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ABSTRACT 

Individuals differ in how they respond to a particular treatment, intervention, or exposure, and 

social scientists are often interested in understanding how treatment effects are systematically 

moderated by observed characteristics of individuals. Effect moderation occurs when individual 

covariates dampen or amplify the effect of some exposure. This article focuses on 

conceptualizing and estimating moderated causal effects in longitudinal settings where both the 

treatment and effect moderator of interest vary over time. Effect moderation is typically 

examined using covariate by treatment interactions in conventional regression analyses, but in 

the longitudinal setting, this approach is problematic because time-varying moderators of future 

treatment may be affected by prior treatment—that is, moderators may also be mediators. 

Conditioning on a mediator of prior treatment in a conventional regression model can lead to 

bias from over-control of intermediate pathways and collider stratification. This article 

introduces moderated intermediate causal effects and the structural nested mean model for 

analyzing effect heterogeneity in the longitudinal setting. It discusses problems with 

conventional regression estimation, presents a new approach to estimation that avoids these 

problems (regression-with-residuals), and describes different ways to account for confounding 

with this approach. The method is illustrated using longitudinal data from the PSID to examine 

whether the effects of time-varying exposures to concentrated neighborhood poverty on the risk 

of adolescent childbearing are moderated by time-varying family income. 

  

 
 



INTRODUCTION 

In the social sciences, researchers are often interested in understanding how the effects of a 

particular treatment, intervention, or exposure vary by characteristics of the individuals, families, 

or households exposed. For example, it is commonly hypothesized that the developmental impact 

of living in a high-poverty neighborhood is more severe for children in poor families than for 

children in wealthier families (Jencks and Mayer 1990; Wilson 1987; Wilson 1996). The effects 

of marital dissolution on child outcomes are also thought to depend on the degree of parental 

conflict, where the impact of divorce may be less severe if a primary caregiver is leaving an 

abusive spousal relationship (Amato 2004; Wallerstein 1991). Finally, the effects of school, 

classroom, and teacher characteristics on student achievement are often assumed to be a function 

of student abilities, where future gains are built upon foundations laid down earlier (Heckman 

2006; Sanders et al. 1997). In fact, treatment effect heterogeneity is endemic to nearly all social 

contexts (Xie 2007; Xie et al. 2012), and it has important implications for social theory, research, 

and policy (Brand and Xie 2010; Heckman et al. 2006; Manski 2007; Wodtke et al. 2012). 

Another common feature of treatments and the individuals, families, and households 

exposed to them is that they change over time. In the examples mentioned previously, people 

move and neighborhoods change, and family income fluctuates throughout the life course. 

Similarly, household conflict intensifies and subsides, and spouses maintain or dissolve 

marriages after varying lengths of time. With respect to school, classroom, and teacher effects, 

students advance through grades and schools at scheduled intervals, and their abilities evolve at 

different rates as they learn. Although these time-dependent phenomena are often shoehorned 

into simplified point-in-time research questions (e.g., Brooks-Gunn et al. 1993; Parcel and Dufur 

2001), the proliferation of rich longitudinal data in which treatments, covariates, and outcomes 
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are measured at multiple time points provides a valuable opportunity for social scientists to 

examine questions that more accurately reflect the causal processes unfolding in the real world.  

In particular, longitudinal data allow for an analysis of how the effects of time-varying 

treatments are moderated by an individual’s evolving covariate history. Analyzing moderated 

causal effects in the longitudinal setting can provide a more rigorous test of the social theories 

that motivate research on systematic effect heterogeneity, illuminate the developmental and life-

course processes through which social exposures incrementally affect individual behavior, and 

help to identify which individuals will be more sensitive or resilient to additional treatments on 

the basis of their evolving characteristics, outcomes, and needs. 

To illustrate what is meant by effect moderation in the longitudinal setting, consider our 

motivating empirical example: neighborhood effects on teen childbearing. With measures of 

exposure to neighborhood poverty over different time intervals, of family income over different 

time intervals, and of our primary end-of-study outcome—whether a subject has a child during 

adolescence—we can investigate the following types of questions: “what is the impact of living 

in a high-poverty (versus low-poverty) neighborhood during childhood and then a low-poverty 

neighborhood during adolescence on the risk of adolescent childbearing among subjects whose 

families were poor during childhood” and “what is the impact of living in a low poverty 

neighborhood during childhood and then a high-poverty (versus low-poverty) neighborhood 

during adolescence on the risk of adolescent childbearing among subjects whose families were 

poor during adolescence?” These questions address the distal, proximal, and incremental effects 

of exposures to neighborhood poverty conditional on the evolving economic position of the 

family. 
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Analyzing effect moderation in the longitudinal setting is difficult because time-varying 

moderators of future treatment may be affected by prior treatment. For example, if a family is 

exposed to a high-poverty neighborhood during a subject’s childhood, this may affect whether 

his or her family is poor in the future. Time-varying moderators affected by prior treatment 

present both conceptual and methodological challenges (Almirall et al. 2010; Elwert 2013; 

Robins et al. 2007; Robins 1994; VanderWeele and Robins 2007a). At the conceptual level, 

seemingly reasonable questions, such as “what is the effect of living in a high-poverty (versus 

low-poverty) neighborhood throughout childhood and adolescence among subjects whose 

families were poor throughout these periods,” do not translate into well-defined causal contrasts. 

Causal contrasts compare the same subjects in two counterfactual states, but this question 

compares different subjects because the children in families who would stay poor had they 

continuously been exposed to high-poverty neighborhoods and the children in families who 

would stay poor had they been continuously exposed to low-poverty neighborhoods are almost 

certainly not the same set of subjects. When prior treatments help to create the subgroup of 

interest in the future, crafting coherent estimands for moderated causal effects is a difficult 

conceptual challenge. 

At the methodological level, time-varying moderators affected by prior treatment 

complicate conventional estimation strategies. With cross-sectional data, point-in-time 

treatments, and pre-treatment moderators, effect moderation is typically examined using 

covariate by treatment interactions in conventional regression analyses (Wooldridge 2010) or 

using propensity score stratification methods (Xie et al. 2012). However, with longitudinal data, 

time-varying treatments, and time-varying moderators, regression and propensity score 

stratification methods that naively condition on time-varying moderators affected by prior 
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treatment cannot estimate moderated causal effects without bias. Even with a well-defined set of 

causal estimands that can be identified from observational or experimental data, conventional 

estimation strategies are biased because the moderator of interest is also a mediator of the 

treatment-outcome relationship. 

To overcome these challenges, this article (1) introduces moderated intermediate causal 

effects and the structural nested mean model for analyzing effect heterogeneity in the 

longitudinal setting, (2) presents a simple regression-with-residuals estimation strategy that 

avoids the problems associated with conventional methods and can be implemented with off-the-

shelf software, (3) describes several different ways that this estimation strategy can be extended 

to account for confounding, and (4) illustrates an application of these methods in the context of 

neighborhood-effects research. We begin with a brief review of effect moderation in the point-in-

time setting. Next, we extend these ideas to a simplified longitudinal setting with only two time 

points, a binary treatment, and a single binary moderator. Then, we discuss further extensions of 

these methods for more complex scenarios that involve multivalued treatments and moderators, 

and confounding. Finally, we demonstrate an application of these methods using longitudinal 

data from the Panel Study of Income Dynamics (PSID) to investigate whether the effects of 

childhood and adolescent exposures to concentrated neighborhood poverty on the risk of teen 

childbearing are moderated by time-varying family income. 

 

EFFECT MODERATION IN THE POINT-IN-TIME SETTING 

A moderator is a pre-treatment variable which systematically modifies the form, direction, or 

strength of the effect of a treatment, 𝐴𝐴, on a response variable of interest, 𝑌𝑌. Analyses of effect 

moderation typically compare some measure of the treatment-outcome association across levels 
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of third variable, 𝑀𝑀. If the measure of association differs significantly across levels of the third 

variable, then 𝑀𝑀 is said to moderate the effect of 𝐴𝐴 on 𝑌𝑌.  

Effect moderation is metric dependent. Under the same data-generating process, one 

measure of the treatment-outcome relationship may differ across levels of a putative moderator 

while another measure does not. The most common effect metrics are the difference in outcomes 

linked to different treatments and the ratio of outcomes linked to different treatments. We focus 

on the difference metric because it is the easiest to interpret and is widely considered to have the 

greatest relevance for public policy (Rothman et al. 1980; VanderWeele and Robins 2007b). 

In this section, we formally define causal effect moderation in the point-in-time setting 

using the potential outcomes framework and briefly discuss several estimation strategies. 

Although the potential outcomes framework in the point-in-time setting is now well-understood 

and frequently used in the social sciences (Manski 2007; Morgan and Winship 2007), the review 

of these concepts and methods is intended to facilitate our exposition of effect moderation in the 

time-varying setting, which is considerably more complex. 

 

A Counterfactual Model 

Let 𝐴𝐴𝑖𝑖 indicate exposure to a dichotomous point-in-time treatment for subject 𝑖𝑖. That is, 𝐴𝐴𝑖𝑖 = 1 

if subject 𝑖𝑖 is exposed to treatment, and 𝐴𝐴𝑖𝑖 = 0 if the subject is not exposed. In addition, let 𝑌𝑌𝑖𝑖(𝑎𝑎) 

be the end-of-study outcome for subject 𝑖𝑖 had she received the treatment 𝐴𝐴𝑖𝑖 = 𝑎𝑎, possibly 

contrary to fact. The set {𝑌𝑌𝑖𝑖(0),𝑌𝑌𝑖𝑖(1)} is known as the set of potential outcomes for subject 𝑖𝑖.  

 In the counterfactual framework, causal effects are defined as contrasts between potential 

outcomes. The individual causal effect for subject 𝑖𝑖 is given by  

 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 = 𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0),                                                                                                       (1) 
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which is the difference between a subject’s outcome had she received treatment and the same 

subject’s outcome had she not received treatment. For each subject, we only ever observe the 

single potential outcome that corresponds to the treatment actually received, and the other 

potential outcomes are counterfactuals. Thus, individual causal effects can never be observed in 

reality. This is known as the fundamental problem of causal inference (Holland 1986; Rubin 

1974). Under certain assumptions, such as the homogeneity of subjects or temporal invariance, 

the 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 can be computed, but these assumptions are generally indefensible in the social sciences 

(Holland 1986). To overcome these difficulties, researchers typically focus on the average 

causal effect, which is given by 

𝐴𝐴𝐼𝐼𝐼𝐼 = 𝐼𝐼(𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖) = 𝐼𝐼�𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0)�.                                                                              (2) 

This quantity describes how treatment affects subjects in the population of interest on average. It 

can be estimated under weaker assumptions (discussed below) than those required to compute 

individual causal effects. 

 Based on these definitions of individual and average causal effects, moderated average 

causal effects can be defined as 

𝜇𝜇(𝑀𝑀𝑖𝑖,𝑎𝑎) = 𝐼𝐼(𝑌𝑌𝑖𝑖(𝑎𝑎) − 𝑌𝑌𝑖𝑖(0)|𝑀𝑀𝑖𝑖) = 𝑎𝑎 × 𝐼𝐼(𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0)|𝑀𝑀𝑖𝑖),                                       (3) 

where  𝑀𝑀𝑖𝑖 is a pre-treatment variable. Formally, 𝑀𝑀𝑖𝑖 is a moderator for the causal effect of 

treatment if 𝜇𝜇(𝑀𝑀𝑖𝑖, 𝑎𝑎) is non-constant in 𝑀𝑀𝑖𝑖—that is, if 𝑀𝑀𝑖𝑖 helps to summarize variability in the 

individual causal effects across the population of interest. Note that this definition specifies that 

the moderator occurs before treatment, which in turn occurs before the outcome. This temporal 

ordering is implicit in the notation because 𝑀𝑀𝑖𝑖 is not indexed by 𝑎𝑎 as a potential outcome of 

treatment. In addition, this definition neither requires nor prohibits that 𝑀𝑀𝑖𝑖 has a causal effect on 
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the outcome, but it does specify that any such effect is not the primary effect of interest in the 

current analysis. 

Moderated average causal effects can be linked to the conditional mean of the potential 

outcomes through the following additive decomposition: 

𝐼𝐼(𝑌𝑌𝑖𝑖(𝑎𝑎)|𝑀𝑀𝑖𝑖) = 𝛽𝛽0 + 𝜀𝜀(𝑀𝑀𝑖𝑖) + 𝜇𝜇(𝑀𝑀𝑖𝑖,𝑎𝑎),                                                                           (4)  

where  𝛽𝛽0 = 𝐼𝐼(𝑌𝑌𝑖𝑖(0)|𝑀𝑀𝑖𝑖 = 0), 𝜀𝜀(𝑀𝑀𝑖𝑖) = 𝐼𝐼(𝑌𝑌𝑖𝑖(0)|𝑀𝑀𝑖𝑖 = 𝑚𝑚) − 𝐼𝐼(𝑌𝑌𝑖𝑖(0)|𝑀𝑀𝑖𝑖 = 0), and 𝑢𝑢(𝑀𝑀𝑖𝑖,𝑎𝑎) is 

defined as above. The intercept, 𝛽𝛽0, gives the mean outcome value had individuals in the 

subgroup for which  𝑀𝑀𝑖𝑖 = 0 not received treatment; the function 𝜀𝜀(𝑀𝑀𝑖𝑖) is the associational effect 

of the moderator on the outcome had subjects not received treatment; and the function 𝑢𝑢(𝑀𝑀𝑖𝑖,𝑎𝑎) 

describes the moderated causal effects of treatment. Because our primary interest is in the causal 

function, 𝜇𝜇(𝑀𝑀𝑖𝑖,𝑎𝑎), the associational effect of the moderator, 𝜀𝜀(𝑀𝑀𝑖𝑖), is called a nuisance function.  

