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Abstract 
 
In this analysis, guided by an evolutionary framework, we investigate how the human 

genome as a whole interacts with historical period, age and physical activity to influence BMI. 

The genomic influence is estimated by (1) heritability or the proportion of variance in BMI 

explained by genome-wide genotype data and (2) the random effects or the Best Linear 

Unbiased Predictors (BLUPs) of GWAS data on BMI (However, we were not doing a traditional 

GWAS analysis).  The hypothesis testing is performed on (2). Data were collected form a New 

England town in the Framingham Heart Study (FHS) in the United States. The study was 

initiated in 1948 and the data were collected repeatedly over the decades. The analyses draw 

analysis samples from a pool of > 8,000 individuals in the FHS and produce three empirical 

findings.  First, the genomic influence on BMI is substantially and significantly larger after the 

mid-1980s than in the few decades before the mid-1980s within each age group of 21-40, 40-50, 

51-60 and >60.  Second, the genomic influence on BMI weakens as one ages across the life 

course or the genome influence on BMI tends to be more important during reproductive ages 

than after reproductive ages within each of the two historical periods under consideration. 

Within the age group of 21-50, the genomic influence on BMI among physically active 

individuals is statistically significantly and noticeably smaller than the influence on those who 

are not physically active. In summary, this study provides evidence that the influence of human 

genome as a whole on obesity does depend on historical period, age, and level of physical 

activity. 
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INTRODUCTION 

Obesity has consequences for morbidity and mortality; it is associated with 

hypertension, metabolic syndrome, dyslipidemia, type-2 diabetes, coronary heart disease, 

osteoarthritis, stroke, and several types of cancers (Lewis et al. 2009; NIH-Publication 1998). 

Currently, more than two thirds of adults in the United States are overweight (defined as body 

mass index (BMI) of 25-29.9 kg/ 2m ), and about half of the overweight are obese (BMI  30) 

(National Center for Health Statistics. Health 2008). 

Is obesity a result of genetic destiny or personal choices about eating and exercise? In the 

quest for genetic evidence over the past five to six decades, most research depended on bio-

metrical methods or family and twin studies based on genetically related individuals (Jou 2014), 

where genetic effects on obesity are treated as from a blackbox. Family and twin studies based 

on genetically related individuals suggest that the heritability of BMI ranges from 40 to 70% 

(Maes, Neale and Eaves 1997; Stunkard, Foch and Hrubec 1986). Recent genome-wide 

association studies (GWAS) and GWAS consortia studies have confirmed that dozens of genetic 

loci are associated with obesity (Frayling et al. 2007; Speliotes et al. 2010). 

Since the 1980s, the United States saw an increase of almost 200% in obesity prevalence. 

Why did this obesity epidemic happen so dramatically and quickly while human gene pools 

could not possibly have altered to such a degree? Extra-genetic factors such as eating and 

exercise must have played a part. Thus, obesity is a complex health problem that is influenced by 

both genes and environment, and possibly the interaction between the two. 

Gene-environment (GxE) interaction holds that an environment influences how sensitive 

we are to the effect of a genotype and vice versa. Ignoring GxE interactions forces us to estimate 

only an average genetic effect (averaged over all environments) or an average environmental 

effect (averaged over all genotypes), thus potentially missing genetic, environmental or both 

effects entirely. 
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The present analysis investigates whether genetic influences at the whole genome level 

interact with three extra-genetic factors (historical period, life course, and physical activity,) to 

influence obesity. One main innovation of this gene-environment (GxE) interaction analysis is 

its consideration of the influences of an entire human genome, using in the analysis hundreds 

and thousands of genetic variables simultaneously in a single regression model (Yang et al. 

2010). 

BACKGROUND 

The joint effects of human genome and extra-genetic factors such as physical activity and  

dietary patterns can be understood from a perspective of evolution (Bellisari 2008). The “thrifty 

genotype” hypothesis proposed several decades ago represents an evolutionary explanation of 

the current obesity epidemic (Neel 1962). This hypothesis suggests that thrifty genes were 

selected to give advantages to human populations by storing extra calories as body fat in times 

when food was abundant. Thrifty genes were advantageous because throughout almost all of 

human history and all over the world, food is scarce and the level of physical activity is high. 

