existing differences instead of generating spurious ones.

Affect and breathing show no significant gender differences after adjustment in any of the

four datasets. Sleep appears to be the domain in which gender differences are most prevalent and

pronounced even after adjustment.

Table 7 tells a more straightforward story. On the whole, education differences in report-

ing behavior appear to be masking larger underlying differences between the two groups. In the

IFLS, although only three domains show significant education differences before adjustment, us-

ing the same thresholds to adjust for DIF reveals significant differences in an additional domain

(cognition). Similarly, in the ELSA data, unadjusted significant differences only exist in four,

but significant differences in the adjusted proportions exist in all six. For the HRS, significant

differences are found both before and after adjustment in all six domains. The CHARLS shows

significant differences in all six domains before adjustment, but for mobility, this differences nar-

rows and becomes insignificant after adjusting for DIF. Despite this, across all datasets including

the CHARLS, education differences are generally quite large and persistent. For pain, cognition,
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and sleep, all datasets show significant differences across education levels after accounting for

reporting heterogeneity.

6.4 Testing Vignette Equivalence

In this section, I test vignette equivalence using the IFLS data and explore an adjustment to the

model to account for potential violations. If the major concern with the vignette equivalence

assumption is that individual characteristics may affect the interpretation and understanding of

vignettes, a natural solution and also a rigorous test would be to include individual characteristics

in the vignette health equation (equation 4), which in the basic model only includes a constant

and an error. Following Bago d’Uva et al. (2011), I run the HOPIT model again but replace the

original vignette equations with equations 4a and 4b. Table 8 displays the results from the original

HOPIT model (which assumed vignette equivalence) and compares this to the model which tests

for vignette equivalence by including covariates in the vignette equations. I report the coefficients

from equation 1 in the basic HOPIT, equation 1 in the HOPIT testing for vignette equivalence, then

equations 4a and 4b in the vignette equivalence tests. The first 4 columns show the results from

the pain domain in the IFLS and the last 4 show the results from the cognition domain (results for

all other domains and datasets available upon request).

To test whether the covariates belong in the vignette equations, I run a likelihood ratio test.

For the cognition domain, the likelihood ratio test cannot reject the null of vignette equivalence.

Moreover, both the AIC and the BIC prefer the simpler model. For the pain domain, I reject the

null that all coefficients in the vignette equivalence equations are equal to zero, which translates to

a rejection of the vignette equivalence assumption. However, in order to judge the severity of the

consequences of this violation, I compare the coefficients in the first two columns of each dataset,

equation 1 in the basic model and equation 1 in the enhanced model. None of the coefficients

are significantly different from each other, which suggests that including the covariates in the

vignette equations leaves all major interpretations unchanged. In fact, even for this domain, both

the AIC and the BIC prefer the simpler model. In short, although vignette equivalence may not
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Table 8: Testing Vignette Equivalence
ve ifls 23 

Page 1

Assuming V.E. Testing V.E.
Vignette 
Equation 1

Vignette 
Equation 2

Assuming 
V.E. Testing V.E.

Vignette 
Equation 1

Vignette 
Equation 2

1(55 < Age <= 65) 0.474** 0.449** -0.0553 0.00319 0.106 0.195 0.164 0.0853
(0.187) (0.203) (0.129) (0.126) (0.180) (0.193) (0.114) (0.112)

1(65 < Age <= 75) 0.750*** 0.656*** -0.135 -0.0952 0.561** 0.554** 0.0177 -0.0330
(0.219) (0.239) (0.156) (0.151) (0.231) (0.248) (0.154) (0.151)

1(Age > 75) -0.157 -0.201 0.0827 -0.158 0.168 0.342 0.0706 0.512
(0.438) (0.476) (0.293) (0.293) (0.482) (0.528) (0.334) (0.315)

1(Male) -0.198** -0.240** -0.0491 -0.0614 -0.136 -0.130 0.0272 -0.0187
(0.0954) (0.104) (0.0628) (0.0615) (0.0962) (0.103) (0.0576) (0.0563)

1(High Education) -0.330** -0.542*** -0.320*** -0.203** -0.314** -0.286** 0.0629 0.000902
(0.130) (0.144) (0.0870) (0.0840) (0.123) (0.132) (0.0745) (0.0728)

1(Medium Education) -0.0796 -0.146 -0.0702 -0.109 -0.338*** -0.304** 0.0371 0.0586
(0.109) (0.119) (0.0719) (0.0709) (0.114) (0.121) (0.0687) (0.0670)

1(Male) -0.265 -0.229 0.0961 0.000477 -0.279 -0.314 -0.107 0.0143
x 1(55 < Age <= 65) (0.191) (0.210) (0.132) (0.128) (0.195) (0.209) (0.121) (0.118)

1(High Education) -0.227 -0.266 -0.0785 -0.00127 0.194 -0.153 -0.562*** -0.288*
x 1(55 < Age <= 65) (0.273) (0.303) (0.187) (0.179) (0.275) (0.299) (0.178) (0.167)

1(Medium Education) -0.0586 -0.167 -0.162 -0.135 0.464** 0.428* -0.0548 -0.0438
x 1(55 < Age <= 65) (0.217) (0.237) (0.150) (0.146) (0.218) (0.232) (0.134) (0.131)

1(Male) 0.0935 0.255 0.289* 0.163 -0.132 -0.0674 0.0772 0.0940
x 1(65 < Age <= 75) (0.243) (0.266) (0.172) (0.167) (0.276) (0.299) (0.184) (0.180)

1(High Education) -0.771** -0.531 0.201 0.421* -0.357 -0.664 -0.295 -0.470*
x 1(65 < Age <= 75) (0.345) (0.378) (0.234) (0.228) (0.402) (0.442) (0.262) (0.261)

1(Medium Education) -0.396 -0.448 -0.156 -0.0159 0.106 -0.0561 -0.236 -0.206
x 1(65 < Age <= 75) (0.260) (0.284) (0.181) (0.178) (0.298) (0.322) (0.198) (0.192)

1(Male) 0.561 0.790 0.408 0.197 -0.253 -0.437 -0.114 -0.442
x 1(Age > 75) (0.473) (0.517) (0.320) (0.321) (0.508) (0.555) (0.354) (0.339)

1(High Education) -4.475 -7.128 0.483 -5.808 -7.054 -10.88 -3.770 -4.025
x 1(Age > 75) (388.3) (344.2) (361.7) (296.3) (1361.1) (1090.4) (53.26) (53.26)

1(Medium Education) 0.0230 -0.110 -0.331 -0.0281 0.970* 0.677 -0.229 -0.691**
x 1(Age > 75) (0.474) (0.516) (0.318) (0.320) (0.506) (0.553) (0.357) (0.345)

Constant -1.281*** -1.178*** -0.514*** -0.375*** -1.126*** -1.139*** -0.466*** -0.215***
(0.0981) (0.103) (0.0629) (0.0607) (0.0976) (0.103) (0.0608) (0.0569)

Observations 1027 1027 1018 1018
AIC 10696.62 10707.4 10672.8 10701.35
BIC 11096.3 11260.05 11086.55 11262.86

LR test Chi-squared stat 51.22 31.46
LR test df 30 30
LR test p-value 0.0126 0.393

Pain Cognition

Notes: t-statistics in parentheses (*** p<0.01, ** p<0.05, * p<0.1). 
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hold in this particular scenario, adjusting the model to allow for violations does little to change the

conclusions. In fact, using the IFLS data, the likelihood ratio test rejects the null for four out of

the six domains, but in none of these domains are the β coefficients from the simple and enhanced

model significantly different from each other. This result is not unique to the IFLS. In the other

three datasets, although vignette equivalence is more consistently rejected across domains (as in

Bago d’Uva et al. (2011) using the ELSA data), the vast majority of coefficients are statistically

indistinguishable across specifications.