 We consider linear parametric models for the causal and nuisance functions in Equation 

4. Any parameterization of the causal function 𝜇𝜇(𝑀𝑀𝑖𝑖,𝑎𝑎) must satisfy the constraint that it equals 

zero when 𝑎𝑎 = 0. This constraint motivates the common use of interaction terms to model effect 

moderation. For example, when both treatment and the moderator are binary, a saturated model 

for 𝜇𝜇(𝑀𝑀𝑖𝑖,𝑎𝑎) is 

 𝜇𝜇(𝑀𝑀𝑖𝑖,𝑎𝑎;𝛽𝛽) = 𝑎𝑎(𝛽𝛽1 + 𝛽𝛽2𝑀𝑀𝑖𝑖) = 𝛽𝛽1𝑎𝑎 + 𝛽𝛽2𝑀𝑀𝑖𝑖𝑎𝑎,                                                                 (5)   

where 𝛽𝛽1is the average causal effect of treatment among subjects in group 𝑀𝑀𝑖𝑖 = 0 and 𝛽𝛽2 

increments this effect for subjects with 𝑀𝑀𝑖𝑖 = 1. If 𝛽𝛽2 = 0, then 𝑀𝑀𝑖𝑖 is not a moderator.  

Any parameterization of the nuisance function, 𝜀𝜀(𝑀𝑀𝑖𝑖), must satisfy the constraint that it 

equals zero when the moderator is equal to zero. A saturated model for 𝜀𝜀(𝑀𝑀𝑖𝑖) with a binary 

moderator is  

𝑒𝑒(𝑀𝑀𝑖𝑖; 𝜆𝜆) = 𝜆𝜆1𝑀𝑀𝑖𝑖,                                                                                                               (6) 
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where 𝜆𝜆1 gives the associational effect of the moderator on the outcome. Combining the models 

for the causal and nuisance functions yields a saturated linear model for the conditional mean of 

𝑌𝑌𝑖𝑖(𝑎𝑎) given 𝑀𝑀𝑖𝑖: 

𝐼𝐼(𝑌𝑌𝑖𝑖(𝑎𝑎)|𝑀𝑀𝑖𝑖) = 𝛽𝛽0 + 𝜆𝜆1𝑀𝑀𝑖𝑖 + 𝑎𝑎(𝛽𝛽1 + 𝛽𝛽2𝑀𝑀𝑖𝑖),                                                                    (7) 

which is the familiar linear model with an intercept term, “main effects” for treatment and the 

moderator, and a treatment by moderator interaction. 

 

Estimation 

The moderated causal effects defined previously can be identified from observed data under the 

assumption of ignorability of treatment assignment (Holland 1986; Morgan and Winship 2007; 

Rubin 1974). One version of this assumption can be written as 

𝑌𝑌𝑖𝑖(𝑎𝑎) ⊥ 𝐴𝐴𝑖𝑖|𝑀𝑀𝑖𝑖 ∀ 𝑎𝑎                                                                                                             (8) 

where ⊥ denotes statistical independence. Substantively, this condition states that there are not 

any pre-treatment variables other than the moderator that directly affect selection into treatment 

and the outcome. The ignorability assumption is met by design in experimental studies where 

treatment is randomly assigned.1 Figure 1 displays two directed acyclic graphs (DAGs) that 

describe simple causal systems where this assumption is satisfied. Panel A describes the scenario 

where treatment assignment is random, while Panel B depicts the situation where selection into 

treatment is determined solely on the basis of the moderator. 

 When the ignorability assumption is satisfied, the causal parameters defined previously 

can be estimated with the following observed data model: 

𝐼𝐼(𝑌𝑌𝑖𝑖|𝐴𝐴𝑖𝑖,𝑀𝑀𝑖𝑖) = 𝛽𝛽0∗ + 𝜆𝜆1∗𝑀𝑀𝑖𝑖 + 𝐴𝐴𝑖𝑖(𝛽𝛽1∗ + 𝛽𝛽2∗𝑀𝑀𝑖𝑖).                                                                  (9) 

1 In fact, experimental studies typically meet stronger ignorability assumptions—for example, 𝑌𝑌𝑖𝑖(𝑎𝑎) ⊥ 𝐴𝐴𝑖𝑖 ∀ 𝑎𝑎. 
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The asterisks on these parameters denote the distinction between the fundamentally unobservable 

mean differences between potential outcomes in Equation 7 and the observed differences 

between conditional means in Equation 9, which are equivalent only under the ignorability 

assumption. In this situation, ordinary least squares estimates of the regression of 𝑌𝑌𝑖𝑖 on 𝑀𝑀𝑖𝑖, 𝐴𝐴𝑖𝑖, 

and 𝑀𝑀𝑖𝑖𝐴𝐴𝑖𝑖 can be used to estimate the moderated causal effects of interest. 

 

Adjustment for Confounding 

It is often the case in the social sciences that the ignorability assumption defined in Equation 8 

does not hold because randomization is not possible or there are pre-treatment variables other 

than the moderator that affect both treatment selection and the outcome. These variables are 

called confounders, and they lead to bias if they are not properly accounted for. Figure 2 contains 

a DAG that graphically depicts the problem of confounding bias. It shows that a fourth variable, 

𝐼𝐼, directly affects both treatment and the outcome. Under a slightly modified version of the 

ignorability assumption, the moderated causal effects of interest can still be identified from 

observed data in the presence of confounders, but more complicated estimation methods are 

required (Holland 1986; Morgan and Winship 2007; Rubin 1974). Formally, this assumption can 

be written as  

𝑌𝑌𝑖𝑖(𝑎𝑎) ⊥ 𝐴𝐴𝑖𝑖|𝑀𝑀𝑖𝑖,𝐼𝐼𝑖𝑖  ∀ 𝑎𝑎.                                                                                                     (10) 

Substantively, it states that there are no unobserved determinants of both treatment and the 

outcome other than 𝑀𝑀𝑖𝑖 and 𝐼𝐼𝑖𝑖. Thus, in the special case where all confounders of treatment are 

observed by the researcher, unbiased estimation of moderated causal effects remains possible. 

 There are two approaches to adjusting for observed confounders. With the first approach, 

all observed confounders are included along with 𝐴𝐴𝑖𝑖 and 𝑀𝑀𝑖𝑖 in the observed data regression 
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model for 𝑌𝑌𝑖𝑖. This covariate-adjusted regression approach requires correct specification of how 

the outcome relates to the treatment, moderator, and confounders. Typically, only “main effects” 

for observed confounders are included in the model, but higher-order terms, including 

interactions between confounders and treatment, are also possible. In the simple case with just a 

single binary confounder, this model can be expressed as  

𝐼𝐼(𝑌𝑌𝑖𝑖|𝐴𝐴𝑖𝑖,𝑀𝑀𝑖𝑖,𝐼𝐼𝑖𝑖) = 𝛽𝛽0∗ + 𝜂𝜂1∗𝐼𝐼𝑖𝑖 + 𝜆𝜆1∗𝑀𝑀𝑖𝑖 + 𝐴𝐴𝑖𝑖(𝛽𝛽1∗ + 𝛽𝛽2∗𝑀𝑀𝑖𝑖).                                                (11) 

It assumes that the effect of treatment on the outcome varies only by levels of 𝑀𝑀𝑖𝑖. This approach 

to estimation becomes problematic if 𝐼𝐼𝑖𝑖 is also a moderator for the treatment-outcome 

relationship or if the number of observed confounders is large. In these situations, covariate-

adjusted regression estimation becomes heavily reliant on functional form, and the analyst may 

have to move away from a model for effect moderation by 𝑀𝑀𝑖𝑖 toward a model for effect 

moderation by multiple covariates, including 𝐼𝐼𝑖𝑖, which may not be of scientific interest. 

With the second approach, inverse-probability-of-treatment (IPT) weighting is used to 

balance observed confounders, 𝐼𝐼𝑖𝑖, across levels of the treatment (Hirano and Imbens 2001; 

Robins et al. 2000; Rosenbaum and Rubin 1983), and the linear regression model is reserved for 

examining effect moderation by 𝑀𝑀𝑖𝑖. This method involves reweighting the observed data by a 

function of the propensity score to generate a pseudo-sample in which treatment is no longer 

confounded by observed covariates. The IPT-weight for subject 𝑖𝑖 is given by 

 𝑤𝑤𝑖𝑖 = 𝑃𝑃�𝐴𝐴𝑖𝑖 = 𝑎𝑎𝑖𝑖�𝑀𝑀𝑖𝑖�
𝑃𝑃�𝐴𝐴𝑖𝑖 = 𝑎𝑎𝑖𝑖�𝑀𝑀𝑖𝑖 ,𝐼𝐼𝑖𝑖�

.                                                                                                   (12) 

It is the ratio of the conditional probability that a subject is exposed to the actual treatment she 

received given all her pre-treatment covariates and the conditional probability of treatment given 

only the moderator. IPT-weighting balances confounders across treatment levels by giving more 

weight to subjects with confounders that are underrepresented in their treatment group and less 
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weight to subjects with confounders that overrepresented in their treatment group. The true IPT 

weights are unknown and must be estimated from data, which requires a correctly specified 

model for the conditional probability of treatment (Hirano and Imbens 2001; Robins et al. 2000; 

Rosenbaum and Rubin 1983). After estimates of the IPT-weights are computed, a weighted least 

squares regression of 𝑌𝑌𝑖𝑖 on 𝑀𝑀𝑖𝑖, 𝐴𝐴𝑖𝑖, and 𝑀𝑀𝑖𝑖𝐴𝐴𝑖𝑖 with weights equal to 𝑤𝑤�𝑖𝑖 provides estimates of the 

moderated causal effects of interest. 

 

EFFECT MODERATION IN THE LONGITUDINAL SETTING 

This section transitions to the situation in which both the treatment and putative moderator vary 

over time. For expositional simplicity, we focus on a simple example with a binary treatment 

measured at two points in time, a single binary moderator measured at two points in time, and an 

end-of-study outcome variable.  

In the longitudinal setting, formulating coherent causal questions can be conceptually 

challenging. The challenge arises from the possibility that future moderators may be affected by 

prior treatment, and thus prior treatment creates, at least in part, the time-varying subgroups of 

interest. This complication precludes intuitively appealing questions about how the effects of 

long-term treatment trajectories vary across subgroups defined in terms of long-term moderator 

trajectories, such as “what is the effect of being always (versus never) treated among subjects 

who were always in a particular subgroup?” These types of questions are inappropriate because 

they cannot be translated into counterfactuals that compare the same set of subjects: had a 

subject been always (versus never) treated, she may not have been always in the one particular 

subgroup of interest. 
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In this section, we resolve these conceptual difficulties by introducing moderated 

intermediate causal effects, which isolate the average causal effects of one additional wave of 

treatment (versus no additional waves) conditional on treatments and moderators prior to that 

wave. Moderated intermediate causal effects address questions like “what is the effect of being 

treated only at wave 1 (versus not being treated at all) among subjects who were in a particular 

subgroup prior to wave 1” and “what is the effect of being treated at wave 2 (versus not being 

treated at wave 2) among subjects who were in a particular subgroup prior to wave 2 and 

exposed to a particular treatment at wave 1?” By carefully attending to the temporal ordering of 

treatments, moderators, and the outcome, this approach allows for the formulation of coherent 

causal questions about effect moderation in the longitudinal setting. 

 

Moderated Intermediate Causal Effects 

Let 𝐴𝐴𝑖𝑖𝑖𝑖 indicate exposure to a dichotomous treatment for subject 𝑖𝑖 at time 𝑡𝑡 = 1,2. That is, 𝐴𝐴𝑖𝑖𝑖𝑖 =

1 if subject 𝑖𝑖 is exposed to treatment at time 𝑡𝑡, and 𝐴𝐴𝑖𝑖𝑖𝑖 = 0 otherwise. In addition, let 𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2) 

be the end-of-study outcome for subject 𝑖𝑖 had she received the treatment sequence 

(𝐴𝐴𝑖𝑖1 = 𝑎𝑎1,𝐴𝐴𝑖𝑖2 = 𝑎𝑎2), possibly contrary to fact. By “end-of-study,” we mean occurring after 𝑎𝑎2. 

The set {𝑌𝑌𝑖𝑖(0,0),𝑌𝑌𝑖𝑖(1,0),𝑌𝑌𝑖𝑖(0,1)𝑌𝑌𝑖𝑖(1,1)} gives all possible potential end-of-study outcomes for 

subject 𝑖𝑖. Now, let 𝑀𝑀𝑖𝑖1 be the binary moderator of interest for subject 𝑖𝑖 at time 𝑡𝑡 = 1,  which is 

measured just prior to treatment at time 1. Similarly, let 𝑀𝑀𝑖𝑖2(𝑎𝑎1) be the binary moderator for 

subject 𝑖𝑖 at time 𝑡𝑡 = 2 had she been exposed to the prior treatment 𝑎𝑎1. This measure of the 

moderator occurs after treatment at time 1 but before treatment at time 2. It is therefore indexed 

as a potential outcome of treatment at time 1. The set {𝑀𝑀𝑖𝑖2(0),𝑀𝑀𝑖𝑖2(1)} gives the potential 

12 
 



outcomes of the moderator at time 2 for subject 𝑖𝑖. The complete set of all variables in temporal 

order is {𝑀𝑀𝑖𝑖1,𝐴𝐴𝑖𝑖1,𝑀𝑀𝑖𝑖2(𝑎𝑎1),𝐴𝐴𝑖𝑖2,𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2)}. 