However, thrifty genes become disadvantageous in the contemporary developed world where 

food is plentiful and inexpensive and intense physical activity is typically unnecessary. 

The evolutionary theory of obesity has an age dimension. It predicts a number of peaks 

in fat storage over the life course (Zafon 2007). The first two peaks are an adaptive strategy for 

reproduction. Fat storage in infancy assists in the transition from placental period to lactation 

and the transition from lactation to solid food. Fat storage during pregnancy for the mother is 

considered a safeguard for an infant’s lactation period. Humans often experience a third peak in 

fat deposition at older ages, but apparently it does not have a clear evolutionary significance.  

Although difficult to prove (Lazar 2005; Speakman 2008), the hypothesis is plausible 

and timely, hypothesizing that there exist in human populations genes, certain forms of which 

are conducive to obesity. Also derived from the hypothesis is how some of extra-genetic factors 
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may interact with genetic propensities for obesity. The evolutionary theory predicts that obesity 

genes tend not to be expressed in “normal times” with respect to food and physical activity or 

the BMIs of human individuals possessing obesity genes tend not to become “overweight” unless 

food is abundant and inexpensively available and physical activity is low.   

Specifically for the current analysis, we hypothesize a smaller genomic influence on BMI 

among individuals engaged in heavy physical activity than individuals not engaged in such 

activity. Previous GxE interaction studies targeting one or a few genetic variants report that the 

effect of FTO on obesity among individuals leading a physically active lifestyle is attenuated by 

about 30% when compared with those who are inactive (Andreasen et al. 2008; Cauchi et al. 

2009; Rampersaud et al. 2008). It remains to be seen whether physical activity exerts a similar 

attenuating effect on the genome-wide susceptibility for obesity. 

Consistent with the evolutionary theory, we hypothesize a larger genomic influence on 

BMI in the current obesity epidemic since the mid 1980s than before the epidemic or before the 

mid 1980s. The current obesity epidemic is often characterized as an ‘obesogenic’ environment 

where unhealthy food is more easily available and exercise is reduced and where obesity genes 

are expected to be more expressed. The division of the past decades into a pre-obesogenic and 

an obesogenic environment is based on national surveys of obesity over the same periods. The 

prevalence of obesity in the United States remained approximately the same from 1960s through 

1980s and has increased dramatically since the mid 1980s (Flegal et al. 1998; Flegal et al. 2012; 

Flegal et al. 2002). Our data from the Framingham Heart Study (FHS) confirm this national 

trend (Figure 1). The level of BMI before 1970 is similar to that between 1970 and 1985 and a 

much higher level of BMI is observed for the period after 1985. 

Because of a much clearer evolutionary significance for obesity genotype in reproductive 

ages than after reproductive ages, we hypothesize a larger genome’s effect on obesity among 

females and males in reproductive ages than the effect among those after reproductive ages. The 
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evolutionary theory predicts such an effect only among females and does not comment on a 

similar effect among males (Zafon 2007). We extend the prediction to males since the same 

genotype is likely to be passed onto both females and males. 

In this analysis, we investigate whether and how much the level of historical period, life 

course, and physical activity interact with genome to influence obesity. Equivalently, we seek 

answers to the following three questions. Does physical activity reduce the genome-wide genetic 

susceptibility for obesity? Has the genome-wide influence on obesity increased over the past few 

decades when the prevalence of obesity rose dramatically in the United States? Does the 

genome-wide genetic susceptibility become smaller after reproductive ages than during 

reproductive ages? 

The investigation uses data from FHS. Since 1948, the FHS has repeatedly collected 

information on health and health behavior of three cohorts of more than 10,000 individuals. 

Recently, genome-wide genotype data were collected from about 9,000 of these individuals. By 

extending a recent mixed-model approach (Yang et al. 2010), our GxE interaction analysis 

considers the overall impact of the human genome as a whole on obesity in a single regression 

model. 

This analytical approach represents a major methodological shift from the traditional 

fixed-effects GWAS strategy in genomic data analysis. For example, one of the questions we ask 

is: Does physical activity reduce the genome-wide genetic susceptibility for obesity? In spite of 

the generally recognized importance of physical activity and rapid advances in genomic 

technologies in recent decades, this seemingly straightforward question has not been addressed. 

The investigation of GxE interaction involving a few genetic variants is uncomplicated, but 

incorporating genome-wide genotype data into GxE interaction analysis has been a formidable 

challenge. 