7 Conclusion

Anchoring vignettes are a vital tool that can be used to account for reporting bias in subjective scale

measures. I demonstrate that accounting for DIF is crucial to understanding what really determines

self-reported health. Ignoring DIF underestimates the differences in health across education levels

in Indonesia, the United States, England, and China, even though the schooling distributions are

drastically different across these countries.

The evidence on gender differences is more mixed but suggests a larger role for reporting

thresholds. Although significant differences between males and females remain in three out of

the six domains for the IFLS and HRS even after adjusting for thresholds, in England and China,

accounting for thresholds completely eliminates significant differences between males and females

in all but one domain (sleep in the ELSA). Previous vignette studies have found that both male and

female respondents rate a given vignette condition as more severe when the hypothetical vignette

individual is female (Kapteyn et al., 2007). Together with the results of this paper, these findings

suggest that the gender of the object of evaluation, whether a hypothetical individual or one’s

own self, plays a role in shaping the elicited evaluations of health. Separating the effect of the

respondent’s gender from the effect of the object’s gender is outside the scope of this paper.16

What I can conclude from this analysis is that, irrespective of the reasons for their use of different

16Although some studies are able to include vignette gender as a variable in the vignette latent variable equation, I
do not have this information for all four datasets.
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thresholds, males and females in the ELSA and CHARLS would report much more similar levels

of health if they used the same thresholds.

Although the role of thresholds in explaining the within-country differences is certainly coun-

try and domain-specific, anchoring vignettes offer informative insight into these comparisons and

highlight some surprisingly universal findings.
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A Likelihood Function

In order to express the log-likelihood function, I define the indicator function Dijj1j2j3 = 1(Yi =

j, Y1i = j1, Y2i = j2, Y3i = j3). Then,

L(β, γ, θ, σv, σu) =
N∏
i=1

5∏
j3=1

5∏
j2=1

5∏
j1=1

Pr(Yi = j, Y1i = j1, Y2i = j2, Y3i = j3)Dijj1j2j3 .

I calculate the unconditional likelihood contribution
∏5

j3=1

∏5
j2=1

∏5
j1=1 Pr(Yi = j, Y1i = j1, Y2i =

j2, Y3i = j3)Dijj1j2j3 by taking the average of the following conditional likelihood contribution over

50 simulated ui’s (from a standard normal distribution) for each individual.

Pr(Yi = j, Y1i = j1, Y2i = j2, Y3i = j3|ui)

=
[
Φ(τ ji (ui)− βXi)− Φ(τ j−1

i (ui)− βXi)
] [

Φ(
τ j1i (ui)− θ1

σv
)− Φ(

τ j1−1
i (ui)− θ1

σv
)

]
[

Φ(
τ j2i (ui)− θ2

σv
)− Φ(

τ j2−1
i (ui)− θ2

σv
)

][
Φ(
τ j3i (ui)

σv
)− Φ(

τ j3−1
i (ui)

σv
)

]
. (A1)

For j, j1, j2, j3 > 2, this becomes

=

[
Φ((γ1 − β)Xi +

j∑
n=2

eγnXi + σuui)− Φ((γ1 − β)Xi +

j−1∑
n=2

eγnXi + σuui)

]
[

Φ(
γ1Xi − θ1 +

∑j1
n=2 e

γnXi + σuui
σv

)− Φ(
γ1Xi − θ1 +

∑j1−1
n=2 e

γnXi + σuui
σv

)

]
[

Φ(
γ1Xi − θ2 +

∑j2
n=2 e

γnXi + σuui
σv

)− Φ(
γ1Xi − θ2 +

∑j2−1
n=2 e

γnXi + σuui
σv

)

]
[

Φ(
γ1Xi +

∑j3
n=2 e

γnXi + σuui
σv

)− Φ(
γ1Xi +

∑j3−1
n=2 e

γnXi + σuui
σv

)

]
.

This follows directly from equation A1 and the formulas for the τi’s in equation 3 in Section 3

. The individual likelihood contributions for j, j1, j2, j3 ≤ 2 can be obtained in the same way.
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B Standard Error Derivations

B.1 General Case

I begin with the general case and in the next sub-section specialize to the setting relevant to this

paper. I define f̂ , an estimate of a population proportion, as

f̂ =
1

N

N∑
i=1

h(Xi, θ̂),

where h(X, θ) is a continuous and differentiable function. In my application, 0 ≤ h(X, θ) ≤ 1.

The parameter vector θ is estimated in a preliminary step and is
√
N consistent with

√
N(θ̂ − θ0)

d→ N(0, V )

I define f̃ as the sample fraction calculated using the true parameter:

f̃ =
1

N

N∑
i=1

h(Xi, θ0).

The population fraction is

f = E[h(X, θ0)]

where the expectation is over the joint distribution of X. If the uniform law of large numbers

(ULLN) holds, or in other words, if

E

[
sup
θ∈Θ

h(X, θ)

]
<∞

then f̂
p→ f . I decompose the difference between my estimated f̂ and the population proportion f

into two parts:

√
N(f̂ − f) =

√
N(f̂ − f̃) +

√
N(f̃ − f) (A2)
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I start with the first term. By the mean value theorem,

f̂ = f̃ +
1

N

N∑
i=1

∂h

∂θ
(Xi, θ)

′(θ̂ − θ0),

where θ is a random variable strictly between θ̂ and θ0.

If

E

[
sup
θ∈Θ

∂h

∂θ
(X, θ)

]
<∞,

then another application of the ULLN and the Slutsky theorem gives

√
N(f̂ − f̃) = E

[
∂h

∂θ
(X, θ0)

]′√
N(θ̂ − θ0) + op(1),

so the asymptotic variance of the asymptotic normal distribution is

Var(f̂ − f̃) =
1

N
E

[
∂h

∂θ
(X, θ0)

]′
V E

[
∂h

∂θ
(X, θ0)

]
≡ σ2

N
. (A3)

Moving on to the second term of equation A2, we have that

√
N(f̃ − f) =

1√
N

N∑
i=1

(h(Xi, θ0)− E(h(X, θ0))).