 With two time points, there are two sets of moderated intermediate causal effects, one set 

for each time point. The first set of causal effects is defined as 

 𝑢𝑢1(𝑀𝑀𝑖𝑖1,𝑎𝑎1) = 𝐼𝐼(𝑌𝑌𝑖𝑖(𝑎𝑎1, 0) − 𝑌𝑌𝑖𝑖(0,0)|𝑀𝑀𝑖𝑖1 = 𝑚𝑚1),                                                          (13) 

which gives the average causal effect of being exposed to treatment only at time 1 (versus never 

being exposed) among the subgroups defined by 𝑀𝑀𝑖𝑖1, and 𝑀𝑀𝑖𝑖1 is said to be a moderator for the 

effect of treatment at time 1 if 𝑢𝑢1(𝑀𝑀𝑖𝑖1,𝑎𝑎1) is nonconstant in 𝑀𝑀𝑖𝑖1. Note that the function 

𝑢𝑢1(𝑀𝑀𝑖𝑖1,𝑎𝑎1) equals zero when 𝑎𝑎1 is equal to zero. The second set of causal effects is defined as 

 𝑢𝑢2(𝑀𝑀𝑖𝑖1,𝑎𝑎1𝑀𝑀𝑖𝑖2(𝑎𝑎1),𝑎𝑎2) = 𝐼𝐼�𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2) − 𝑌𝑌𝑖𝑖(𝑎𝑎1, 0)|𝑀𝑀𝑖𝑖1,𝑀𝑀𝑖𝑖2(𝑎𝑎1)�,                              (14) 

which gives the average causal effect of being exposed to treatment at time 2 (versus not being 

exposed) among subgroups defined by 𝑀𝑀𝑖𝑖1and 𝑀𝑀𝑖𝑖2(𝑎𝑎1)had subjects initially been exposed to 

treatment 𝑎𝑎1. If 𝑢𝑢2(𝑀𝑀𝑖𝑖1,𝑎𝑎1𝑀𝑀𝑖𝑖2(𝑎𝑎1),𝑎𝑎2) is nonconstant in �𝑀𝑀𝑖𝑖1,𝑀𝑀𝑖𝑖2(𝑎𝑎1)� , then these variables 

are said to be moderators for the effect of treatment at time 2.2 As before, the function 

𝑢𝑢2(𝑀𝑀𝑖𝑖1,𝑎𝑎1𝑀𝑀𝑖𝑖2(𝑎𝑎1),𝑎𝑎2) equals zero when 𝑎𝑎2 is equal to zero.  

 Moderated intermediate causal effects involve fairly complex counterfactual contrasts. To 

better understand these contrasts, it can helpful to consult the language and logic of sequential 

experiments. Consider a hypothetical experiment in which the researcher measures 𝑀𝑀𝑖𝑖1 and then 

randomly assigns subjects to different treatments at time 1 but the same treatment at time 2. 

Comparing mean end-of-study outcomes for subjects assigned to different treatments at time 1, 

separately among the subgroups defined by 𝑀𝑀𝑖𝑖1, would be an experimental estimate of 

2 This causal function may also be nonconstant in 𝑎𝑎1, indicating that there is an interaction effect between treatments 
received at time 1 and time 2. 
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𝑢𝑢1(𝑀𝑀𝑖𝑖1,𝑎𝑎1). Now consider another hypothetical experiment where the researcher measures 𝑀𝑀𝑖𝑖1, 

assigns all subjects to the same treatment at time 1, measures 𝑀𝑀𝑖𝑖1(𝑎𝑎1), and then randomly 

assigns subjects to different treatments at time 2. Comparing mean end-of-study outcomes for 

subjects assigned to different treatments at time 2, separately among subgroups defined by 𝑀𝑀𝑖𝑖1 

and 𝑀𝑀𝑖𝑖1(𝑎𝑎1), would be an experimental estimate of 𝑢𝑢2(𝑀𝑀𝑖𝑖1,𝑎𝑎1𝑀𝑀𝑖𝑖2(𝑎𝑎1),𝑎𝑎2). Rather than 

conducting two separate experiments, these effects can also be estimated from a single 

sequentially randomized experiment in which subjects are assigned to different treatments at 

each time point and measures of the moderator are taken just prior to treatment assignment 

(Almirall, Compton, Gunlicks-Stoessel, Duan, and Murphy 2012). 

 

The Structural Nested Mean Model 

The structural nested mean model (SNMM) formally relates 𝑢𝑢1(𝑀𝑀𝑖𝑖1,𝑎𝑎1) and 

𝑢𝑢2(𝑀𝑀𝑖𝑖1,𝑎𝑎1𝑀𝑀𝑖𝑖2(𝑎𝑎1),𝑎𝑎2) to the conditional mean of the potential outcomes (Robins 1994). 

Specifically, the moderated intermediate causal effects of interest can be linked to the conditional 

mean of 𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2) through the following additive decomposition: 

𝐼𝐼�𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2)|𝑀𝑀𝑖𝑖1,𝑀𝑀𝑖𝑖2(𝑎𝑎1)� = 𝛽𝛽0 + 𝜀𝜀1(𝑀𝑀𝑖𝑖1) + 𝑢𝑢1(𝑀𝑀𝑖𝑖1,𝑎𝑎1) + 𝜀𝜀2�𝑀𝑀𝑖𝑖1,𝑎𝑎1,𝑀𝑀𝑖𝑖2(𝑎𝑎1)� 

                       +𝑢𝑢2(𝑀𝑀𝑖𝑖1,𝑎𝑎1𝑀𝑀𝑖𝑖2(𝑎𝑎1),𝑎𝑎2),                                                                                       (15)  

where the intercept 𝛽𝛽0 = 𝐼𝐼�𝑌𝑌𝑖𝑖(0,0)� is the mean under no treatment, 𝜀𝜀1(𝑀𝑀𝑖𝑖1) = 

𝐼𝐼(𝑌𝑌𝑖𝑖(0,0)|𝑀𝑀𝑖𝑖1) − 𝐼𝐼�𝑌𝑌𝑖𝑖(0,0)� is the association between 𝑀𝑀𝑖𝑖1 and the outcome had no subjects 

been exposed to treatment, and 𝜀𝜀2�𝑀𝑀𝑖𝑖1,𝑎𝑎1,𝑀𝑀𝑖𝑖2(𝑎𝑎1)� = 𝐼𝐼�𝑌𝑌𝑖𝑖(𝑎𝑎1, 0)�𝑀𝑀𝑖𝑖1,𝑀𝑀𝑖𝑖2(𝑎𝑎1)� −

𝐼𝐼(𝑌𝑌𝑖𝑖(𝑎𝑎1, 0)|𝑀𝑀𝑖𝑖1) is the association between 𝑀𝑀𝑖𝑖2(𝑎𝑎1) and the outcome had subjects in the groups 

defined by 𝑀𝑀𝑖𝑖1initially been exposed to treatment 𝑎𝑎1 and then no treatment at time 2. Because 

our primary interest is in the causal functions 𝑢𝑢1(𝑀𝑀𝑖𝑖1,𝑎𝑎1) and 𝑢𝑢2(𝑀𝑀𝑖𝑖1,𝑎𝑎1𝑀𝑀𝑖𝑖2(𝑎𝑎1),𝑎𝑎2), the 
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associational effects of the moderators, 𝜀𝜀1(𝑀𝑀𝑖𝑖1) and 𝜀𝜀2�𝑀𝑀𝑖𝑖1,𝑎𝑎1,𝑀𝑀𝑖𝑖2(𝑎𝑎1)�, are called nuisance 

functions.  

An important property of the nuisance functions is that, conditional on the past, they have 

mean zero. That is,  

𝐼𝐼�𝜀𝜀2�𝑀𝑀𝑖𝑖1,𝑎𝑎1,𝑀𝑀𝑖𝑖2(𝑎𝑎1)��𝑀𝑀𝑖𝑖1� = 𝐼𝐼�𝐼𝐼�𝑌𝑌𝑖𝑖(𝑎𝑎1, 0)�𝑀𝑀𝑖𝑖1,𝑀𝑀𝑖𝑖2(𝑎𝑎1)� − 𝐼𝐼(𝑌𝑌𝑖𝑖(𝑎𝑎1, 0)|𝑀𝑀𝑖𝑖1)�𝑀𝑀𝑖𝑖1�  

      = 𝐼𝐼�𝐼𝐼�𝑌𝑌𝑖𝑖(𝑎𝑎1, 0)�𝑀𝑀𝑖𝑖1,𝑀𝑀𝑖𝑖2(𝑎𝑎1)��𝑀𝑀𝑖𝑖1� − 𝐼𝐼(𝑌𝑌𝑖𝑖(𝑎𝑎1, 0)|𝑀𝑀𝑖𝑖1) = 0, and                         (16) 

𝐼𝐼�𝜀𝜀1(𝑀𝑀𝑖𝑖1)� = 𝐼𝐼 �𝐼𝐼(𝑌𝑌𝑖𝑖(0,0)|𝑀𝑀𝑖𝑖1) − 𝐼𝐼�𝑌𝑌𝑖𝑖(0,0)��   

      = 𝐼𝐼�𝐼𝐼(𝑌𝑌𝑖𝑖(0,0)|𝑀𝑀𝑖𝑖1)� − 𝐼𝐼�𝑌𝑌𝑖𝑖(0,0)� = 0.                                                                 (17) 

This property of the nuisance functions gives them an interpretation as error terms and will 

inform their parameterization below. 

We consider linear parametric models for the causal and nuisance functions of the 

SNMM. Any parameterization of the causal function 𝑢𝑢1(𝑀𝑀𝑖𝑖1,𝑎𝑎1) must satisfy the constraint that 

it equals zero when 𝑎𝑎1 is equal to zero. With a binary treatment and moderator, a saturated model 

for 𝑢𝑢1(𝑀𝑀𝑖𝑖1,𝑎𝑎1) is 

 𝑢𝑢1(𝑀𝑀𝑖𝑖1,𝑎𝑎1;𝛽𝛽1) = 𝑎𝑎1(𝛽𝛽10 + 𝛽𝛽11𝑀𝑀𝑖𝑖1).                                                                             (18)   

This model includes the familiar interaction term between treatment and the moderator at time 1, 

where 𝛽𝛽10is the average causal effect of treatment at time 1 among subjects in group 𝑀𝑀𝑖𝑖1 = 0 

and 𝛽𝛽11 increments this effect for subjects in group 𝑀𝑀𝑖𝑖1 = 1. If 𝛽𝛽11 = 0, then 𝑀𝑀𝑖𝑖1 is not a 

moderator for treatment at time 1.  

Similarly, a saturated model for 𝑢𝑢2(𝑀𝑀𝑖𝑖1,𝑎𝑎1𝑀𝑀𝑖𝑖2(𝑎𝑎1),𝑎𝑎2;𝛽𝛽2) is 

 𝑢𝑢2(𝑀𝑀𝑖𝑖1,𝑎𝑎1𝑀𝑀𝑖𝑖2(𝑎𝑎1),𝑎𝑎2;𝛽𝛽2) = 𝑎𝑎2�𝛽𝛽20 + 𝛽𝛽21𝑀𝑀𝑖𝑖1 + 𝛽𝛽22𝑀𝑀𝑖𝑖2(𝑎𝑎1) + 𝛽𝛽23𝑀𝑀𝑖𝑖1𝑀𝑀𝑖𝑖2(𝑎𝑎1) +

                   𝛽𝛽24𝑎𝑎1 + 𝛽𝛽25𝑀𝑀𝑖𝑖1𝑎𝑎1 + 𝛽𝛽26𝑎𝑎1𝑀𝑀𝑖𝑖2(𝑎𝑎1) + 𝛽𝛽27𝑀𝑀𝑖𝑖1𝑎𝑎1𝑀𝑀𝑖𝑖2(𝑎𝑎1)�.                                      (19) 
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This model includes all possible interactions between treatment at time 2, prior treatment, and 

prior moderators. Specific linear combinations of the beta parameters return the average causal 

effect of being exposed to treatment at time 2 (versus not being exposed) among the subgroups 

defined by 𝑀𝑀𝑖𝑖1and 𝑀𝑀𝑖𝑖2(𝑎𝑎1) had subjects initially been exposed to treatment 𝑎𝑎1. For example, 

among subjects in group 𝑀𝑀𝑖𝑖1 = 0 at time 1, who had not been exposed to treatment at time 1, 

and who were in group 𝑀𝑀𝑖𝑖2(0) = 0 at time 2 under no prior treatment, 𝛽𝛽20 is the average causal 

effect being exposed to treatment at time 2. As another example, 𝛽𝛽20 + 𝛽𝛽21 gives the same effect 

among subjects in group 𝑀𝑀𝑖𝑖1 = 1 at time 1. 

 The key to parameterizing the nuisance functions is to ensure that the model satisfies 

their zero conditional mean property. With this constraint in mind, a saturated model for 𝜀𝜀1(𝑀𝑀𝑖𝑖1) 

is  

 𝜀𝜀1(𝑀𝑀𝑖𝑖1; 𝜆𝜆1) = 𝜆𝜆10𝛿𝛿(𝑀𝑀𝑖𝑖1),                                                                                               (20) 

where 𝛿𝛿(𝑀𝑀𝑖𝑖1) = 𝑀𝑀𝑖𝑖1 − 𝐼𝐼(𝑀𝑀𝑖𝑖1) and 𝜆𝜆10 gives the associational effect of the moderator at time 1 

on the outcome had subjects not been exposed to treatment at any time point. It satisfies the zero 

conditional mean property because 𝐼𝐼�𝛿𝛿(𝑀𝑀𝑖𝑖1)� = 𝐼𝐼�𝑀𝑀𝑖𝑖1 − 𝐼𝐼(𝑀𝑀𝑖𝑖1)� = 0.  