A central challenge in working with genomic data is the development of a way to take 



Preliminary. Please do not circulate. 

 

7 

 

advantage of the entire panel of GWAS data simultaneously in one analysis. The current 

prevailing GWAS strategy estimates the effect of one single nucleotide polymorphism (SNP) at a 

time. The >500K genetic effects in the fixed-effects regression models are estimated separately. 

In the fixed-effects framework, it is impossible to include all the SNPs as independent variables 

in a single regression model because the number of predictors is much larger than the number 

of observations. The usual strategy of using GWAS for GxE interaction analysis also encounters 

the intractable difficulty of multiple testing (Boardman et al. 2014). However, once treated as 

random, the entire panel of genetic polymorphisms can be considered simultaneously. In this 

random-effects model, we calculated the heritability of BMI or the proportion of the variance in 

BMI explained by the panel of the SNPs as well as the random effects of this large number of 

SNPs on BMI. 

Using genome-wide genotype data to estimate heritability represents a fundamental 

development over the traditional twin and other family studies. In the absence of DNA data, 

family and twin methods had been used to obtain heritability estimates. These twin and family 

approaches rely on a number of assumptions. These include assumed degrees of genetic 

relatedness among relatives, the equal environment assumed between monozygotic and 

dizygotic twins, and the nonexistence of assortative mating. These assumptions cannot be 

verified by empirical data. In contrast, our approach makes direct use of genome-wide genotype 

data and does not rely on these assumptions. 

DATA and METHODS 

 Data Source. The Framingham Heart Study (FHS)(FHS 2012) is a community-based, 

prospective, longitudinal study following three generations of participants. The Original Cohort 

enrolled in 1948 (N=5,209), the Offspring Cohort enrolled in 1971 (N=5,124) consisting of the 

children of the Original Cohort and spouses of the children, and the Generation Three Cohort 

enrolled in 2002 (N=4,095) consisting of the grandchildren of the Original Cohort. These 
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individuals are of predominantly European origin. About 1% of the subjects self-report as native, 

black and Asian American. All study subjects undergo physical exams and complete written 

questionnaires at regular intervals. Weight and height were measured on FHS subjects 

repeatedly at dozens of medical exams over the decades. These measures at all adult ages and 

over several decades provide an opportunity for an age-period analysis. 

At five times between 1979 and 2008, the FHS asked the study subjects how many hours 

per day they engaged in activities such as heavy household work, heavy yard work such as 

stacking or chopping wood, and exercise such as intensive sports (jogging, swimming, etc.). 

About 85% of the FHS subjects whose BMI and genotype are available responded. A binary 

variable is constructed that divides the FHS individuals into two groups: those who engaged in 

heavy activity (N=2,102) and those who did not (N=2,216). Splitting the entire sample into more 

than two groups encounters the issue of sample size to be discussed in a later section. Our 

measure of physical activity is merely a proxy for energy expenditure. An accurate measure 

needs to take into consideration a numerous dimensions such as frequency, intensity, duration, 

energy cost, efficiency, and locomotory effects (Wells 2006). 

Of the 14,428 study subjects in FHS, a total of 9,237 consenting individuals were 

genotyped including 4,986 women and 4,251 men. Genotyping for FHS participants was 

performed using the Affymetrix 500K GeneChip array. The Y chromosome was not genotyped. A 

standard quality control filter is applied to the genotype data. Individuals with 5% or more 

missing genotype data were excluded from analysis. SNPs that are on X chromosomes, that have 

a call rate ≤ 99%, or a minor allele frequency ≤0.01 were also eliminated from analysis. The 

application of the quality control procedures has left 8,738 individuals with 287,525 SNPs from 

the 500K genotype data. Genotype data were converted to minor allele frequencies for analysis. 

A Mixed Model for GxE Interaction Analysis for GWAS Data. Our GxE 

interaction approach builds upon Yang et al.’s mixed linear model (2009; 2010). These models 
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are a special class of the general mixed or random effects linear models. A key innovation of 

Yang et al. is that they recognize an extremely useful feature of these models: by doing a 

transformation, the models could include, in a single regression model, a million or more 

genetic variables for each individual. This was accomplished by not estimating fixed effects of 

the large number of variables. Rather, the large number of genetic variables is assumed to follow 

a random distribution and the distribution parameters can be estimated. Once the mixed model 

is estimated, the random effect of each of the large number of genetic SNPs can be derived. 