By the central limit theorem, this has an asymptotic normal distribution with variance

Var(f̃ − f) =
1

N
Var(h(X, θ0))) ≡ s2

N
. (A4)

Because
√
N(f̂ − f̃) and

√
N(f̃ − f) are independent,

Var(f̂ − f) =
σ2

N
+
s2

N
. (A5)

where σ2

N
is defined by equation A3 , and s2

N
is defined by equation A4.
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B.2 Standard Errors for Proportion Differences

In this paper, rather than the standard error of an estimated proportion, I am interested in the

standard error of a difference between estimated proportions. In fact, there are two differences

of interest. The first is the difference between the estimated proportion of males and females

(or high vs lower-education groups) who fall into the healthiest category, calculated using their

own group’s coefficients to estimate the model. I will denote these p̂m and p̂f , respectively. The

second comparison is the difference between the simulated proportion of healthy males predicted

using female thresholds (which I will denote p̂g) and the simulated proportion of healthy females

using female thresholds (the same p̂f as above). This can be thought of as a DIF-adjusted gender

comparison, and an analogous analysis can be conducted to compare high and lower education

groups. As the calculation of standard errors for (p̂m - p̂f ) is a special case of the more complex

second comparison, I focus on the the latter: the difference between p̂g and p̂f .

I formally define p̂g as

p̂g =
1

Nm

∑
i∈M

Pr(X ′iβ̂m + εi ≤ X ′iγ̂f + ui)

=
1

Nm

∑
i∈M

Pr(εi − ui ≤ X ′i(γ̂f − β̂m))

=
1

Nm

∑
i∈M

Φ(
X ′i(γ̂f − β̂m)√

1 + σ̂2
uf

)

The m and f subscripts indicate the sample (male or female) used to estimate the coefficients.

For simplicity, I omit the 1 superscript in γ1 as this is the only γ vector that is relevant to this

discussion. Defining p̂f using these coefficient subscripts,

p̂f =
1

Nf

∑
i∈F

Φ(
X ′i(γ̂f − β̂f )√

1 + σ̂2
uf

),

it is clear now that I cannot simply calculate Var(p̂f ) and Var(p̂g) separately because of the common

γ̂f and σ̂uf . Therefore, I consider the difference (rather than the individual proportions) as my
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estimate of interest:

f̂ = p̂g − p̂f

Defining

h(X, β, γ, σu) = Φ(
X ′i(γ − β)√

1 + σ2
u

),

I have

f̂ =
1

Nm

∑
i∈M

h(Xi, β̂m, γ̂f , σ̂uf )−
1

Nf

∑
i∈F

h(Xi, β̂f , γ̂f , σ̂uf )

≡ f(θ̂, X)

where in the last line I define

θ̂ = (β̂m β̂f α̂)′,

grouping the common parameters together and letting α̂ ≡ (γ̂f σ̂uf )
′.

The analogous sample difference, calculated using true parameters, is

f̃ = p̃g − p̃f

=
1

Nm

∑
i∈M

h(Xi, βm0, γf0, σuf0)− 1

Nf

∑
i∈F

h(Xi, βf0, γf0, σuf0)

and the population difference is

f = pg − pf

= E[h(Xi, βm0, γf0, σuf0)|X ∈M ]− E[h(Xi, βf0, γf0, σuf0)|X ∈ F ]

Recalling that the variance of a simulated proportion consists of two terms (as shown in equa-

tion A5), I begin with calculating an estimate for the first term, σ
2

N
.
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B.2.1 Estimating σ2

N

Again using the mean value theorem, I have

f(θ̂, X) = f(θ0, X) +
∂f(X, θ̄)

∂θ
(θ̂ − θ0)

which can be decomposed into three sums that involve the the male-specific coefficients, the

female-specific coefficients, and the common coefficients.

f̂ = f̃ +
∂f(X, θ̄)

∂βm
(β̂m − βm0) +

∂f(X, θ̄)

∂βf
(β̂f − βf0) +

∂f(X, θ̄)

∂α
(α̂− α0)

= f̃ +
1

Nm

∑
i∈M

∂h(Xi, β̄m, ᾱ)

∂βm
(β̂m − βm0) +

1

Nf

∑
i∈F

∂f(Xi, β̄f , ᾱ)

∂βf
(β̂f − βf0) +(

1

Nm

∑
i∈M

∂f(Xi, β̄m, ᾱ)

∂α
− 1

Nf

∑
i∈F

∂f(Xi, β̄f , ᾱ)

∂α

)
(α̂− α0)

The ULLN and Slutsky theorem once again give

√
N(f̂−f̃) =


E
[
∂h
∂βm

(X, βm0, α0)|X ∈M
]

E
[
∂h
∂βf

(X, βf0, α0)|X ∈ F
]

E
[
∂h
∂α

(X, βm0, α0)|X ∈M
]
− E

[
∂h
∂α

(X, βf0, α0)|X ∈ F
]

′

√
N(θ̂−θ0)+op(1)

so that the variance of the asymptotic normal distribution is

V ar(f̂ − f̃) =


E
[
∂h
∂βm

(X, βm0, α0)|X ∈M
]

E
[
∂h
∂βf

(X, βf0, α0)|X ∈ F
]

E
[
∂h
∂α

(X, βm0, α0)|X ∈M
]
− E

[
∂h
∂α

(X, βf0, α0)|X ∈ F
]

′

V

N


E
[
∂h
∂βm

(X, βm0, α0)|X ∈M
]

E
[
∂h
∂βf

(X, βf0, α0)|X ∈ F
]

E
[
∂h
∂α

(X, βm0, α0)|X ∈M
]
− E

[
∂h
∂α

(X, βf0, α0)|X ∈ F
]
 =

σ2

N
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and can be estimated by

σ̂2

N
=



− 1
Nm

∑
i∈M

1√
1+σ̂2

uf

φ(
X′

i(γ̂f−β̂m)√
1+σ̂2

uf

)Xi

− 1
Nf

∑
i∈F

1√
1+σ̂2

uf

φ(
X′

i(γ̂f−β̂f )√
1+σ̂2

uf

)Xi

1
Nm

∑
i∈M

1√
1+σ̂2

uf

φ(
X′

i(γ̂f−β̂m)√
1+σ̂2

uf

)Xi − 1
Nf

∑
i∈F

1√
1+σ̂2

uf

φ(
X′

i(γ̂f−β̂f )√
1+σ̂2

uf

)Xi

1
Nm

∑
i∈M

−σ̂uf
(1+σ̂2

uf )
3
2
φ(

X′
i(γ̂f−β̂m)√

1+σ̂2
uf

)X ′i(γ̂f − β̂m)− 1
Nf

∑
i∈F

−σ̂uf
(1+σ̂2

uf )
3
2
φ(

X′
i(γ̂f−β̂f )√

1+σ̂2
uf

)X ′i(γ̂f − β̂f )



′

V̂

N



− 1
Nm

∑
i∈M

1√
1+σ̂2

uf

φ(
X′

i(γ̂f−β̂m)√
1+σ̂2

uf

)Xi

− 1
Nf

∑
i∈F

1√
1+σ̂2

uf

φ(
X′

i(γ̂f−β̂f )√
1+σ̂2

uf

)Xi

1
Nm

∑
i∈M

1√
1+σ̂2

uf

φ(
X′

i(γ̂f−β̂m)√
1+σ̂2

uf

)Xi − 1
Nf

∑
i∈F

1√
1+σ̂2

uf

φ(
X′

i(γ̂f−β̂f )√
1+σ̂2

uf

)Xi

1
Nm

∑
i∈M

−σ̂uf
(1+σ̂2

uf )
3
2
φ(

X′
i(γ̂f−β̂m)√

1+σ̂2
uf

)X ′i(γ̂f − β̂m)− 1
Nf

∑
i∈F

−σ̂uf
(1+σ̂2

uf )
3
2
φ(

X′
i(γ̂f−β̂f )√

1+σ̂2
uf

)X ′i(γ̂f − β̂f )


(A6)

Here, because θ involves coefficients from the estimation over the male population and over the

female population, the matrix V involves a combination of estimated variance-covariance matrices

from both estimations. In particular, let V̂m
Nm

represent the variance-covariance matrix for the male-

specific parameters of interest (β̂m), and V̂f
Nf

represent the variance-covariance matrix for the female

parameters of interest (β̂f , α̂). Then, the relevant variance covariance equation needed for this

calculation is

V̂

N
=

 V̂m
Nm

0

0
V̂f
Nf

 .