A saturated model for the second nuisance function is  

 𝜀𝜀2(𝑀𝑀𝑖𝑖1,𝑎𝑎1,𝑀𝑀𝑖𝑖2(𝑎𝑎1); 𝜆𝜆2) = 𝛿𝛿�𝑀𝑀𝑖𝑖2(𝑎𝑎1)�(𝜆𝜆20 + 𝜆𝜆21𝑀𝑀𝑖𝑖1 + 𝜆𝜆22𝑎𝑎1 + 𝜆𝜆23𝑎𝑎1𝑀𝑀𝑖𝑖1),             (21) 

where 𝛿𝛿�𝑀𝑀𝑖𝑖2(𝑎𝑎1)� = 𝑀𝑀𝑖𝑖2(𝑎𝑎1) − 𝐼𝐼(𝑀𝑀𝑖𝑖2(𝑎𝑎1)|𝑀𝑀𝑖𝑖1) and different combinations of the lambda 

parameters give the associational effect of the moderator at time 2 on the outcome. It satisfies the 

zero conditional mean constraint because 𝐼𝐼�𝛿𝛿�𝑀𝑀𝑖𝑖2(𝑎𝑎1)��𝑀𝑀𝑖𝑖1� = 

𝐼𝐼(𝑀𝑀𝑖𝑖2(𝑎𝑎1) − 𝐼𝐼(𝑀𝑀𝑖𝑖2(𝑎𝑎1)|𝑀𝑀𝑖𝑖1)|𝑀𝑀𝑖𝑖1) = 𝐼𝐼(𝑀𝑀𝑖𝑖2(𝑎𝑎1)|𝑀𝑀𝑖𝑖1) − 𝐼𝐼(𝑀𝑀𝑖𝑖2(𝑎𝑎1)|𝑀𝑀𝑖𝑖1) = 0. It is important 

to note that 𝛿𝛿(𝑀𝑀𝑖𝑖1) and 𝛿𝛿�𝑀𝑀𝑖𝑖2(𝑎𝑎1)� are similar to residual terms from regressions of the 

moderators on past covariates.  
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Combining the models for the causal and nuisance functions yields the following 

saturated SNMM: 

𝐼𝐼�𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2)|𝑀𝑀𝑖𝑖1,𝑀𝑀𝑖𝑖2(𝑎𝑎1)� = 𝛽𝛽0 + 𝜆𝜆10𝛿𝛿(𝑀𝑀𝑖𝑖1) + 𝑎𝑎1(𝛽𝛽10 + 𝛽𝛽11𝑀𝑀𝑖𝑖1) + 𝛿𝛿�𝑀𝑀𝑖𝑖2(𝑎𝑎1)�(𝜆𝜆20 +

                     𝜆𝜆21𝑀𝑀𝑖𝑖1 + 𝜆𝜆22𝑎𝑎1 + 𝜆𝜆23𝑎𝑎1𝑀𝑀𝑖𝑖1) + 𝑎𝑎2�𝛽𝛽20 + 𝛽𝛽21𝑀𝑀𝑖𝑖1 + 𝛽𝛽22𝑀𝑀𝑖𝑖2(𝑎𝑎1) + 𝛽𝛽23𝑀𝑀𝑖𝑖1𝑀𝑀𝑖𝑖2(𝑎𝑎1) +

                     𝛽𝛽24𝑎𝑎1 + 𝛽𝛽25𝑀𝑀𝑖𝑖1𝑎𝑎1 + 𝛽𝛽26𝑎𝑎1𝑀𝑀𝑖𝑖2(𝑎𝑎1) + 𝛽𝛽27𝑀𝑀𝑖𝑖1𝑎𝑎1𝑀𝑀𝑖𝑖2(𝑎𝑎1)�.                                     (22) 

This equation is similar to the familiar linear model with all possible interaction terms between 

treatments and moderators except that in several places the moderators are replaced with terms 

that resemble residuals. The saturated SNMM has a total of 16 parameters, one for every 

possible combination of binary treatments and moderators. For now, we focus on the saturated 

model, but in a subsequent section, we discuss several simplifying assumptions that might be 

imposed on the functional form of the SNMM, particularly in situations where multivalued 

treatments and moderators make a saturated model intractable. 

 

Estimation  

The moderated intermediate causal effects defined previously can be identified from observed 

data under the assumption of sequential ignorability of treatment assignment (Almirall, Ten 

Have, and Murphy 2010; Robins 1994). This assumption is formally expressed in two parts: 

𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2) ⊥ 𝐴𝐴𝑖𝑖1|𝑀𝑀𝑖𝑖1 ∀ (𝑎𝑎1,𝑎𝑎2),                                                                                      (23) 

𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2) ⊥ 𝐴𝐴𝑖𝑖2|𝑀𝑀𝑖𝑖1,𝐴𝐴𝑖𝑖1,𝑀𝑀𝑖𝑖2 ∀ (𝑎𝑎1,𝑎𝑎2).                                                                       (24) 

Substantively, it states that at each time point there are not any variables other than the prior 

moderators and treatments that directly affect selection into future treatment and the outcome. 

This assumption is met by design in sequentially randomized experimental studies. Figure 3 

displays two DAGs that describe time-dependent causal systems in which this assumption is 
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satisfied. Panel A describes the scenario in which treatment is sequentially randomized, while 

Panel B depicts the situation in which selection into treatment is determined only on the basis of 

prior treatments and moderators. In both DAGS, the treatment and moderator at each time point 

directly affect the outcome, and treatment at time 1 has an indirect effect on the outcome that 

operates through the moderator at time 2. Unobserved characteristics of a subject, denoted by 𝑈𝑈𝑖𝑖, 

affect the moderator and the outcome, but not treatment. 

 

Limitations of Conventional Regression Estimation 

Recall that in the point-in-time setting, moderated causal effects can be consistently estimated 

with a conventional regression that conditions on the treatment, moderator, and a treatment-

moderator interaction term when the ignorability assumption is satisfied. In this section, we 

explain why estimates from an analogous conventional regression in the longitudinal setting are 

biased, even when the sequential ignorability assumption is satisfied. Consider the following 

observed data regression model: 

𝐼𝐼(𝑌𝑌𝑖𝑖|𝑀𝑀𝑖𝑖1,𝐴𝐴𝑖𝑖1,𝑀𝑀𝑖𝑖2,𝐴𝐴𝑖𝑖2) = 𝛽𝛽0∗ + 𝜆𝜆10∗ 𝑀𝑀𝑖𝑖1 + 𝐴𝐴𝑖𝑖1(𝛽𝛽10∗ + 𝛽𝛽11∗ 𝑀𝑀𝑖𝑖1) + 𝑀𝑀𝑖𝑖2(𝜆𝜆20∗ + 𝜆𝜆21∗ 𝑀𝑀𝑖𝑖1 +

                       𝜆𝜆22∗ 𝐴𝐴𝑖𝑖1 + 𝜆𝜆23∗ 𝐴𝐴𝑖𝑖1𝑀𝑀𝑖𝑖1) + 𝐴𝐴𝑖𝑖2(𝛽𝛽20∗ + 𝛽𝛽21∗ 𝑀𝑀𝑖𝑖1 + 𝛽𝛽22∗ 𝑀𝑀𝑖𝑖2 + 𝛽𝛽23∗ 𝑀𝑀𝑖𝑖1𝑀𝑀𝑖𝑖2 + 𝛽𝛽24∗ 𝐴𝐴𝑖𝑖1 +

                       𝛽𝛽25∗ 𝑀𝑀𝑖𝑖1𝐴𝐴𝑖𝑖1 + 𝛽𝛽26∗ 𝐴𝐴𝑖𝑖1𝑀𝑀𝑖𝑖2 + 𝛽𝛽27∗ 𝑀𝑀𝑖𝑖1𝐴𝐴𝑖𝑖1𝑀𝑀𝑖𝑖2).                                                            (25) 

Least squares estimates of the parameters in this equation are biased for the causal parameters in 

the SNMM for two reasons. First, because this model conditions naively on 𝑀𝑀𝑖𝑖2, which mediates 

the effect of prior treatment, 𝐴𝐴𝑖𝑖1, on the outcome, the parameters {𝛽𝛽10∗ ,𝛽𝛽11∗ } do not capture the 

indirect effect of prior treatment that operates through future levels of the moderator. This 

problem is known as over-control of intermediate pathways. It is depicted visually with the 

stylized graph in Panel A of Figure 4.  
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Despite the problem of over-control, it may be tempting to assume that these parameters 

still recover the moderated direct effects of treatment at time 1, holding the future moderator 

constant. However, the parameters {𝛽𝛽10∗ ,𝛽𝛽11∗ } cannot even be interpreted as direct effects of 

treatment because of a second problem associated with conditioning on an intermediate variable: 

collider-stratification bias. As depicted graphically in Panel B of Figure 4, conditioning on 𝑀𝑀𝑖𝑖2 

induces an association between prior treatment and the unobserved determinants of 𝑌𝑌𝑖𝑖 (i.e. the 

error term of the outcome), which leads to bias. The same problems prevent estimation of 

moderated causal effects in the longitudinal setting with propensity score stratification methods 

(e.g., Xie, Brand, and Jann 2012). Indeed, even with data from an optimal sequentially 

randomized experiment, conventional methods fail to recover the moderated causal effects of 

interest if the moderator is time-varying and affected by prior treatment. 

 Another way to conceive of these problems is as a specification error in the observed data 

regression, and specifically, as an error in the specification of the nuisance functions. In the 

SNMM, the nuisance functions are specified using a residual transformation of the time-varying 

moderators, but the observed data regression considered here includes the untransformed values 

of these variables in the model. As we show in the next section, unbiased estimation of 

moderated intermediate causal effects can be achieved with an observed data regression that 

correctly specifies the nuisance functions with appropriate residual terms. 

 

Regression-with-residuals 

Regression-with-residuals (RWR) estimation is very similar to the conventional regression 

approach discussed in the previous section, but it avoids the problems of over-control and 

collider stratification bias by aiming to correctly model the nuisance functions in the SNMM 
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(Almirall et al. 2013; Almirall et al. 2010). This method proceeds in two stages. In the first stage, 

the time-varying moderators are regressed on the observed past to obtain estimates of the 

residual terms 𝛿𝛿(𝑀𝑀𝑖𝑖1) and 𝛿𝛿�𝑀𝑀𝑖𝑖2(𝑎𝑎1)�. Specifically, parametric models of the form 𝐼𝐼(𝑀𝑀𝑖𝑖1) = 𝜙𝜙 

and 𝐼𝐼(𝑀𝑀𝑖𝑖2|𝑀𝑀𝑖𝑖1,𝐴𝐴𝑖𝑖1) = 𝑓𝑓(𝑀𝑀𝑖𝑖1,𝐴𝐴𝑖𝑖1;𝜓𝜓) are estimated and then used to construct the following 

residual terms: �̂�𝛿(𝑀𝑀𝑖𝑖1) = 𝑀𝑀𝑖𝑖1 − 𝐼𝐼�(𝑀𝑀𝑖𝑖1) = 𝑀𝑀𝑖𝑖1 − 𝜙𝜙� and 𝛿𝛿(𝑀𝑀𝑖𝑖2) = 𝑀𝑀𝑖𝑖2 − 𝐼𝐼�(𝑀𝑀𝑖𝑖2|𝑀𝑀𝑖𝑖1,𝐴𝐴𝑖𝑖1) =

𝑀𝑀𝑖𝑖2 − 𝑓𝑓�𝑀𝑀𝑖𝑖1,𝐴𝐴𝑖𝑖1;𝜓𝜓��. When 𝑀𝑀𝑖𝑖2 is binary, 𝐼𝐼(𝑀𝑀𝑖𝑖2|𝑀𝑀𝑖𝑖1,𝐴𝐴𝑖𝑖1) can be estimated by least squares 

using a saturated linear probability model, such as 𝐼𝐼(𝑀𝑀𝑖𝑖2|𝑀𝑀𝑖𝑖1,𝐴𝐴𝑖𝑖1) = 𝜓𝜓0 + 𝜓𝜓1𝑀𝑀𝑖𝑖1 +

𝐴𝐴𝑖𝑖1(𝜓𝜓2 + 𝜓𝜓3𝑀𝑀𝑖𝑖1), or it could be estimated by maximum likelihood using a more complex 

nonlinear model (e.g., logit or probit).  

In the second stage, the SNMM is estimated via the following observed data regression 

that replaces the untransformed values of the moderators in the nuisance functions with the 

residualized values: 

𝐼𝐼(𝑌𝑌𝑖𝑖|𝑀𝑀𝑖𝑖1,𝐴𝐴𝑖𝑖1,𝑀𝑀𝑖𝑖2,𝐴𝐴𝑖𝑖2) = 𝛽𝛽0∗ + 𝜆𝜆10∗ 𝛿𝛿(𝑀𝑀𝑖𝑖1) + 𝐴𝐴𝑖𝑖1(𝛽𝛽10∗ + 𝛽𝛽11∗ 𝑀𝑀𝑖𝑖1) + 𝛿𝛿(𝑀𝑀𝑖𝑖2)(𝜆𝜆20∗ +

                       𝜆𝜆21∗ 𝑀𝑀𝑖𝑖1 + 𝜆𝜆22∗ 𝐴𝐴𝑖𝑖1 + 𝜆𝜆23∗ 𝐴𝐴𝑖𝑖1𝑀𝑀𝑖𝑖1) + 𝐴𝐴𝑖𝑖2(𝛽𝛽20∗ + 𝛽𝛽21∗ 𝑀𝑀𝑖𝑖1 + 𝛽𝛽22∗ 𝑀𝑀𝑖𝑖2 + 𝛽𝛽23∗ 𝑀𝑀𝑖𝑖1𝑀𝑀𝑖𝑖2 +

                      𝛽𝛽24∗ 𝐴𝐴𝑖𝑖1 + 𝛽𝛽25∗ 𝑀𝑀𝑖𝑖1𝐴𝐴𝑖𝑖1 + 𝛽𝛽26∗ 𝐴𝐴𝑖𝑖1𝑀𝑀𝑖𝑖2 + 𝛽𝛽27∗ 𝑀𝑀𝑖𝑖1𝐴𝐴𝑖𝑖1𝑀𝑀𝑖𝑖2).                                             (26) 

Least squares estimates of this equation are unbiased and consistent for the moderated causal 

effects of interest under the sequential ignorability assumption outlined previously (Almirall et 

al. 2013; Almirall et al. 2010). The only difference between this model and the conventional 

regression in Equation 25 is that it correctly specifies the nuisance functions of the SNMM using 

residualized, rather than untransformed, values of the moderators. 

  Figure 5 displays a stylized graph that provides some intuition as to how RWR estimation 

overcomes the problems of over-control and collider-stratification. It shows that residualizing 

𝑀𝑀𝑖𝑖2 based on the observed past “purges” this variable of its association with prior treatment 
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while leaving its association with other variables (e.g., the outcome) intact. Thus, conditioning 

on the residualized moderator in an observed data regression for 𝑌𝑌𝑖𝑖 does not remove the indirect 

effect of prior treatment that operates through the moderator and does not induce an association 

between prior treatment and unobserved determinants of the outcome.  