The general mixed model includes both fixed and random effects (Searle 1971; Searle, 

Casella and McCulloch 1992). In the context of genetic analysis, Yang et al. focus on genetic 

main effects and treat the effects of a large number of observed SNPs as random. Yang et 

al.(2010) start with the following general form of mixed model for the purpose of estimating 

genetic main effects: Y=Xβ + Wµ + ε, with var(Y)=WW’σ2
μ+Iεσ2

ε (1), where Y is an 1n  vector of 

the phenotype with n being the number of observations; β is a vector of fixed effects; µ is a 

vector of SNP effects with µ~ N (0, Iμσ2
μ),where Iμ is an NN identity matrix with N being the 

number of SNPs; ε is a vector of residual effects with ε ~ N (0, Iεσ2
ε), where Iε is an nn  identity 

matrix; W is an n×N standardized genotype matrix with the ijth element wij = (sij-2ρj)/√ [2ρj(1- 

ρj)], where sij is the number of copies of the reference allele for the jth SNP of the ith individual 

and pj is the frequency of the reference allele.  

Very importantly, Yang et al. (2010) defines A= WW’/N and σg
2 = Nσµ

2. Then Equation 

(2) is mathematically equivalent to Equation (1): Y=Xβ + g + ε, with V = A σg
2+ Iεσ2

ε (2), where g 

is a 1n vector of the total genetic effects of the individuals with g ~ N (0, A σg
2), and A is the 

genetic relationship matrix (GRM) between individuals. Because N (the dimension of W or the 

number of SNPs) is reduced to n (the dimension of g or the number of individuals), the entire 

panel of 500-1,000K SNPs can be incorporated into this single mixed model. Yang et al.’s mixed 

model based on about 4,000 individuals and approximately 300,000 SNPs shows that 0.45 of 
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the variance in human height can be explained by common SNPs. In contrast, the prevailing 

GWAS strategy explains about 10% of the variance in height (Allen et al. 2010). 

Our approach expands Yang et al.’s main effect mixed model to a mixed model for GxE 

interaction analysis. Equation (3) describes a mixed GxE interaction model that considers one 

multiple-category categorical environmental factor: Y=Xβ + + εi (3), where  is a 

standardized genotype matrix with Gk = W for individuals in the kth environmental category and 

with Gk =0 for individuals in the other environmental categories; µek is a vector of SNP effects 

for individuals in the kth environmental category, with  ~ N (0,  Iµ ) where  is an NN 

identity matrix with N being the number of SNPs, and can be understood as the total 

variance explained by the N SNPs for the individuals in the kth environmental category; and r is 

the number of categories of the environmental factor. All models are estimated with control for 

sex and the first seven principle components for bio-ancestry (Price et al. 2006).  

Our GxE interaction model implemented by the software GCTA (Yang et al. 2011) yields 

two sets of estimates of genomic influence. The first set amounts to estimating the heritability or 

the proportion of variance in BMI that is explained by GWAS data in each sub-sample defined 

by period, age, and/or physical activity. The GCTA models allow Xβ and ε to vary by 

environmental category k. The second set of gnomic influence is estimated random effects on 

BMI or the BLUP of µ, where BLUP stands for the Best Linear Unbiased Predictors.  As 

Equations (1) and (2) (i.e. Y=Xβ + Wµ + ε and  Y=Xβ + g + ε) are mathematically equivalent, the 

BLUP of µ can be transformed from the BLUP of g by  = WTA-1 /N (Yang et al. 2010). Our 

second set of results include a large number of random effects on BMI for each age-period and 

age-activity sub-sample. Also estimated is the variance of these random effects of GWAS data in 

each sub-sample. A large variance of the random effects implies larger proportions of random 

effects are located away from zero, and thus indicates a larger set of random effects on BMI. 
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The method of GCTA is built on a number of assumptions.  The model is a special case of 

the general mixed model (Searle et al. 1992). It assumes that the effects of the large number of 

observed genetic variables follow a normal distribution. This is unusual to those familiar with 

multilevel or longitudinal models (Goldstein 2011; Guo and Hipp 2004; Raudenbush and Bryk 

2002), which are also special cases of the general mixed model, but which assumes that the 

unobserved effects at level 2 or above follow a normal distribution. The model implies that all 

genetic variables, which can amount to one or two millions, have an effect on the outcome 

except for those right on the zero value in the X axis. 