Running separate estimations for males and females, I assume independence of the male and fe-

male coefficients. Note that the formula for σ̂
2

N
(equation A6) can be easily applied to calculating σ̂2

N

for the simpler difference, p̂m−p̂f . The female coefficients in the male summations are replaced by

male coefficients, gender-specific γ’s and σu’s are included in the male- and female-specific vec-

tors, and the common coefficients, α̂, are dropped. V̂m
Nm

and V̂f
Nf

are simply the variance-covariance

matrices from the separately-conducted male estimation and female estimation, respectively.
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B.2.2 Estimating s2

N

The calculation of s2

N
is straightforward if I assume the independence of the X’s across the male

and female populations.

Var(f̃ − f) =
1

Nm

Var(h(X, βm0, α0)|X ∈M) +
1

Nf

Var(h(X, βf0, α0)|X ∈ F ) =
s2

N

It can be estimated by

ŝ2

N
=

1

Nm

 1

Nm

∑
i∈M

Φ(
X ′i(γ̂f − β̂m)√

1 + σ̂2
uf

)− 1

Nm

∑
k∈M

Φ(
X ′k(γ̂f − β̂m)√

1 + σ̂2
uf

)

2
+

1

Nf

 1

Nf

∑
i∈F

Φ(
X ′i(γ̂f − β̂f )√

1 + σ̂2
uf

)− 1

Nf

∑
k∈F

Φ(
X ′k(γ̂f − β̂f )√

1 + σ̂2
uf

)

2 . (A7)

For simplicity in future notations, I define s̃(g(Xi), N) as the deviation of a function g(Xi)

from its sample mean, from a sample of size N :

s̃(g(Xi), N) = g(Xi)−
1

N

N∑
k=1

g(Xk). (A8)

Using this notation, I can rewrite equation A7 as

ŝ2

N
=

1

N2
m

∑
i∈M

s̃(h(Xi, β̂m, γ̂f , σ̂uf ), Nm)2 +
1

N2
f

∑
i∈F

s̃(h(Xi, β̂f , γ̂f , σ̂uf ), Nf )
2

The calculation of s2

N
becomes more complicated if I consider correlations between couples.

In all of the surveys used, when a household is (randomly) selected, both husband and wife are

included in the sample if both are present and eligible. If couples match non-randomly, this would

create correlations across observations (within couples), which violates the assumption of inde-

pendence across male and female covariates.17

17For the validity of the maximum likelihood estimation, I require independence across observations conditional on
the included covariates. Therefore, if couples only match on age and education (which are included as my regressors),
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Though the entire discussion has been framed in terms of the male-female comparison, any

formulas described until now can be directly applied to the comparison between educated and

non-educated groups. However, taking into account correlations within couples when comparing

across high and lower-education groups requires a slightly different approach than what is needed

when simply comparing across males and females. I first describe the methods used to account for

correlations in the gender comparisons.

Let SM denote the set of single males and NSM the number of individuals in this set. Simi-

larly, let SF represent the set of single females, NSF the number of single females, C the set of

individuals belonging to a married couple with both individuals in the sample, and NC the number

of such couples. Within a couple j, let Xm
j represent the characteristics of the male in the couple

and Xf
j the characteristics of the female in the couple. With this additional notation, I rewrite f̃ as

follows:

f̃ =
1

NSM

∑
i∈SM

h(Xi, βm0, α0)
NSM

Nm

− 1

NSF

∑
i∈SF

h(Xi, βf0, α0)
NSF

Nf

+

1

NC

∑
j∈C

(h(Xm
j , βm0, α0)

NC

Nm

− h(Xf
j , βf0, α0)

NC

Nf

).

Assuming independence across couples but not within couples, I can calculate the asymptotic

variance as follows:

Var(f̃ − f) =
1

NSM

Var(h(Xi, βm0, α0)
NSM

Nm

) +
1

NSF

Var(h(Xi, βf0, α0)
NSF

Nf

)

+
1

NC

Var(h(Xm
j , βm0, α0)

NC

Nm

− h(Xf
j , βf0, α0)

NC

Nf

)

=
1

NSM

Var(h(Xi, βm0, α0)
NSM

Nm

) +
1

NSF

Var(h(Xi, βf0, α0)
NSF

Nf

)

+
1

NC

[
Var(h(Xm

j , βm0, α0)
NC

Nm

) + Var(h(Xf
j , βf0, α0)

NC

Nf

)

]
−2

1

NC

[
Cov(h(Xm

j , βm0, α0)
NC

Nm

, h(Xf
j , βf0, α0)

NC

Nf

)

]
.

this conditional independence is not violated.
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The corresponding estimate is:

ŝ2

N gender
=

1

N2
SM

∑
i∈SM

s̃(h(Xi, β̂m, α̂)
NSM

Nm

, NSM)2 +
1

N2
SF

∑
i∈SF

s̃(h(Xi, β̂f , α̂)
NSF

Nf

, NSF )2

+
1

N2
C

∑
j∈C

[
s̃(h(Xm

j , β̂m, α̂)
NC

Nm

, NC)2 + s̃(h(Xf
j , β̂f , α̂)

NC

Nf

, NC)2

]
−2

1

N2
C

∑
j∈C

s̃(h(Xm
j , β̂m, α̂)

NC

Nm

, NC)s̃(h(Xf
j , β̂f , α̂)

NC

Nf

, NC) (A9)

As mentioned earlier, adjusting for correlations in the education analysis requires a slightly

different approach. Here, I break the sample into 6 groups: NSH single educated individuals (in

set SH), NSL single lower-education individuals (in set SL), NC10 couples (in set C10) where

the male is educated and the female is not, NC11 couples (in set C11) where both partners are

educated, NC00 couples (in set C00) where both partners are in the lower-education category, and

NC01 couples (in set C01) where the female is educated but the male is not. Let NH denote the

total number of high-education individuals and NL denote the total number of lower-education

individuals. Using an h subscript to indicate the high education group and the l subscript for the

lower-education group, I can therefore re-write f̃ as:

f̃ =
1

NSH

∑
i∈SH

h(Xi, βh0, α0)
NSH

NH

− 1

NSL

∑
i∈SL

h(Xi, βl0, α0)
NSL

NL

+

+
1

NC11

∑
j∈C11

(h(Xm
j , βh0, α0)