 

Adjustment for Confounding 

It is often the case in the social sciences that the sequential ignorability assumptions defined in 

Equations 23 and 24 do not hold because there are variables other than the moderators and prior 

treatments that affect selection into future treatments and the outcome. When these variables 

change over time, they are called time-varying confounders, and they lead to bias if not properly 

accounted for. Panel A of Figure 6 contains a DAG that graphically depicts the problem of bias 

due to time-varying confounders. It shows additional variables, 𝐼𝐼1 and 𝐼𝐼2, that affect both 

treatment and the outcome. Specifically, 𝐼𝐼1 is a confounder for the effects of 𝐴𝐴1on 𝑌𝑌, and both 

𝐼𝐼1 and 𝐼𝐼2 are confounders for the effect of 𝐴𝐴2 on 𝑌𝑌. Under a slightly modified version of the 

sequential ignorability assumptions defined previously, the moderated intermediate causal effects 

of interest can still be identified from observed data in the presence of time-varying confounders, 

but more complicated estimation methods are required.   

To appreciate the need for more complicated estimation methods in this setting, note that 

if the analysis adjusts naively for 𝐼𝐼1 and 𝐼𝐼2 by including them as covariates in either a 

conventional regression or even as part of a RWR (where the moderators, 𝑀𝑀1 and 𝑀𝑀2, are 

residualized), it may also incur biases due to over-control and collider stratification. This could 

happen for the very same reasons that adjusting naively for  𝑀𝑀1 and 𝑀𝑀2 may lead to such biases, 

which were previously described in Figure 4.  
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The stylized graph in Panel B of Figure 6 depicts what would happen if RWR were used 

to adjust appropriately for the time-varying moderators, but the confounders were adjusted for 

naively by including them directly in the outcome model. An example of such a regression 

model is 

𝐼𝐼(𝑌𝑌𝑖𝑖|𝐼𝐼𝑖𝑖1,𝑀𝑀𝑖𝑖1,𝐴𝐴𝑖𝑖1,𝐼𝐼𝑖𝑖2,𝑀𝑀𝑖𝑖2,𝐴𝐴𝑖𝑖2) = 𝛽𝛽0∗ + 𝜆𝜆10∗ 𝛿𝛿(𝑀𝑀𝑖𝑖1) + 𝜆𝜆11∗ 𝐼𝐼𝑖𝑖1 + 𝐴𝐴𝑖𝑖1(𝛽𝛽10∗ + 𝛽𝛽11∗ 𝑀𝑀𝑖𝑖1) +

                      𝛿𝛿(𝑀𝑀𝑖𝑖2)(𝜆𝜆20∗ +  𝜆𝜆21∗ 𝑀𝑀𝑖𝑖1 + 𝜆𝜆22∗ 𝐴𝐴𝑖𝑖1 + 𝜆𝜆23∗ 𝐴𝐴𝑖𝑖1𝑀𝑀𝑖𝑖1) + 𝜆𝜆24∗ 𝐼𝐼𝑖𝑖2 + 𝐴𝐴𝑖𝑖2(𝛽𝛽20∗ + 𝛽𝛽21∗ 𝑀𝑀𝑖𝑖1 +

                      𝛽𝛽22∗ 𝑀𝑀𝑖𝑖2 + 𝛽𝛽23∗ 𝑀𝑀𝑖𝑖1𝑀𝑀𝑖𝑖2 + 𝛽𝛽24∗ 𝐴𝐴𝑖𝑖1 + 𝛽𝛽25∗ 𝑀𝑀𝑖𝑖1𝐴𝐴𝑖𝑖1 + 𝛽𝛽26∗ 𝐴𝐴𝑖𝑖1𝑀𝑀𝑖𝑖2 + 𝛽𝛽27∗ 𝑀𝑀𝑖𝑖1𝐴𝐴𝑖𝑖1𝑀𝑀𝑖𝑖2).      (27) 

Note that Equation 27 does not include interaction terms between 𝐼𝐼𝑖𝑖1 and 𝐴𝐴𝑖𝑖1 or between 

(𝐼𝐼𝑖𝑖1,𝐴𝐴𝑖𝑖1,𝐼𝐼𝑖𝑖2) and 𝐴𝐴𝑖𝑖2. This is consistent with the intent to adjust for 𝐼𝐼𝑖𝑖1 and 𝐼𝐼𝑖𝑖2 because they are 

time-varying confounders, not because they are moderators of scientific interest. Similar to the 

problems outlined in the previous section, Panel B of Figure 6 shows that least squares estimates 

of (𝛽𝛽10∗ ,𝛽𝛽11∗ ) are biased due to over-control and collider stratification, which results from naively 

conditioning on 𝐼𝐼𝑖𝑖2 in this model. In the sections that follow, we present two approaches for 

estimating moderated intermediate causal effects in the presence of time-varying confounders 

that avoid these problems. 

 

Covariate-adjusted Regression-with-residuals  

Covariate-adjusted regression-with-residuals (CA-RWR) is nearly identical to the RWR method 

discussed previously, but it avoids the problems of over-control and collider stratification bias 

due to conditioning on untransformed values of the time-varying confounders by conditioning 

instead on a residual transformation of these variables. As with RWR, CA-RWR proceeds in two 

stages, but it involves four additional modeling considerations. First, two more estimated 

residuals are obtained in the first stage—one each for 𝐼𝐼𝑖𝑖1 and 𝐼𝐼𝑖𝑖2. These are defined as 𝛿𝛿(𝐼𝐼𝑖𝑖1) =
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𝐼𝐼𝑖𝑖1 − 𝐼𝐼�(𝐼𝐼𝑖𝑖1) and 𝛿𝛿(𝐼𝐼𝑖𝑖2) = 𝐼𝐼𝑖𝑖2 − 𝐼𝐼�(𝐼𝐼𝑖𝑖2|𝐼𝐼𝑖𝑖1,𝑀𝑀𝑖𝑖1,𝐴𝐴𝑖𝑖1), respectively. Second, with CA-RWR, 

𝛿𝛿(𝑀𝑀𝑖𝑖2) may now depend on 𝐼𝐼𝑖𝑖1—that is, 𝛿𝛿(𝑀𝑀𝑖𝑖2) is defined as 𝛿𝛿(𝑀𝑀𝑖𝑖2) = 𝑀𝑀𝑖𝑖2 −

𝐼𝐼�(𝑀𝑀𝑖𝑖2|𝑀𝑀𝑖𝑖1,𝐼𝐼𝑖𝑖1,𝐴𝐴𝑖𝑖1). Third, instead of conditioning on the untransformed values of the time-

varying confounders, the SNMM is estimated via a second-stage regression that replaces them 

with the residualized values 𝛿𝛿(𝐼𝐼𝑖𝑖1) and 𝛿𝛿(𝐼𝐼𝑖𝑖2). Fourth, the second-stage regression may now 

include additional terms involving the confounders as part of the nuisance functions. For 

example, the associational effect of the moderators on the outcome may vary by levels of the 

confounders, which would necessitate including higher order interaction terms for different 

cross-products of 𝐼𝐼𝑖𝑖1 and 𝐼𝐼𝑖𝑖2 with 𝛿𝛿(𝑀𝑀𝑖𝑖1) and �̂�𝛿(𝑀𝑀𝑖𝑖2). 

 CA-RWR requires a different set of identification assumptions compared with RWR. For 

the CA-RWR approach, the moderated intermediate causal effects 𝑢𝑢1(𝑀𝑀𝑖𝑖1,𝑎𝑎1;𝛽𝛽1) and 

𝑢𝑢2(𝑀𝑀𝑖𝑖1,𝑎𝑎1𝑀𝑀𝑖𝑖2(𝑎𝑎1),𝑎𝑎2;𝛽𝛽2) can be identified from observed data under an expanded version of 

the sequential ignorability assumptions defined previously. Specifically, CA-RWR requires that 

𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2) ⊥ 𝐴𝐴𝑖𝑖1|𝑀𝑀𝑖𝑖1,𝐼𝐼𝑖𝑖1 ∀ (𝑎𝑎1,𝑎𝑎2) and                                                                         (28) 

𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2) ⊥ 𝐴𝐴𝑖𝑖2|𝑀𝑀𝑖𝑖1,𝐼𝐼𝑖𝑖1,𝐴𝐴𝑖𝑖1,𝑀𝑀𝑖𝑖2,𝐼𝐼𝑖𝑖2 ∀ (𝑎𝑎1,𝑎𝑎2).                                                          (29) 

Substantively, this assumption states that at each time point there are not any variables other than 

the prior moderators, time-varying confounders, and treatments that directly affect selection into 

future treatment and the outcome. These conditions subsume those defined in Equations 23 and 

24, which implies that CA-RWR requires a weaker set of ignorability assumptions than RWR. 

However, compared to RWR, CA-RWR requires additional modeling assumptions. In particular, 

CA-RWR requires that the time-varying confounders are not also moderators for the effects of 

treatment on the outcome. This assumption is encoded in the models for the moderated 

intermediate causal effects, which depend only on 𝑀𝑀𝑖𝑖1 and 𝑀𝑀𝑖𝑖2, and not on 𝐼𝐼𝑖𝑖1 and 𝐼𝐼𝑖𝑖2.   
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 Figure 7 displays a stylized graph that provides some intuition as to how CA-RWR 

estimation overcomes the problems of over-control and collider stratification bias that result 

from naively conditioning on the untransformed time-varying confounders. Note that these are 

essentially the same problems that were encountered previously as a result of conditioning 

naively on the untransformed time-varying moderators, except that here the problems apply to 

𝐼𝐼𝑖𝑖1 and 𝐼𝐼𝑖𝑖2. The figure shows that residualizing both 𝑀𝑀𝑖𝑖2 and 𝐼𝐼𝑖𝑖2 based on the observed past 

“purges” these variables of their association with prior treatment while leaving their association 

with other variables (e.g., the outcome and future treatment) intact. This approach avoids 

controlling away part of the treatment effect that operates through future time-varying 

confounders, and it avoids inducing a non-causal association between 𝐴𝐴𝑖𝑖1 and unobserved 

variables, such as 𝑉𝑉, that are joint determinants of both 𝐼𝐼𝑖𝑖2 and the outcome, 𝑌𝑌. 

 

IPT-weighted Regression-with-residuals 

IPT-weighted regression-with-residuals (IPTW-RWR) aims to overcome two related limitations 

of the CA-RWR approach (Almirall et al. 2014). The first limitation involves the modeling 

assumption associated with CA-RWR which states that time-varying confounders are not also 

moderators of treatment effects on the outcome. In many cases, social scientists are specifically 

interested in how a particular time-varying covariate, say 𝑀𝑀𝑖𝑖1 and 𝑀𝑀𝑖𝑖2, moderate the effects of a 

time-varying treatment, but they do not wish to rule out the possibility that other time-varying 

covariates, such as 𝐼𝐼𝑖𝑖1 and 𝐼𝐼𝑖𝑖2, are also moderators. With CA-RWR, however, one must consider 

the explicit role that 𝐼𝐼𝑖𝑖1 and 𝐼𝐼𝑖𝑖2 play in moderating the effects of treatment because this 

approach directly adjusts for these variables in the outcome model.  
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 The second limitation of CA-RWR is the potentially high dimensionality of 𝐼𝐼𝑖𝑖1 and 𝐼𝐼𝑖𝑖2—

that is, the possibility that there are a large number of observed time-varying confounders. In 

many social science applications, the number of covariates in 𝐼𝐼𝑖𝑖1 and 𝐼𝐼𝑖𝑖2 is large, while the 

analysis is focused on only a limited set of putative moderators. As the number of covariates in 

𝐼𝐼𝑖𝑖1 and 𝐼𝐼𝑖𝑖2 grows larger, it becomes more difficult to ensure that the models for the nuisance 

functions are correctly specified. Recall that each time-varying confounder may require up to 

four additional modeling considerations—all of them having to do with the nuisance functions, 

which are not of scientific interest. Finally, these two limitations are related in that the CA-RWR 

assumption stating that the effects of treatment are not moderated by the covariates in 𝐼𝐼𝑖𝑖1 or 𝐼𝐼𝑖𝑖2 

becomes more and more untenable as the number of these covariates grows large. 

IPTW-RWR overcomes these limitations by adjusting for time-varying confounders via 

weighting rather than via a modeling approach. Specifically, with IPTW-RWR, the following 

IPT weights are computed for each subject i: 

𝑤𝑤𝑖𝑖1 = 𝑃𝑃�𝐴𝐴𝑖𝑖1 = 𝑎𝑎𝑖𝑖1�𝑀𝑀𝑖𝑖1�
𝑃𝑃�𝐴𝐴𝑖𝑖1 = 𝑎𝑎𝑖𝑖1�𝑀𝑀𝑖𝑖1,𝐼𝐼𝑖𝑖1�

  and                                                                                     (30) 

𝑤𝑤𝑖𝑖2 = 𝑃𝑃�𝐴𝐴𝑖𝑖2 = 𝑎𝑎𝑖𝑖1�𝑀𝑀𝑖𝑖1,𝐴𝐴𝑖𝑖1,𝑀𝑀𝑖𝑖2�
𝑃𝑃�𝐴𝐴𝑖𝑖2 = 𝑎𝑎𝑖𝑖1�𝑀𝑀𝑖𝑖1,𝐼𝐼𝑖𝑖1,𝐴𝐴𝑖𝑖1,𝐼𝐼𝑖𝑖2,𝑀𝑀𝑖𝑖2�

.                                                                       (31)                                                                                             

The numerator of the weights is the conditional probability of treatment given prior moderators 

and treatments, while the denominator is the conditional probability of treatment given prior 

moderators, treatments, and confounders. At each time point, weighting by the ratio of these 

conditional probabilities balances prior time-varying confounders, but not prior moderators, 

across levels of future treatment. As in the point-in-time setting, the true IPT weights are 

unknown and must be estimated from data. This is typically accomplished by estimating the 

numerator and denominator using logistic regression models, but alternative methods are also 

available (e.g., McCaffrey et al. 2004). 
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After estimates of the IPT weights are computed, IPTW-RWR proceeds just as RWR but 

with weighted, rather than unweighted, regressions at each stage. Specifically, in the first stage, 

the estimated residuals 𝛿𝛿(𝑀𝑀𝑖𝑖1) = 𝑀𝑀𝑖𝑖1 − 𝐼𝐼�(𝑀𝑀𝑖𝑖1) and 𝛿𝛿(𝑀𝑀𝑖𝑖2) = 𝑀𝑀𝑖𝑖2 − 𝐼𝐼�(𝑀𝑀𝑖𝑖2|𝑀𝑀𝑖𝑖1,𝐴𝐴𝑖𝑖1) are 

obtained from weighted regressions for 𝐼𝐼(𝑀𝑀𝑖𝑖1) and 𝐼𝐼(𝑀𝑀𝑖𝑖2|𝑀𝑀𝑖𝑖1,𝐴𝐴𝑖𝑖1) with weights equal to 𝑤𝑤�𝑖𝑖1 

and 𝑤𝑤�𝑖𝑖1 × 𝑤𝑤�𝑖𝑖2, respectively. In the second stage, the SNMM is estimated via the same observed 

data regression used in Equation 26, but in this instance estimates are computed using weighted 

least squares with weights equal to 𝑤𝑤�𝑖𝑖1 × 𝑤𝑤�𝑖𝑖2. 