Hypothesis Testing. After calculating the parameters of a mixed model for each sub-

sample defined by age and period, and by age and level of activity, hypothesis testing needs to be 

performed to test whether the genomic influences across age-period sub-samples and across 

age-activity sub-samples are statistically different. However, a direct comparison of the two 

heritability estimates from a pair of sub-subsamples can’t be correctly performed under the 

current circumstances. For example, we attempted bootstrapping (Efron and Tbshirani 1993). A 

bootstrapping sample by definition repeatedly samples a portion of observations and this leads 

to relatedness in each sub-sample, which is not allowed in the GCTA mixed model. Because of 

this complication, we propose to compare the variance of the random SNP effects on BMI from 

two sub-samples.  

Our hypothesis testing focuses on whether one set of random effects or the BLUPs on 

BMI in one “environmental” sub-sample is larger than another in a different “environmental” 

sub-sample. The hypothesis testing was performed using Pitman’s test (Howell 1997; Pitman 

1939; Snedecor and Cochran 1967). Pitman’s test is developed to test the null hypothesis that 

two correlated samples are drawn from populations with identical variances. Because a pair of 

sub-samples on which Pitman’s test was performed could contain the same or related 

individuals, the two sub-samples can be correlated. The random effects are paired and 
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correlated also because the two sets of random effects are based on the same set of SNPs. Even if 

the individuals are not related, the BLUPs will still be paired and correlated. 

Pitman’s test involves three steps.  The first step is to compute the F ratio of the larger 

variance to the smaller variance in the pair of sub-samples. Second, it computes  

)1(2

2)1(

2rF

nF
t






, 

where n is the number of SNPs and r is the correlation between the two sets of BLUPs estimated 

from two sub-samples, respectively (e.g., one sub-sample consists of individuals aged 21-40 

before 1985 and the second sub-sample consists of individuals aged 21-40 after 1985). Finally, t 

is evaluated on n-2 degrees of freedom. To summarize, we calculated the BLUPs for each age-

period and age-physical-activity sub-sample, and employed Pitman’s test to compare the 

distribution of the BLUPs between age groups within each historical period; between historical 

periods within each age group; and between the physically inactive and the physically active 

within each age group.  

Analytical Samples. When creating samples for mixed model analysis, we must weight 

two conflicting considerations. First, each mixed-model analysis must be based on a sample of 

genetically unrelated observations; and second, each analysis sample must be maximized in size 

to retain statistical power. Including related individuals or observations in the same mixed 

model would result in biased estimates (Yang et al. 2010). To satisfy this requirement, we could 

use the information on sibling and parent-child relationships in Framingham and delete one or 

more individuals in a known genetically-related cluster. However, some individuals could still be 

genetically-related such as cousins even if they are not siblings or parents and children. 

Framingham does not provide information on these relationships. The relationship matrix 

estimated by GCTA can be used to address this issue by setting the cutoff point very close to 

zero.  GCTA’s solution is to set the cutoff point at 0.025 (Yang et al. 2010), which assumed to be 

caused by noise for genetically unrelated individuals.  The cutoff point of 0.025 was arrived at in 
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GCTA by the observation that the maximum negative genome-wide correlation is -0.025. Since 

related individuals are only correlated positively, the negative genotype correlation is likely to be 

caused by noise. Assuming that positive noise has a similar magnitude as the negative one, 

GCTA only deletes one or more individuals in a genetically correlated cluster in which 

individuals are correlated more than 0.025. We followed a similar logic and found the cutoff 

point in Framingham to be 0.034. Our analysis samples are drastically reduced because of these 

procedures. 

The GCTA can only use genetically independent observations. Getting rid of correlation 

among observations due to genetic relatives and repeated measures of the same individual in the 

Framingham data would leave a small portion (often 20-30%) of the total number of 

observations for GCTA analysis. This is, indeed, very inefficient, especially when standard 

random-effects statistical methods can routinely handle complicatedly correlated dataset that 

include siblings, twins, and cousins (Searle 1971). But the two should not be confused. The 

GCTA method uses genome-wide genotype data to estimate heritability (Yang et al. 2010) while 

the standard random effects model can use genetic relatives to estimate heritability in the 

absence of genotype data (Guo and Wang 2002). When the GCTA method uses genetic relatives 

and genotype data simultaneously, it has two overlapping sources of genetic information, which 

result in biases. 