NC11

NH

+ h(Xf
j , βh0, α0)

NC11

NH

)

+
1

NC10

∑
j∈C10

(h(Xm
j , βh0, α0)

NC10

NH

− h(Xf
j , βl0, α0)

NC10

NL

)

+
1

NC01

∑
j∈C01

(h(Xf
j , βh0, α0)

NC01

NH

− h(Xm
j , βl0, α0)

NC01

NL

)

− 1

NC00

∑
j∈C00

(h(Xm
j , βl0, α0)

NC00

NL

+ h(Xf
j , βl0, α0)

NC00

NL

)
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The asymptotic variance is

Var(f̃ − f) =
1

NSH

Var(h(Xi, βh0, α0)
NSH

NH

) +
1

NSL

Var(h(Xi, βl0, α0)
NSL

NL

)

+
1

NC11

[
Var(h(Xm

j , βh0, α0)
NC11

NH

) + Var(h(Xf
j , βh0, α0)

NC11

NH

)

]
+2

1

NC11

Cov(h(Xm
j , βh0, α0)

NC11

NH

, h(Xf
j , βh0, α0)

NC11

NH

)

+
1

NC10

[
Var(h(Xm

j , βh0, α0)
NC10

NH

) + Var(h(Xf
j , βl0, α0)

NC10

NL

)

]
−2

1

NC10

Cov(h(Xm
j , βh0, α0)

NC10

NH

, h(Xf
j , βl0, α0)

NC10

NL

)

+
1

NC01

[
Var(h(Xf

j , βh0, α0)
NC01

NH

) + Varh(Xm
j , βl0, α0)

NC01

NL

)

]
−2

1

NC01

Cov(h(Xf
j , βh0, α0)

NC01

NH

, h(Xm
j , βl0, α0)

NC01

NL

)

+
1

NC00

[
Var((h(Xm

j , βl0, α0)
NC00

NL

) + Var(h(Xf
j , βl0, α0)

NC00

NL

)

]
+2

1

NC00

Cov(h(Xm
j , βl0, α0)

NC00

NL

, h(Xf
j , βl0, α0)

NC00

NL

),
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and sample analog follows directly:

ŝ2

N educ
=

1

N2
SH

∑
i∈SH

s̃(h(Xi, βh0, α0)
NSH

NH

, NSH)2 +
1

N2
SL

∑
i∈SL

s̃(h(Xi, βl0, α0)
NSL

NL

, NSL)2

+
1

N2
C11

∑
i∈C11

[
s̃(h(Xm

j , βh0, α0)
NC11

NH

, NC11)2 + s̃(h(Xf
j , βh0, α0)

NC11

NH

, NC11)2

]
+2

1

N2
C11

∑
j∈C11

s̃(h(Xm
j , βh0, α0)

NC11

NH

, NC11)s̃(h(Xf
j , βh0, α0)

NC11

NH

, NC11)

+
1

N2
C10

∑
i∈C10

[
s̃(h(Xm

j , βh0, α0)
NC10

NH

, NC10)2 + s̃(h(Xf
j , βl0, α0)

NC10

NL

, NC10)2

]
−2

1

N2
C10

∑
j∈C10

s̃(h(Xm
j , βh0, α0)

NC10

NH

, NC10)s̃(h(Xf
j , βl0, α0)

NC10

NL

, NC10)

+
1

N2
C01

∑
i∈C01

[
s̃(h(Xf

j , βh0, α0)
NC01

NH

, NC01)2 + s̃h(Xm
j , βl0, α0)

NC01

NL

, NC01)2

]
−2

1

N2
C01

∑
j∈C01

s̃(h(Xf
j , βh0, α0)

NC01

NH

, NC01)s̃(h(Xm
j , βl0, α0)

NC01

NL

, NC01)

+
1

N2
C00

∑
i∈C00

[
s̃((h(Xm

j , βl0, α0)
NC00

NL

, NC00)2 + s̃(h(Xf
j , βl0, α0)

NC00

NL

, NC00)2

]
+2

1

N2
C00

∑
j∈C00

s̃(h(Xm
j , βl0, α0)

NC00

NL

, NC00)s̃(h(Xf
j , βl0, α0)

NC00

NL

, NC00). (A10)

Therefore, the estimate for the variance of p̂g − p̂m when comparing across genders is

V̂ (p̂g − p̂m) =
σ̂2

N
+
ŝ2

N gender
, (A11)

while the estimate for the variance when comparing across education levels can be written

V̂ (p̂g − p̂m) =
σ̂2

N
+
ŝ2

N educ
, (A12)

where σ̂2

N
is defined by equation A6, ŝ

2

N gender
by equation A9, and ŝ2

N educ
by equation A10.

Another way to deal with correlations between couples is to randomly select one individual

from each household in order to generate a random sample of individuals. Now, with no correla-

tions between men and women or educated and uneducated individuals, I can simply calculate ŝ2

N
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using equation A7, for both the gender and education comparisons. The results from this analysis

are reported in Tables A1 and A2.

Even though the sample sizes have fallen dramatically, the basic story remains the same: edu-

cation differences either remain constant or are exacerbated after adjusting for DIF. On the other

hand, significant differences between males and females lose significance in most domains for the

ELSA and CHARLS after accounting for thresholds, while there is stronger evidence for remaining

gender differences in the HRS and IFLS.
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Table A1: Standard Errors and t-statistics for Simulated Gender Differences using a Random Sam-
ple of Individuals std errs random

Page 1

IFLS (1) (2) (3) (4) (5) (6)

Domain
Gender 
Difference

Standard 
Error t-statistic

Gender 
Difference

Standard 
Error t-statistic

Mobility 0.0249 0.0392 0.6338 0.0388 0.0505 0.7677
Pain 0.1228 0.0374 3.2807 0.0962 0.0454 2.1198
Cognition 0.1058 0.0383 2.7577 0.0759 0.0433 1.7511
Sleep 0.1156 0.0359 3.2205 0.0658 0.0367 1.7907
Affect 0.1074 0.0409 2.6271 0.1207 0.0552 2.1855
Breathing 0.0183 0.0361 0.5065 -0.0061 0.0454 -0.1334

HRS

Domain
Gender 
Difference

Standard 
Error t-statistic

Gender 
Difference

Standard 
Error t-statistic

Mobility 0.0110 0.0218 0.5021 0.1045 0.0340 3.0769
Pain 0.0202 0.0134 1.5066 0.0476 0.0185 2.5755
Cognition 0.0453 0.0199 2.2768 -0.0037 0.0374 -0.0982
Sleep 0.0344 0.0156 2.2034 0.0598 0.0236 2.5312
Affect 0.0890 0.0202 4.3940 0.0307 0.0414 0.7404
Breathing 0.0073 0.0231 0.3171 -0.0340 0.0463 -0.7341