IPTW-RWR requires the same sequential ignorability assumptions as CA-RWR and the 

same set of modeling assumptions as RWR (namely, correct models for the nuisance functions 

involving 𝑀𝑀𝑖𝑖1 and 𝑀𝑀𝑖𝑖2 and for the moderated intermediate causal effects). This approach 

additionally requires correctly specified models for the denominator probabilities in the IPT 

weights. Note, however, that this approach effectively replaces the four additional modeling 

considerations for each time-varying confounder in the CA-RWR approach with a single set of 

modeling considerations for the propensity score at each time point. 

Figure 8 displays a stylized graph that provides some intuition as to how IPTW-RWR 

overcomes (1) the problems of over-control and collider stratification bias due to conditioning 

naively on time-varying moderators and (2) the problem of confounding by time-varying 

covariates. First, by residualizing 𝑀𝑀𝑖𝑖2 based on the observed past, IPTW-RWR “purges” 𝑀𝑀𝑖𝑖2 of 

its association with prior treatment while leaving the association between prior treatment and 

other variables intact. Second, by re-weighting the data based on the IPT at each time point, this 

approach eliminates the association between treatment and prior confounders while leaving 

intact the indirect effects of treatment that operate through future levels of the confounders. 
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Extensions for Multivalued Treatments, Multivalued Moderators, and Many Time Points 

Thus far, we have focused largely on a saturated SNMM with a binary treatment and a binary 

moderator at 2 time points. Even in this simplest of scenarios, the SNMM is quite complex. With 

multivalued treatments, multivalued moderators, or many time points (i.e., 𝑡𝑡 > 2), a saturated 

SNMM becomes intractable, and researchers have to explore simplifying functional form 

assumptions that reduce the number of free parameters in the model. These assumptions can be 

conceived of as additional parametric constraints imposed on the SNMM. 

 For example, consider a hypothetical scenario with a 3-level ordinal treatment, an 

interval-level moderator that takes on 10 different values, and 2 time points. In this scenario, a 

saturated SNMM would have 32 × 102 = 900 parameters! One way to simplify this model 

would be to assume that (1) the effect of treatment at each time point only varies across levels 

the moderator immediately preceding it; (2) the effect of treatment at each time point is linear 

within levels of the prior moderator; (3) a unit increase in the level of the prior moderator 

increments the effect of treatment by a constant amount; and (4) the associational effect of the 

moderator at each time point is also linear and does not depend on prior variables. Translating 

these assumptions into parametric constraints gives an unsaturated SNMM of the form 

𝐼𝐼�𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2)|𝑀𝑀𝑖𝑖1,𝑀𝑀𝑖𝑖2(𝑎𝑎1)� = 𝛽𝛽0 + 𝜆𝜆10𝛿𝛿(𝑀𝑀𝑖𝑖1) + 𝑎𝑎1(𝛽𝛽10 + 𝛽𝛽11𝑀𝑀𝑖𝑖1) +

                                      𝜆𝜆20𝛿𝛿�𝑀𝑀𝑖𝑖2(𝑎𝑎1)� + 𝑎𝑎2(𝛽𝛽20 + 𝛽𝛽21𝑀𝑀𝑖𝑖2),                                                        (32) 

which uses only 7 parameters to summarize all 900 possible values that the conditional 

expectation can take on. Of course, many different types of constraints are possible, and their 

suitability in any given context will depend on the true data-generating process.  

Unbiased estimation of moderated intermediate causal effects requires a correctly 

specified SNMM. If the simplifying assumptions imposed via parametric constraints on the 
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functional form of the model are incorrect, then estimates of these effects will be biased. Thus, in 

practice, researchers should experiment with a variety of different functional forms, investigate 

the sensitivity of causal effect estimates to these different specifications, clearly delineate the 

assumptions underlying the favored specification, and justify these assumptions based on 

substantive knowledge of the underlying data-generating process. 

 

Variance Estimation 

For all of the estimation approaches described previously, the standard errors (SEs) reported 

from over-the-counter software packages, such as Stata or R, are inappropriate because they 

assume that the residuals terms and, in the case of IPTW-RWR, the weights are known rather 

than estimated. Consequently, hypothesis tests and confidence intervals for the moderated causal 

effects of interest that are based on these SEs will be invalid. Almirall et al. (2010) derives 

asymptotic SEs that additionally account for sampling error in the estimation of the residuals 

using standard Taylor series arguments. However, because the programming needed to compute 

these SEs is highly complex, we propose the use of bootstrap estimates, which are easier to 

calculate using over-the-counter software (Efron and Tibshirani 1993). Simulation studies reveal 

a close correspondence between the bootstrap and asymptotic SEs in large sample applications. 

With smaller samples, simulations suggest that bootstrap SEs perform better than the asymptotic 

SEs, as expected. To obtain bootstrap estimates of the SEs, any of the estimation methods 

described previously are first applied to 𝑏𝑏 samples of size N chosen at random (with 

replacement) from the original data. For each sample, parameter estimates for the moderated 

causal effects of interest are stored, and then the SEs are estimated using the standard deviation 

of these estimates across the 𝑏𝑏 samples. The larger the number of samples, the more accurate are 
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estimates of the SEs. In practice, 𝑏𝑏 = 200 provides a sufficient degree of accuracy (Efron and 

Tibshirani 1993). 

 

EMPIRICAL EXAMPLE: NEIGHBORHOOD EFFECTS ON TEEN CHILDBEARING 

This section presents an example application of SNMMs and RWR estimation that investigates 

whether the impact of concentrated neighborhood poverty on the risk of teen childbearing is 

moderated by prior family income. Neighborhood exposures and family income levels both vary 

over time (Quillian 2003; Timberlake 2007), and several competing theories suggest that family 

income moderates the impact of neighborhood poverty on the risk of teen childbearing. For 

example, compound disadvantage theory contends that family poverty intensifies the effects of 

neighborhood poverty because children from poor families must rely more heavily on 

neighborhood networks and institutional resources than children from nonpoor families (Jencks 

and Mayer 1990; Wilson 1987). By contrast, relative deprivation theory posits that the effects of 

poor neighborhoods are less severe among children in poor families because these children lack 

the family resources needed to capitalize on the advantages available in affluent neighborhoods 

(Jencks and Mayer 1990).  

We investigate the impact of different longitudinal patterns of exposure to neighborhood 

poverty among subgroups of children defined by their time-varying family incomes using data 

from the PSID (Michigan Survey Research Center 2013). The PSID is a longitudinal study that 

began in 1968 with a national sample of about 4,800 households. From 1968 to 1997, the PSID 

interviewed household members annually; after 1997, interviews were conducted biennially. 

Families are matched to census tracts using the restricted-use PSID geocode file, and data on the 

socioeconomic composition of census tracts come from the Geolytics Neighborhood Change 
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Database (GeoLytics 2003).3 The analytic sample for this study includes the 7,816 subjects in the 

PSID who were age 3 at any time between 1968 and 1986. Using all available data for these 

subjects between ages 3 and 14, measurements of neighborhood poverty and family-level 

covariates are constructed separately by developmental period, where the time index 𝑡𝑡 is used to 

distinguish between measurements taken during childhood (𝑡𝑡 = 1) and adolescence (𝑡𝑡 = 2).  

The treatment of interest in this analysis is exposure to different levels of neighborhood 

poverty. We construct a three-level ordinal treatment variable coded 0, 1, or 2 to indicate that a 

child lived in a low-poverty (<10%), moderate-poverty (10-20%), or a high-poverty (>20%) 

neighborhood, respectively. The childhood measurement of neighborhood poverty is based on a 

subject’s average tract poverty rate over the three survey waves from age 6 to 8. Neighborhood 

poverty during adolescence is based on the average tract poverty rate over the three survey 

waves from age 12 to 14. We also construct separate multi-wave averages of time-varying 

covariates during childhood and adolescence. Time-varying covariates during childhood are 

based on averages taken over the years in which a subject is age 3 to 5—the three survey waves 

immediately preceding measurement of childhood treatment. Similarly, time-varying covariates 

during adolescence are based on averages over the years in which a subject is age 9 to 11—the 

three survey waves preceding measurement of adolescent neighborhood poverty and following 

measurement of neighborhood poverty during childhood. The end-of-study outcome of interest is 

a binary variable indicating whether a subject experienced a childbirth event between ages 15 

3 The data used in this analysis are derived from Sensitive Data Files of the PSID, obtained under special contractual 
arrangements designed to protect the anonymity of respondents. These data are not available from the authors. 
Persons interested in obtaining PSID Sensitive Data Files should contact PSIDHelp@isr.umich.edu. 
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and 20.4 This measurement strategy, which is depicted graphically in Figure 9, ensures 

appropriate temporal ordering of the treatment, moderator, confounders, and outcome. 

The time-varying moderator of interest in this analysis is the family income-to-needs 

ratio. This variable is equal to a family’s annual real income from all sources divided by the 

official poverty threshold, which is indexed to family size. For ease of interpretation, the income-

to-needs ratio is centered at the poverty line (i.e., it is equal to 0 for families with poverty-level 

incomes, 1 for families with incomes equivalent to twice the poverty line, and so on). The time-

varying confounders included in this analysis are the family head’s marital status (married versus 

not married), employment status (employed versus not employed), most recent occupation 

(professional or managerial occupation versus others), and homeownership status (homeowner 

versus renter). In addition, we control for a number of time-invariant confounders, including 

gender, race, birth year, mother’s age and marital status at the time of a subject’s birth, and the 

family head’s highest level of completed education.5  

 We focus on estimating SNMMs of the form: 

𝐼𝐼�𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2)|𝑀𝑀𝑖𝑖1,𝑀𝑀𝑖𝑖2(𝑎𝑎1)� = 𝛽𝛽0 + 𝜆𝜆10𝛿𝛿(𝑀𝑀𝑖𝑖1) + 𝑎𝑎1(𝛽𝛽10 + 𝛽𝛽11𝑀𝑀𝑖𝑖1) +  

                        𝛿𝛿�𝑀𝑀𝑖𝑖2(𝑎𝑎1)�𝜆𝜆20 + 𝑎𝑎2�𝛽𝛽20 + 𝛽𝛽21𝑀𝑀𝑖𝑖2(𝑎𝑎1)�,                                               (33) 

where  𝑎𝑎𝑖𝑖 denotes exposure to different levels of neighborhood poverty; 𝑀𝑀𝑖𝑖𝑖𝑖 denotes the family 

income-to-needs ratio; and 𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2) is the potential outcome of interest coded 1 if a subject 

would have experienced a childbirth event between age 15 and 20 had they been exposed to the 

trajectory of neighborhood conditions (𝑎𝑎1,𝑎𝑎2), and 0 otherwise. This equation is a linear 

4 This analysis includes childbirth events for both male and female subjects in the PSID. Childbearing data for males 
is likely of poorer quality than that for females because males are simply not as accurate as females in their fertility 
reporting. Nevertheless, analyses stratified by gender yield results similar to those based on the pooled sample. 
5 Missing values are simulated for all variables using multiple imputation with 10 replications (Rubin 1987). Results 
are based on combined estimates and standard errors. 
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probability SNMM. In previous sections, we focused largely on saturated SNMMs that did not 

require assumptions about functional form. This model, however, assumes that the effects of 

neighborhood poverty on the risk of teen childbearing are approximately linear and are 

moderated only by the income-to-needs ratio measured during the same developmental period. It 

also assumes that the associational effect of the family income-to-needs ratio during adolescence 

does not depend on prior treatment or prior family income. Experimentation with a variety of 

more complex SNMMs suggests that this simplified specification accurately captures the 

moderated effects of interest. 

 In this model, the parameter 𝛽𝛽10 gives the average causal effect of childhood exposure to 

different levels of neighborhood poverty, setting adolescent treatment to low-poverty 

neighborhoods, among subjects in families with poverty-level incomes during childhood; 𝛽𝛽11 

increments this effect for subjects in families with incomes above or below the poverty line. The 

parameter 𝛽𝛽20 gives the average causal effect of adolescent exposure to different levels of 

neighborhood poverty, holding neighborhood conditions during childhood constant, among 

subjects in families that would have poverty-level incomes during adolescence under the fixed 

childhood exposure; 𝛽𝛽21 increments this effect for subjects in families that with incomes above 

or below the poverty line at this development stage. If 𝛽𝛽11 = 𝛽𝛽21 = 0, then the family income-to-

needs ratio does not moderate the impact of neighborhood poverty on the risk of teen 

childbearing. 

 We estimate these effects using the different variants of RWR described previously. First, 

we use unadjusted RWR. This approach involves residualizing the family income-to-needs ratio 

based on prior treatment and income-to-needs, and then regressing the indicator for teen 

childbearing on treatment, treatment by moderator interactions, and the residualized moderators. 
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It assumes that exposure to neighborhood poverty at each time period is not confounded by 

variables other than the family income-to-needs ratio and that the functional form of the SNMM 

is correctly specified.  

Second, we use CA-RWR. This approach involves residualizing the family income-to-

needs ratio and all measured confounders based on the observed past, and then regressing the 

indicator for teen childbearing on treatment, treatment by moderator interactions, the 

residualized moderators, and the residualized confounders. It assumes that exposure to 

neighborhood poverty is confounded only by the income-to-needs ratio and other measured 

covariates described previously; that the functional form of the SNMM is correctly specified; 

and relatedly, that the covariates treated solely as confounders are not also effect moderators. 