ELSA

Domain
Gender 
Difference

Standard 
Error t-statistic

Gender 
Difference

Standard 
Error t-statistic

Mobility 0.0568 0.0216 2.6267 0.0553 0.0324 1.7068
Pain 0.0819 0.0179 4.5860 0.0093 0.0222 0.4189
Cognition 0.0314 0.0215 1.4591 -0.0353 0.0438 -0.8062
Sleep 0.1261 0.0197 6.3974 0.1112 0.0253 4.3912
Affect 0.1142 0.0210 5.4384 0.0181 0.0487 0.3712
Breathing 0.0401 0.0192 2.0882 -0.0336 0.0455 -0.7384

CHARLS

Domain
Gender 
Difference

Standard 
Error t-statistic

Gender 
Difference

Standard 
Error t-statistic

Mobility 0.0035 0.0579 0.0605 0.0132 0.0655 0.2014
Pain 0.0654 0.0439 1.4882 -0.0212 0.0436 -0.4863
Cognition 0.1044 0.0558 1.8712 0.0893 0.0579 1.5428
Sleep 0.1881 0.0496 3.7880 0.0925 0.0485 1.9070
Affect 0.0885 0.0561 1.5773 0.0496 0.0649 0.7649
Breathing 0.0548 0.0557 0.9844 0.0428 0.0673 0.6365

Using Different Thresholds Using Same Thresholds

Using Different Thresholds Using Same Thresholds

Using Different Thresholds Using Same Thresholds

Using Different Thresholds Using Same Thresholds
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Table A2: Standard Errors and t-statistics for Simulated Education Differences using a Random
Sample of Individuals std errs random

IFLS (1) (2) (3) (4) (5) (6)

Domain

Education 

Difference

Standard 

Error t-statistic

Education 

Difference

Standard 

Error t-statistic

Mobility 0.1139 0.0465 2.4486 0.1780 0.0560 3.1769

Pain 0.0526 0.0469 1.1205 0.1407 0.0567 2.4808

Cognition 0.0456 0.0454 1.0041 0.1254 0.0480 2.6104

Sleep 0.1165 0.0426 2.7345 0.1354 0.0450 3.0114

Affect 0.0303 0.0502 0.6031 0.1017 0.0600 1.6958

Breathing -0.0027 0.0394 -0.0689 0.0514 0.0419 1.2264

HRS

Domain

Education 

Difference

Standard 

Error t-statistic

Education 

Difference

Standard 

Error t-statistic

Mobility 0.1731 0.0256 6.7649 0.2510 0.0402 6.2477

Pain 0.0836 0.0168 4.9619 0.1635 0.0295 5.5376

Cognition 0.1083 0.0230 4.7036 0.3415 0.0486 7.0231

Sleep 0.0429 0.0181 2.3761 0.2246 0.0346 6.4985

Affect 0.1010 0.0239 4.2210 0.1872 0.0517 3.6222

Breathing 0.1349 0.0259 5.2034 0.2321 0.0499 4.6502

ELSA

Domain

Education 

Difference

Standard 

Error t-statistic

Education 

Difference

Standard 

Error t-statistic

Mobility 0.1324 0.0221 5.9911 0.0949 0.0346 2.7435

Pain 0.0567 0.0188 3.0145 0.1012 0.0283 3.5771

Cognition 0.1064 0.0221 4.8121 0.2175 0.0483 4.4999

Sleep -0.0013 0.0205 -0.0631 0.1765 0.0281 6.2818

Affect 0.0268 0.0219 1.2245 0.1804 0.0465 3.8831

Breathing 0.1066 0.0196 5.4457 0.1304 0.0477 2.7331

CHARLS

Domain

Education 

Difference

Standard 

Error t-statistic

Education 

Difference

Standard 

Error t-statistic

Mobility 0.1232 0.0706 1.7450 0.0818 0.0763 1.0721

Pain 0.1323 0.0485 2.7306 0.1498 0.0509 2.9449

Cognition 0.1788 0.0674 2.6534 0.1676 0.0688 2.4356

Sleep 0.1626 0.0525 3.0989 0.1949 0.0590 3.3022

Affect 0.1687 0.0639 2.6411 0.2490 0.0792 3.1451

Breathing 0.1210 0.0703 1.7219 0.2090 0.0844 2.4769

Using Different Thresholds Using Same Thresholds

Using Different Thresholds Using Same Thresholds

Using Different Thresholds Using Same Thresholds

Using Different Thresholds Using Same Thresholds

Page 1
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C Appendix Tables and Figures

C.1 Self-Report Distributions

Figures A1 and A2 explore within-country differences across gender and education. Figure A1

depicts the distribution of self-report responses by gender for each dataset separately. On each

domain graph, I report the p-value corresponding to the Pearson chi-squared statistic for the test

of the null hypothesis that the distribution of the responses are the same for males and females. In

the IFLS and CHARLS, for pain, cognition, affect, and sleep, males and females have significantly

different self-report distributions, with males disproportionately falling in the healthiest category.

In the HRS, there are significantly different male and female distributions in the cognition, affect,

and sleep domains going in the same direction. In the ELSA, the domains that exhibit significant

gender differences are pain, sleep, and affect.

Figure A2 shows even more drastically different distributions of self-reports, this time between

high education and “lower” education groups (for which I pool the medium and low education

categories). In virtually all domains in all four samples (with the exception of cognition and affect

in the IFLS), the distributions are significantly different, with the higher education group dispro-

portionally represented in the healthiest categories.
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Figure A1: Distribution of Self-Reports by Gender
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Figure A1: Distribution of Self-Reports by Gender, continued
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Figure A2: Distribution of Self-Reports by Education
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Figure A2: Distribution of Self-Reports by Education, continued
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C.2 Ordered Probit and HOPIT Estimation Results

Table A3 reports the coefficients for the HOPIT estimation of the cognition domain in the IFLS,

including all threshold equations.

C.3 Robustness to Alternative Functional Form

Table A4 reports the coefficients for the HOPIT estimation of the cognition domain in the IFLS,

including all threshold equations. Instead of the exponential function in Equation 3, I estimate the

model using a squared term:

3a. τ 0
i = −∞, τ 5

i =∞, τ 1
i = γ1Xi + ui, τ

j
i = τ j−1

i + (γjXi)
2, j = 2, 3, 4

The coefficients in the latent variable equation and the first threshold equation are almost iden-

tical when comparing Table A4 with Table A3, as are the signs and significance levels in the

coefficients in the second to fourth threshold equations, alleviating concerns about sensitivity to

functional form assumptions. This lack of sensitivity to functional form holds for all domains and

datasets.

It is also possible to drop the requirement that τ1 ≤ τ2 ≤ τ3 ≤ τ4 and instead use a linear

specification for the threshold equations, as below. Bago d’Uva et al. (2011) use this specification

because they find that τ1 ≤ τ2 ≤ τ3 ≤ τ4 is always satisfied.