Third, we use IPTW-RWR. This approach involves estimating IPT weights via an ordinal 

logistic regression model for the conditional probability of exposure to different levels of 

neighborhood poverty at each time period given prior treatment, moderators, and confounders. 

Then, the family income-to-needs ratio is residualized based on prior treatment and prior 

measures of this moderator using an IPT-weighted regression. Finally, estimates of moderated 

causal effects are obtained by fitting an IPT-weighted regression of the indicator for teen 

childbearing on treatment, treatment by moderator interactions, and the residualized moderators. 

This approach assumes that exposure to neighborhood poverty is confounded only by the 

income-to-needs ratio and other observed covariates; that the ordinal logistic regression models 

for the conditional probability of treatment at each time period are correctly specified; and that 

the functional form of the SNMM is correctly specified. 

 Table 1 presents point estimates and bootstrap standard errors for the SNMM causal 

parameters. The first column of the table presents estimates based on unadjusted RWR. The 
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second and third columns present estimates from CA-RWR and IPTW-RWR, respectively. All 

three estimation strategies yield point estimates for the direct effect of childhood exposure to 

neighborhood poverty that are substantively small and do not reach conventional significance 

thresholds. In general, results suggest a negligible direct impact of exposure to neighborhood 

poverty during childhood on the risk of teen childbearing and provide no evidence of effect 

moderation by prior family income. These findings are not simply due to over-control or collider 

stratification biases, as the RWR approach avoids them. 

Estimates for the effect of exposure to neighborhood poverty during adolescence, by 

contrast, indicate that living in moderate- or high-poverty neighborhoods during this 

developmental period has a strong and statistically significant positive effect on the risk of teen 

childbearing. Moreover, estimates also indicate that this effect is significantly moderated by prior 

family income levels. Consistent with compound disadvantage theory, exposure to neighborhood 

poverty during adolescence is estimated to have a larger inflationary effect on the risk of teen 

childbearing among individuals whose families are also poor during this developmental period.  

For example, according to estimates based on IPTW-RWR, adolescent exposure to high-

poverty rather than low-poverty neighborhoods is estimated to increase the risk of a subsequent 

childbirth event by about 9 percentage points among individuals in families with incomes at the 

poverty line during adolescence (i.e., 2 ��̂�𝛽20 + �̂�𝛽21(0)� = 2(0.046) = 0.092). Among 

individuals in nonpoor families with incomes equivalent to three times the poverty line, estimates 

indicate that exposure to high-poverty rather than low-poverty neighborhoods during 

adolescence increases the risk of a subsequent childbirth event by just over 3 percentage points 

(i.e., 2 ��̂�𝛽20 + �̂�𝛽21(2)� = 2�0.046 − 0.014(2)� = 0.036). In other words, the inflationary 

impact of adolescent exposure to neighborhood poverty on the risk of subsequent childbearing is 
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about twice as strong for individuals in poor families than for individuals in nonpoor families. 

Effect estimates based on CA-RWR versus IPTW-RWR are comparable to each other but 

smaller than estimates based on unadjusted RWR. This indicates that unadjusted RWR overstates 

the effects of neighborhood poverty because it ignores confounding by family-level 

characteristics, such as parental marital status and education.  

In sum, results from this example application of SNMMs and RWR estimation indicate 

that exposure to poor neighborhoods, particularly during adolescence, has a strong positive effect 

on the risk of teen childbearing, and that this effect is much more pronounced for individuals in 

poor families. RWR estimation is premised on the strong assumptions of no unobserved 

confounding and correct model specification, but these assumptions are in fact much weaker than 

those required by other methods that might naively be used to investigate neighborhood effect 

heterogeneity in the longitudinal setting, such as conventional regression or propensity score 

stratification. To further investigate the sensitivity of results to potential violations of these key 

assumptions, a variety of robustness checks are available and have been implemented in other 

settings (e.g., Brumback et al. 2004; Sharkey and Elwert 2010; Wodtke et al. 2012). 

 

DISCUSSION  

Treatment effect heterogeneity is ubiquitous in the social sciences. In many situations, both the 

treatment and effect moderators of interest vary over time, and they may influence one another 

through a dynamic selection and feedback process. This article introduced to sociology a new 

class of models and estimators for analyzing moderated causal effects in the longitudinal setting: 

SNMMs and RWR. It outlined how these methods avoid the limitations associated with 
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conventional methods when time-varying moderators are affected by prior treatments, and it 

adapted them to account for observed confounding. 

To illustrate these methods, we presented a simple empirical application with longitudinal 

data from the PSID. This analysis investigated whether the effects of exposure to neighborhood 

poverty during childhood versus adolescence on the risk of teen childbearing are moderated by 

prior family income levels. Results indicate that exposure to neighborhood poverty during 

adolescence (but not during childhood) increases the risk of subsequent childbearing, especially 

for individuals whose families are also poor during adolescence. This example application 

demonstrates the utility of these methods for neighborhood-effects research, and given the 

growing prevalence of longitudinal data in the social sciences, SNMMs and RWR estimation 

should be even more widely applicable, wherever there is interest in understanding 

heterogeneous effects of time-varying treatments.  

 For expositional simplicity, this article focused on SNMMs with a terminal end-of-study 

outcome. These methods, however, can be adapted to investigate time-varying outcomes. 

Moreover, they can even be adapted to investigate whether treatment effects on future values of a 

time-varying outcome are moderated by past values of this outcome. For example, these methods 

could be used to investigate whether the impact of continuing workforce education on 

subsequent earnings is moderated by a worker’s prior earnings history. They could also be used 

to investigate whether the impact on academic achievement of an ongoing instructional 

intervention is moderated by a student’s prior achievements. This type of information would 

allow social policymakers to develop adaptive interventions that tailor treatments across time to 

the evolving needs of different individuals in heterogeneous target populations, and it would 
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allow researchers to better understand the dynamic etiology of labor earnings and academic 

achievement.  

 Although this study focused on RWR estimation, another approach—termed G-

estimation in the literature on causal inference—can also be used to consistently estimate 

moderated intermediate causal effects under a similar set of assumptions (Robins 1994). The G-

estimator involves solving a complex system of estimating equations that do not require correctly 

specified models for the nuisance functions in the SNMM. RWR is our preferred estimation 

strategy because of its simplicity, transparency, and similarity to regression methods that are 

already familiar to sociologists; because of its greater relative efficiency (Almirall et al. 2010); 

and because it can be easily implemented with off-the-shelf software. Parts A and B of the 

Online Supplement provide code for the Stata and R statistical packages that executes the 

different RWR estimators and computes bootstrap standard errors with simulated data from a 

simple two time period example.6  

Despite the simplicity, convenience, and greater efficiency of RWR estimation, the G-

estimator is not without its own advantages. In particular, with an unsaturated SNMM, the G-

estimator is unbiased for the causal parameters of interest under weaker assumptions than RWR. 

The G-estimator provides unbiased estimates of the causal functions in an unsaturated SNMM if 

either the models for the nuisance functions are correctly specified or models for the conditional 

probability of treatment are correctly specified. This double-robustness property of the G-

estimator provides a degree of protection against bias due to model misspecification, but it 

comes at the price of higher variance. In practice, researchers may want to consider 

6 In addition, an R function that executes RWR and computes asymptotic SEs in a more general setting is available 
at http://methcenter.psu.edu. 

37 
 

                                                           



implementing both G-estimation and RWR estimation in an attempt to balance concerns about 

misspecification and precision. 

 Empirical researchers interested in effect heterogeneity are most often concerned with 

what is widely thought to be the main challenge for drawing valid causal inferences in the social 

sciences: unobserved confounding of treatment. This concern is certainly not misplaced, and 

methods for assessing the robustness of findings to hypothetical patterns of unobserved 

confounding should be incorporated in empirical analyses much more frequently (Brumback et 

al. 2004). However, we also show that even in studies where there is no unobserved confounding 

of treatment, conventional methods for analyzing effect heterogeneity remain biased if they 

condition on time-varying moderators (or confounders) that are affected by past levels of a time-

varying treatment. Although biases due to conditioning on an outcome of treatment are often 

overlooked or discounted in sociological research, their magnitude can be substantively large and 

in some cases even greater than confounding bias (Elwert and Winship Forthcoming; Greenland 

2003). Thus, it is critically important to have flexible statistical tools, like SNMMs and RWR 

estimation, which are capable of accounting for the variety of different biases encountered in 

longitudinal research on effect heterogeneity. 
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TABLES 

 

  

est se est se est se
Intercept .109 (.008) *** .138 (.010) *** .139 (.010) ***

Childhood
NH pov .014 (.012) –.002 (.012) –.003 (.013)
Inc x NH pov –.005 (.005) –.001 (.006) .003 (.006)

Adolescence
NH pov .063 (.013) *** .047 (.013) *** .046 (.014) **
Inc x NH pov –.016 (.005) ** –.013 (.006) * –.014 (.005) **

*p  < 0.05, **p  < 0.01, and ***p  < 0.001 for two-sided tests of no effect.

Table 1. Moderated effects of neighborhood poverty on the risk of adolescent parenthood by family 
income

Notes: Sample includes children present in a PSID family at age 3 during the 1968-1986 waves. 
Results are combined estimates from 10 multiple imputation datasets. Standard errors are computed 
from 200 bootstrap samples.

Specification Unadjusted RWR Adjusted RWR IPT-weighted RWR
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FIGURES 

 

  

Figure 1. Point-in-time causal relationships between treatment, moderator, and outcome

M

A Y

Notes: A = treatment, M = pre-treatment moderator, and Y = end-of-study outcome.

A. Random assignment
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B. Confounding only by M
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Figure 2. Point-in-time causal relationships between treatment, moderator, confounder, 
and outcome

Notes: A = treatment, M = pre-treatment moderator, C = pre-treatment confounder, and 
Y = end-of-study outcome.

A. Confounding only by C

M

A Y

B. Confounding by M and C

C

M

A Y
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Figure 3. Causal relationships between time-varying treatments, moderators, and 
outcome

A. Sequential randomization
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Notes: At = treatment, Mt = pre-treatment moderator, Y = end-of-study outcome, and U
= unobserved factors.

B. Selection on prior moderators
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Figure 4. Over-control of intermediate pathways and collider-stratification biases

A. Over-control of intermediate pathways

M1 M2

A1 A2

Y

U

Notes: At = treatment, Mt = pre-treatment moderator, Y = end-of-study outcome, and U
= unobserved factors. A box around a variable denotes conditioning.

B. Collider-stratification

M1 M2

A1 A2

Y

U
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Figure 5. Consequences of residualizing time-varying moderators based on past 
treatment and covariates

M1 (M2)

A1 A2

Y

U

Notes: At = treatment, Mt = pre-treatment moderator, Y = end-of-study outcome, and U
= unobserved factors. A box around a variable denotes conditioning. (M2) is equal to 
M2 – (M2|M1, A1).

M1 M2

A1 A2

Y

U

A. Condition on M2 : over-control and collider stratification

B. Condition on residualized M2 : transformed moderator independent of 
prior treatment and no bias
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Figure 6. Causal relationships between time-varying treatments, moderators, 
confounders, and outcome

A. Selection on prior moderators and confounders

Notes: At = treatment, Mt = pre-treatment moderator, Ct = pre-treatment confounder, Y
= end-of-study outcome, and U and V both represent unobserved factors. A box around 
a variable denotes conditioning. (M2) is equal to M2 – (M2|M1, A1).

M1 M2

A1 A2 Y

U

C1 C2

V

B. Over-control and collider stratification from conditioning on time-
varying confounders

M1

A1 A2 Y

U

C1 C2

V

(M2)

50 
 



 

  

Figure 7. Consequences of residualizing both time-varying confounders and moderators 
based on past treatment and covariates

Notes: At = treatment, Mt = pre-treatment moderator, Ct = pre-treatment confounder, Y
= end-of-study outcome, and U and V both represent unobserved factors. A box around 
a variable denotes conditioning. (M2) is equal to M2 – (M2|M1, C1, A1) and (C2) is 
equal to C2 – (C2|C1, M1, A1).

A. Condition on residualized C2  and M2: transformed confounder and moderator 
independent of prior treatment and no bias

M1 (M2)

A1 A2 Y

U

C1 (C2)

V
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Figure 8. Consequences of weighting by the inverse probability of treatment (IPT) and 
residualizing time-varying moderators in the weighted pseudo-population

Notes: At = treatment, Mt = pre-treatment moderator, Ct = pre-treatment confounder, Y
= end-of-study outcome, and U and V both represent unobserved factors. A box around 
a variable denotes conditioning. (M2) is equal to M2 – (M2|M1, C1, A1).