3b. τ 0
i = −∞, τ 5

i =∞, τ ji = γjXi + ui, j = 1, 2, 3, 4

As Table A5 shows, the latent variable equation coefficients are virtually identical when this

linear specification is used instead. The threshold coefficients for j > 1 cannot be directly com-

pared because in the exponential and square specifications, these coefficients represent the marginal

effect on the difference between two thresholds, while in the linear specification, they represent the

marginal effect on the level of one specific threshold.
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Table A3: Threshold Equations for Cognition Domain in the IFLS
domain3ifls

HOPIT Threshold 1

ln(Threshold2 – 

Threshold1)

ln(Threshold3 – 

Threshold2) 

ln(Threshold4-

Threshold3)

1(55 < Age <= 65) 0.106 -0.120 0.130 0.0522 -0.0619

(0.180) (0.105) (0.122) (0.119) (0.162)

1(65 < Age <= 75) 0.561** 0.0979 -0.192 -0.149 -0.163

(0.231) (0.133) (0.186) (0.170) (0.212)

1(Age > 75) 0.168 -0.372 0.342 0.152 0.130

(0.482) (0.333) (0.324) (0.297) (0.387)

1(Male) -0.136 0.0472 0.00628 -0.0220 -0.0613

(0.0962) (0.0542) (0.0650) (0.0607) (0.0866)

1(High Education) -0.314** -0.257*** 0.201** 0.0871 0.125

(0.123) (0.0720) (0.0841) (0.0790) (0.110)

1(Medium Education) -0.338*** -0.147** 0.105 0.0992 -0.0433

(0.114) (0.0623) (0.0771) (0.0735) (0.104)

1(Male) -0.279 -0.0171 -0.0427 -0.124 0.0703

x 1(55 < Age <= 65) (0.195) (0.116) (0.132) (0.131) (0.184)

1(High Education) 0.194 0.0614 -0.00101 -0.206 0.179

x 1(55 < Age <= 65) (0.275) (0.170) (0.185) (0.187) (0.228)

1(Medium Education) 0.464** 0.133 -0.00881 -0.0102 0.143

x 1(55 < Age <= 65) (0.218) (0.127) (0.148) (0.146) (0.211)

1(Male) -0.132 -0.161 0.248 0.215 0.243

x 1(65 < Age <= 75) (0.276) (0.165) (0.210) (0.183) (0.236)

1(High Education) -0.357 -0.246 0.274 -0.0147 0.461

x 1(65 < Age <= 75) (0.402) (0.269) (0.270) (0.260) (0.319)

1(Medium Education) 0.106 0.0144 -0.333 0.0675 0.0186

x 1(65 < Age <= 75) (0.298) (0.175) (0.246) (0.200) (0.263)

1(Male) -0.253 0.0287 0.0477 0.0188 0.441

x 1(Age > 75) (0.508) (0.365) (0.347) (0.350) (0.424)

1(High Education) -7.054 -1.310 0.747 0.0966 1.134

x 1(Age > 75) (1361.1) (17.34) (7.253) (0.547) (5636.7)

1(Medium Education) 0.970* 0.0674 -0.0449 -0.412 -0.0237

x 1(Age > 75) (0.506) (0.356) (0.334) (0.360) (0.436)

Constant -1.126*** -0.995*** -0.472*** -0.544*** -0.537***

(0.0976) (0.0657) (0.0736) (0.0744) (0.0956)

Cutoff 1(probit)/ -0.434***

  theta 1 (HOPIT) (0.0298)

Cutoff 2(probit)/ -0.209***

  theta 2 (HOPIT) (0.0250)

Cutoff 3 (probit)/ 0.485***

  sigma v (HOPIT) (0.0234)

Cutoff 4 (probit)/ 0.438***

  sigma u (HOPIT) (0.0225)

Observations 1018

Notes: t-statistics in parentheses (*** p<0.01, ** p<0.05, * p<0.1). 

Page 1
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Table A4: HOPIT Estimation of Cognition Domain in the IFLS (Using Alternative Functional
Form)

domain3ifls (2)

HOPIT Threshold 1

ln(Threshold2 – 

Threshold1)

ln(Threshold3 – 

Threshold2) 

ln(Threshold4-

Threshold3)

1(55 < Age <= 65) 0.109 -0.111 0.0497 0.0204 -0.0265

(0.180) (0.105) (0.0515) (0.0466) (0.0618)

1(65 < Age <= 75) 0.560** 0.0947 -0.0673 -0.0583 -0.0554

(0.231) (0.131) (0.0678) (0.0618) (0.0765)

1(Age > 75) 0.169 -0.378 0.147 0.0733 0.0257

(0.482) (0.327) (0.149) (0.125) (0.176)

1(Male) -0.134 0.0520 0.000705 -0.00917 -0.0210

(0.0962) (0.0544) (0.0271) (0.0236) (0.0326)

1(High Education) -0.311** -0.255*** 0.0822** 0.0328 0.0452

(0.123) (0.0716) (0.0351) (0.0304) (0.0424)

1(Medium Education) -0.343*** -0.163*** 0.0473 0.0396 -0.0160

(0.114) (0.0629) (0.0314) (0.0284) (0.0388)

1(Male) -0.288 -0.0442 -0.00985 -0.0417 0.0287

x 1(55 < Age <= 65) (0.195) (0.115) (0.0561) (0.0495) (0.0701)

1(High Education) 0.194 0.0606 0.00453 -0.0781 0.0767

x 1(55 < Age <= 65) (0.275) (0.171) (0.0818) (0.0681) (0.0910)

1(Medium Education) 0.475** 0.164 -0.00994 -0.0119 0.0539

x 1(55 < Age <= 65) (0.218) (0.126) (0.0617) (0.0555) (0.0787)

1(Male) -0.127 -0.159 0.0866 0.0860 0.0759

x 1(65 < Age <= 75) (0.276) (0.165) (0.0826) (0.0710) (0.0895)

1(High Education) -0.352 -0.228 0.122 -0.00819 0.194

x 1(65 < Age <= 75) (0.401) (0.269) (0.126) (0.101) (0.140)

1(Medium Education) 0.113 0.0380 -0.133 0.0233 0.00778

x 1(65 < Age <= 75) (0.298) (0.174) (0.0892) (0.0770) (0.0963)

1(Male) -0.249 0.0324 0.0237 -0.0178 0.189

x 1(Age > 75) (0.508) (0.363) (0.165) (0.136) (0.187)

1(High Education) -6.442 -1.217 0.471 0.0566 0.738

x 1(Age > 75) (382.7) (23.79) (7.852) (0.237) (766.7)

1(Medium Education) 0.976* 0.0719 -0.0191 -0.161 0.0275

x 1(Age > 75) (0.506) (0.356) (0.160) (0.136) (0.191)

Constant -1.127*** -0.997*** 0.790*** 0.761*** 0.764***

(0.0976) (0.0659) (0.0293) (0.0284) (0.0364)

Cutoff 1(probit)/ -0.434***

  theta 1 (HOPIT) (0.0297)

Cutoff 2(probit)/ -0.209***

  theta 2 (HOPIT) (0.0249)

Cutoff 3 (probit)/ 0.483***

  sigma v (HOPIT) (0.0233)

Cutoff 4 (probit)/ 0.435***

  sigma u (HOPIT) (0.0222)

Observations 1018

Notes: t-statistics in parentheses (*** p<0.01, ** p<0.05, * p<0.1). 
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Table A5: HOPIT Estimation of Cognition Domain in the IFLS (Using Linear Functional Form)
domain3ifls (3)

HOPIT Threshold 1

ln(Threshold2 – 

Threshold1)

ln(Threshold3 – 

Threshold2) 

ln(Threshold4-

Threshold3)

1(55 < Age <= 65) 0.109 -0.111 -0.0307 0.00235 -0.0398

(0.180) (0.106) (0.0890) (0.0919) (0.113)

1(65 < Age <= 75) 0.558** 0.0863 -0.00483 -0.0934 -0.168

(0.231) (0.131) (0.117) (0.121) (0.144)

1(Age > 75) 0.165 -0.387 -0.133 0.0161 -0.00477

(0.482) (0.323) (0.248) (0.258) (0.351)

1(Male) -0.134 0.0522 0.0524 0.0382 0.0105

(0.0962) (0.0543) (0.0447) (0.0460) (0.0592)

1(High Education) -0.311** -0.254*** -0.118** -0.0672 0.00109

(0.123) (0.0716) (0.0578) (0.0593) (0.0779)

1(Medium Education) -0.344*** -0.163*** -0.0858 -0.0243 -0.0475

(0.114) (0.0630) (0.0534) (0.0554) (0.0702)

1(Male) -0.291 -0.0481 -0.0621 -0.121 -0.0758

x 1(55 < Age <= 65) (0.195) (0.115) (0.0936) (0.0969) (0.127)

1(High Education) 0.195 0.0616 0.0765 -0.0420 0.0855

x 1(55 < Age <= 65) (0.275) (0.171) (0.130) (0.132) (0.173)

1(Medium Education) 0.477** 0.167 0.153 0.126 0.208

x 1(55 < Age <= 65) (0.218) (0.126) (0.104) (0.109) (0.143)

1(Male) -0.121 -0.143 -0.0313 0.107 0.202

x 1(65 < Age <= 75) (0.276) (0.166) (0.141) (0.141) (0.170)

1(High Education) -0.347 -0.218 0.00283 -0.0187 0.311

x 1(65 < Age <= 75) (0.401) (0.271) (0.194) (0.196) (0.281)

1(Medium Education) 0.111 0.0380 -0.162 -0.129 -0.115

x 1(65 < Age <= 75) (0.297) (0.173) (0.152) (0.154) (0.182)

1(Male) -0.246 0.0432 0.0920 0.0249 0.386

x 1(Age > 75) (0.508) (0.365) (0.263) (0.270) (0.389)

1(High Education) -6.422 -1.496 0.0109 0.117 1.809

x 1(Age > 75) (222.7) (112.7) (0.443) (0.485) (370.0)

1(Medium Education) 0.983* 0.0749 0.0498 -0.220 -0.102

x 1(Age > 75) (0.506) (0.359) (0.262) (0.272) (0.381)

Constant -1.127*** -0.997*** -0.372*** 0.208*** 0.789***

(0.0976) (0.0659) (0.0496) (0.0488) (0.0687)

Cutoff 1(probit)/ -0.434***

  theta 1 (HOPIT) (0.0297)

Cutoff 2(probit)/ -0.209***

  theta 2 (HOPIT) (0.0249)

Cutoff 3 (probit)/ 0.483***

  sigma v (HOPIT) (0.0233)

Cutoff 4 (probit)/ 0.435***

  sigma u (HOPIT) (0.0222)

Observations 1018

Notes: t-statistics in parentheses (*** p<0.01, ** p<0.05, * p<0.1). 
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D Anchoring Vignette Questions

These vignette questions were taken from the IFLS, but the HRS, ELSA, and CHARLS data all

use the same scenarios except with different names.

D.1 Domain: Mobility

• Pak Taryono/Bu Taryini is able to walk distances of up to 200 metres without any problems

but feels tired after walking one kilometer. He has no problems with day-to-day activities,

such as carrying food from the market

• Pak Tumino/Bu Tumini does not exercise. He cannot climb stairs or do other physical ac-

tivities because he is obese. He is able to carry the groceries and do some light household

work.

• Pak Sidik/Bu Endah has a lot of swelling in his legs due to his health condition. He has to

make an effort to walk around his home as his legs feel heavy.

D.2 Domain: Pain

• Pak Budiarto/ Bu Budiarti has a headache once a month that is relieved after taking a pill.

During the headache she can carry on with her day-to-day affairs.

• Pak Sumarno/ Bu Sumarni has pain that radiates down her right arm and wrist during her

day at work. This is slightly relieved in the evenings when she is no longer working on her

computer.

• Pak Mulyono/ Bu Mulyanti has pain in his knees, elbows, wrists and fingers, and the pain

is present almost all the time. Although medication helps, he feels uncomfortable when

moving around, holding and lifting things.
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D.3 Domain: Cognition

• Pak Taryono/ Bu Taryini can concentrate while watching TV, reading a magazine or playing

a game of cards or chess. Once a week he forgets where his keys or glasses are, but finds

them within five minutes.

• Pak Suwarso/ Bu Suwarsih is keen to learn new recipes but finds that she often makes mis-

takes and has to reread several times before she is able to do them properly.

• Pak Mugiono/ Bu Mugianti cannot concentrate for more than 15 minutes and has difficulty

paying attention to what is being said to him. Whenever he starts a task, he never manages

to finish it and often forgets what he was doing. He is able to learn the names of people he

meets.

D.4 Domain: Sleep

• Pak Partono/ Bu Partini falls asleep easily at night, but two nights a week she wakes up in

the middle of the night and cannot go back to sleep for the rest of the night.

• Pak Darma/ Bu Darmi wakes up almost once every hour during the night. When he wakes

up in the night, it takes around 15 minutes for him to go back to sleep. In the morning he

does not feel well-rested.

• Pak Parto/ Bu Parti takes about two hours every night to fall asleep. He wakes up once or

twice a night feeling panicked and takes more than one hour to fall asleep again

D.5 Domain: Affect

• Pak Arman/ Bu Lina enjoys her work and social activities and is generally satisfied with her

life. She gets depressed every 3 weeks for a day or two and loses interest in what she usually

enjoys but is able to carry on with her day-to-day activities.
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• Pak Sukarso/ Bu Sukarsih feels nervous and anxious. He worries and thinks negatively

about the future, but feels better in the company of people or when doing something that

really interests him. When he is alone he tends to feel useless and empty.

• Pak Rano/ Bu Rina feels depressed most of the time. She weeps frequently and feels hopeless

about the future. She feels that she has become a burden on others and that she would be

better dead.

D.6 Domain: Breathing

• Pak Sugiarto/ Bu Suwarsih has no problems while walking slowly. He gets out of breath

easily when climbing uphill for 20 meters or a flight of stairs.

• Pak Ramlan/ Bu Badriah suffers from respiratory infections about once every year. He is

short of breath 3 or 4 times a week and had to be admitted in hospital twice in the past month

with a bad cough that required treatment with antibiotics.

• Pak Hamid/ Bu Karsini has been a heavy smoker for 30 years and wakes up with a cough

every morning. He gets short of breath even while resting and does not leave the house

anymore. He often needs to be put on oxygen.
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