A. Weight by IPT and condition on residualized M2: future treatment independent of 
past moderators and confounders, transformed moderator independent of prior 
treatment in weighted pseudo-population, and no bias 

M1 (M2)

A1 A2 Y

U

C1 C2

V
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Figure 9. Longitudinal measurement strategy in the PSID

Notes: At = neighborhood poverty, Mt = family income-to-needs ratio, Ct = vector of 
observed confounders, and Y = childbirth event.
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ONLINE SUPPLEMENT 

Part A: Example STATA Code for Estimating a SNMM using RWR 

#delimit ; 
/***SIMULATE EXAMPLE DATA W/ TWO TIME PERIODS***/ 
/*NOTE: u and v are binary unobserved variables*/ 
/*NOTE: c1 and c2 are binary time-varying confounders, and c2 is affected by prior treatment*/ 
/*NOTE: m1 and m2 are binary time-varying moderators, and m2 is affected by prior treatment*/ 
/*NOTE: a1 and a2 are binary time-varying treatments*/ 
/*NOTE: y is a normally distributed end-of-study outcome*/ 
/*NOTE: effect of a1 is moderated only by m1, and effect of a2 is moderated only by m2*/ 
set obs 50000 ; 
gen u=0.5>=uniform() ; 
gen v=0.5>=uniform() ; 
gen c1=0.5>=uniform() ; 
gen m1=0.5>=uniform() ; 
gen a1=0.3+0.2*c1+0.2*m1>=uniform() ; 
gen c2=0.2+0.2*c1+0.2*a1+0.2*v>=uniform() ; 
gen m2=0.2+0.2*m1+0.2*a1+0.2*u>=uniform() ; 
gen a2=0.2+0.2*a1+0.2*c2+0.2*m2>=uniform() ; 
gen y=(0+1*u+1*v)+1*(c1-0.5)+1.0*(m1-0.5)+a1*(1+1*m1)+ 
1*(c2-(0.2+0.2*c1+0.2*a1))+1*(m2-(0.2+0.2*m1+0.2*a1))+a2*(1+1*m2)+ 
3*invnorm(uniform()) ; 
 
/***ESTIMATE (WITH OVER-CONTROL AND COLLIDER-STRATIFICATION BIAS) SNMM VIA CONVENTIONAL 
REGRESSION***/ 
gen m1a1=m1*a1 ; 
gen m2a2=m2*a2 ; 
reg y c1 m1 a1 m1a1 c2 m2 a2 m2a2 ; 
drop m1a1 m2a2 ; 
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/***ESTIMATE (WITH CONFOUNDING BIAS) SNMM VIA UNADJUSTED REGRESSION-WITH-RESIDUALS***/ 
/*FIRST STAGE REGRESSIONS*/ 
reg m1 ;  
predict m1r, resid ; 
reg m2 m1 a1 ;  
predict m2r, resid ; 
/*SECOND STAGE REGRESSION*/ 
gen m1a1=m1*a1 ; 
gen m2a2=m2*a2 ; 
reg y m1r a1 m1a1 m2r a2 m2a2 ; 
drop m1a1 m2a2 m1r m2r ; 
 
/***ESTIMATE (WITHOUT BIAS) SNMM VIA COVARIATE-ADJUSTED REGRESSION-WITH-RESIDUALS***/ 
/*FIRST STAGE REGRESSIONS*/ 
reg c1 ;  
predict c1r, resid ; 
reg m1 ;  
predict m1r, resid ; 
reg c2 c1 a1 ;  
predict c2r, resid ; 
reg m2 m1 a1 ;  
predict m2r, resid ; 
/*SECOND STAGE REGRESSION*/ 
gen m1a1=m1*a1 ; 
gen m2a2=m2*a2 ; 
reg y c1r m1r a1 m1a1 c2r m2r a2 m2a2 ; 
drop m1a1 m2a2 c1r c2r m1r m2r ; 
 
/***ESTIMATE (WITHOUT BIAS) SNMM VIA IPT-WEIGHTED REGRESSION-WITH-RESIDUALS***/ 
/*STABILIZED IPTWs*/ 
reg a1 ;  
predict p1, xb ; 
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replace p1=a1*p1+(1-a1)*(1-p1) ; 
reg a1 c1 m1 ;  
predict p1x, xb ; 
replace p1x=a1*p1x+(1-a1)*(1-p1x) ; 
reg a2 ;  
predict p2, xb ; 
replace p2=a2*p2+(1-a2)*(1-p2) ; 
reg a2 a1 c2 m2 ;  
predict p2x, xb ; 
replace p2x=a2*p2x+(1-a2)*(1-p2x) ; 
gen iptw=(p1/p1x)*(p2/p2x) ; 
/*WEIGHTED FIRST STAGE REGRESSIONS*/ 
reg m1 [pw=iptw] ;  
predict m1r, resid ; 
reg m2 m1 a1 [pw=iptw] ;  
predict m2r, resid ; 
/*WEIGHTED SECOND STAGE REGRESSION*/ 
gen m1a1=m1*a1 ; 
gen m2a2=m2*a2 ; 
reg y m1r a1 m1a1 m2r a2 m2a2 [pw=iptw] ; 
drop iptw p1 p1x p2 p2x m1a1 m2a2 m1r m2r ; 
 
/***COMPUTE BOOTSTRAP STANDARD ERRORS FOR CAUSAL PARAMETERS***/ 
program define covadj_rwr, rclass ; 
 reg c1 ;  
 predict c1r, resid ; 
 reg m1 ;  
 predict m1r, resid ; 
 reg c2 c1 a1 ;  
 predict c2r, resid ; 
 reg m2 m1 a1 ;  
 predict m2r, resid ; 
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 gen m1a1=m1*a1 ; 
 gen m2a2=m2*a2 ; 
 reg y c1r m1r a1 m1a1 c2r m2r a2 m2a2 ; 
 return scalar b0=_b[_cons] ; 
 return scalar b1=_b[a1] ; 
 return scalar b2=_b[m1a1] ; 
 return scalar b3=_b[a2] ; 
 return scalar b4=_b[m2a2] ; 
 drop m1a1 m2a2 c1r c2r m1r m2r ; 
end ; 
program define iptw_rwr, rclass ; 
 reg a1 ;  
 predict p1, xb ; 
 replace p1=a1*p1+(1-a1)*(1-p1) ; 
 reg a1 c1 m1 ;  
 predict p1x, xb ; 
 replace p1x=a1*p1x+(1-a1)*(1-p1x) ; 
 reg a2 ;  
 predict p2, xb ; 
 replace p2=a2*p2+(1-a2)*(1-p2) ; 
 reg a2 a1 c2 m2 ;  
 predict p2x, xb ; 
 replace p2x=a2*p2x+(1-a2)*(1-p2x) ; 
 gen iptw=(p1/p1x)*(p2/p2x) ; 
 reg m1 [pw=iptw] ;  
 predict m1r, resid ; 
 reg m2 m1 a1 [pw=iptw] ;  
 predict m2r, resid ; 
 gen m1a1=m1*a1 ; 
 gen m2a2=m2*a2 ; 
 reg y m1r a1 m1a1 m2r a2 m2a2 [pw=iptw] ; 
 return scalar b0=_b[_cons] ; 
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 return scalar b1=_b[a1] ; 
 return scalar b2=_b[m1a1] ; 
 return scalar b3=_b[a2] ; 
 return scalar b4=_b[m2a2] ; 
 drop iptw p1 p1x p2 p2x m1a1 m2a2 m1r m2r ; 
end ; 
bootstrap beta0=r(b0) beta1=r(b1) beta2=r(b2) beta3=r(b3) beta4=r(b4), reps(100): covadj_rwr ; 
bootstrap beta0=r(b0) beta1=r(b1) beta2=r(b2) beta3=r(b3) beta4=r(b4), reps(100): iptw_rwr ; 
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Part B: Example R Code for Estimating a SNMM using RWR 

### SIMULATE EXAMPLE DATA W/ TWO TIME PERIODS 
# NOTE: u and v are binary unobserved variables 
# NOTE: c1 and c2 are binary time-varying confounders, and c2 is affected by prior treatment 
# NOTE: m1 and m2 are binary time-varying moderators, and m2 is affected by prior treatment 
# NOTE: a1 and a2 are binary time-varying treatments 
# NOTE: y is a normally distributed end-of-study outcome 
# NOTE: effect of a1 is moderated only by m1, and effect of a2 is moderated only by m2 
u<-rbinom(50000,1,0.5) 
v<-rbinom(50000,1,0.5) 
c1<-rbinom(50000,1,0.5) 
m1<-rbinom(50000,1,0.5) 
a1<-rbinom(50000,1,0.3+0.2*c1+0.2*m1) 
c2<-rbinom(50000,1,0.2+0.2*c1+0.2*a1+0.2*v) 
m2<-rbinom(50000,1,0.2+0.2*m1+0.2*a1+0.2*u) 
a2<-rbinom(50000,1,0.2+0.2*a1+0.2*c2+0.2*m2) 
y<-rnorm(50000,(0+1*u+1*v)+1*(c1-0.5)+1*(m1-0.5)+a1*(1+1*m1)+1*(c2-(0.2+0.2*c1+0.2*a1))+1*(m2-
(0.2+0.2*m1+0.2*a1))+a2*(1+1*m2),3) 
 
### ESTIMATE (WITH OVER-CONTROL AND COLLIDER-STRATIFICATION BIAS) SNMM VIA CONVENTIONAL REGRESSION 
m1a1<-m1*a1 
m2a2<-m2*a2 
model1<-lm(y~c1+m1+a1+m1a1+c2+m2+a2+m2a2) 
summary(model1) 
rm(list=c('m1a1','m2a2','model1')) 
 
### ESTIMATE (WITH CONFOUNDING BIAS) SNMM VIA UNADJUSTED REGRESSION-WITH-RESIDUALS 
# FIRST STAGE REGRESSIONS 
model1<-lm(m1~1) 
m1r<-model1$residuals 
model2<-lm(m2~m1+a1) 
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m2r<-model2$residuals 
# SECOND STAGE REGRESSION 
m1a1<-m1*a1 
m2a2<-m2*a2 
model3<-lm(y~m1r+a1+m1a1+m2r+a2+m2a2) 
summary(model3) 
rm(list=c('m1a1','m2a2','m1r','m2r','model1','model2','model3')) 
 
### ESTIMATE (WITHOUT BIAS) SNMM VIA COVARIATE-ADJUSTED REGRESSION-WITH-RESIDUALS 
# FIRST STAGE REGRESSIONS 
model1<-lm(c1~1) 
c1r<-model1$residuals 
model2<-lm(m1~1) 
m1r<-model2$residuals 
model3<-lm(c2~c1+a1) 
c2r<-model3$residuals 
model4<-lm(m2~m1+a1) 
m2r<-model4$residuals 
# SECOND STAGE REGRESSION 
m1a1<-m1*a1 
m2a2<-m2*a2 
model5<-lm(y~c1r+m1r+a1+m1a1+c2r+m2r+a2+m2a2) 
summary(model5) 
rm(list=c('m1a1','m2a2','m1r','m2r','c1r','c2r','model1','model2','model3','model4','model5')) 
 
### ESTIMATE (WITHOUT BIAS) SNMM VIA IPT-WEIGHTED REGRESSION-WITH-RESIDUALS 
# STABILIZED IPTWs 
model1<-lm(a1~1) 
p1<-model1$fitted.values 
p1<-a1*p1+(1-a1)*(1-p1) 
model2<-lm(a1~c1+m1) 
p1x<-model2$fitted.values 
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p1x<-a1*p1x+(1-a1)*(1-p1x) 
model3<-lm(a2~1) 
p2<-model3$fitted.values 
p2<-a2*p2+(1-a2)*(1-p2) 
model4<-lm(a2~a1+c2+m2) 
p2x<-model4$fitted.values 
p2x<-a2*p2x+(1-a2)*(1-p2x) 
iptw<-(p1/p1x)*(p2/p2x) 
# WEIGHTED FIRST STAGE REGRESSIONS 
model5<-lm(m1~1,weights=iptw) 
m1r<-model5$residuals 
model6<-lm(m2~m1+a1,weights=iptw) 
m2r<-model6$residuals 
# WEIGHTED SECOND STAGE REGRESSION 
m1a1<-m1*a1 
m2a2<-m2*a2 
model7<-lm(y~m1r+a1+m1a1+m2r+a2+m2a2,weights=iptw) 
summary(model7) 
rm(list=c('m1a1','m2a2','m1r','m2r','p1','p1x','p2','p2x','iptw','model1','model2','model3','model
4','model5','model6','model7')) 
 
### COMPUTE BOOTSTRAP STANDARD ERRORS FOR CAUSAL PARAMETERS 
dataset<-data.frame(cbind(u,v,c1,m1,a1,c2,m2,a2,y)) 
covadj_rwr<-matrix(data=NA,nrow=100,ncol=5) 
iptw_rwr<-matrix(data=NA,nrow=100,ncol=5) 
for (j in 1:100)  
 { 
 bid<-sample(nrow(dataset),replace=T) 
 bsamp<-dataset[bid,] 
 model1<-lm(c1~1,data=bsamp) 
 bsamp$c1r<-model1$residuals 
 model2<-lm(m1~1,data=bsamp) 
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 bsamp$m1r<-model2$residuals 
 model3<-lm(c2~c1+a1,data=bsamp) 
 bsamp$c2r<-model3$residuals 
 model4<-lm(m2~m1+a1,data=bsamp) 
 bsamp$m2r<-model4$residuals 
 bsamp$m1a1<-bsamp$m1*bsamp$a1 
 bsamp$m2a2<-bsamp$m2*bsamp$a2 
 model5<-lm(y~a1+m1a1+a2+m2a2+c1r+m1r+c2r+m2r,data=bsamp) 
 for (i in 1:5) 
  { 
  covadj_rwr[j,i]<-model5$coef[i] 
  } 
 model1<-lm(a1~1,data=bsamp) 
 bsamp$p1<-model1$fitted.values 
 bsamp$p1<-bsamp$a1*bsamp$p1+(1-bsamp$a1)*(1-bsamp$p1) 
 model2<-lm(a1~c1+m1,data=bsamp) 
 bsamp$p1x<-model2$fitted.values 
 bsamp$p1x<-bsamp$a1*bsamp$p1x+(1-bsamp$a1)*(1-bsamp$p1x) 
 model3<-lm(a2~1,data=bsamp) 
 bsamp$p2<-model3$fitted.values 
 bsamp$p2<-bsamp$a2*bsamp$p2+(1-bsamp$a2)*(1-bsamp$p2) 
 model4<-lm(a2~a1+c2+m2,data=bsamp) 
 bsamp$p2x<-model4$fitted.values 
 bsamp$p2x<-bsamp$a2*bsamp$p2x+(1-bsamp$a2)*(1-bsamp$p2x) 
 bsamp$iptw<-(bsamp$p1/bsamp$p1x)*(bsamp$p2/bsamp$p2x) 
 model5<-lm(m1~1,weights=bsamp$iptw,data=bsamp) 
 bsamp$m1r<-model5$residuals 
 model6<-lm(m2~m1+a1,weights=bsamp$iptw,data=bsamp) 
 m2r<-model6$residuals 
 bsamp$m1a1<-bsamp$m1*bsamp$a1 
 bsamp$m2a2<-bsamp$m2*bsamp$a2 
 model7<-lm(y~a1+m1a1+a2+m2a2+m1r+m2r,weights=bsamp$iptw, 
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data=bsamp) 
 for (i in 1:5) 
  { 
  iptw_rwr[j,i]<-model7$coef[i] 
  } 
 } 
sd(covadj_rwr) 
sd(iptw_rwr) 
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