Ideally, gene-environment interaction in the current setting is derived by estimating a 

mixed model for each sub-sample defined by historical period, age range, and level of physical 

exercise. To compromise because of the available samples, GxE interaction analysis is only 

performed in age-period sub-samples and age-activity sub-samples, but not in age-period-

activity sub-samples, which would result in prohibitively small samples. 

 In the preparation for the age-period analysis, we grouped all the BMI measures, for 

which genotype information is available, into eight sub-samples by two historical periods of 
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before and after 1985, and four age groups of 21-40, 41-50, 51-60, and >60. The cut-off point of 

1985 for historical periods is supported the well-known obesity trends in the United States over 

past decades (NCHS 2010) and confirmed  by the Framingham data described in Figure 1. 

A wider age range for the 21-40 group is based on two considerations.  First, the 

evolution theory predicts a distinction with regards to effects of genotype on obesity between 

reproductive ages and after reproductive ages.  Second, many fewer independent measures are 

available at these ages than other age groups. The age group of 21-40 for the period after 1985 

has a sample of 799, much smaller than the other age groups in spite of an age range about twice 

as wide as the age ranges of 41-50 and 51-60. In the age-period analysis, because a separate 

mixed model is estimated within each age-period sub-sample, genetically related measures from 

the same individual or related individuals can be used so long as they are included in a separate 

regression so that the BMI measures in a mixed-model regression remain unrelated. Within 

each of the eight age-period subsamples, our analysis used the first BMI measure obtained for 

each individual. 

In the preparation of the age-activity analysis, the BMI measures were grouped by age 

groups of 21-50 and >50 and heavy activity. Other groupings such as those used in the age-

period analysis (21-40, 41-50, 51-60, and >60) would produce extremely small samples since a 

good proportion of respondents did not respond to the question of physical activity. Within each 

of the 21-50 and >50 groups, we used the BMI measure that was measured at the same time as 

the first response to the question of physical activity. 

Some of our group classifications appear irregular. In the age-period analysis, those aged 

21-40 are grouped instead of those aged 21-30 and 31-40. In the analysis of physical activity, 

those aged 21-50 are grouped instead of those aged 21-40 and 41-50. Nevertheless, the wider 

groupings are consistent with our theoretical hypotheses, which suggest a split between 
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reproductive ages and beyond reproductive ages. Thus, a wider age internal of 21-40 or 21-50 

still overlaps with reproductive ages and can serve to test the evolutionary hypotheses. 

RESULTS 

Figure 2 presents the estimated heritability or the proportion of the variance in BMI 

explained by genome-wide genotype data by age group and historical period. The sample size or 

the number of individuals used in each sub-sample is also provided. It demonstrates a 

historical-period effect of genomic influence on BMI within each of the three age groups of 21-

40, 41-50, and 51-60. The estimated proportions of BMI variance explained by GWAS for the 

two periods before and after 1985 are 0.71 vs. 0.42, 0.56 vs. 0.30, and 0.27 vs. 0.10, respectively 

for the three age groups. 

Figure 2 shows that genomic influence measured by heritability on BMI tends to decline 

as one ages. Before 1985, the estimated genomic influences are 0.42, 0.30, and 0.10 for the age 

groups of 21-40, 41-50, and 51-60, respectively. After 1985, the estimated genomic influences 

are 0.71, 0.56, and 0.27, respectively, for the age groups of 21-40, 41-50, and 51-60. Those who 

aged 60 or older are an exception. Neither the age effect nor the historical effect observed 

among the younger age groups is present among individuals 60 or older.  

Panel 1 of Figure 3 shows that the random effects of SNPs or the BLUPs on BMI are 

substantially larger after 1985 than before 1985 within each age group in the FHS. In every age 

group, the variance of the random effects on BMI after 1985 is much larger than that before 

1985, especially for age groups of 21-40, 41-50, and 51-60. A larger variance indicates that 

higher proportions of random effects is located further away from zero and thus represent larger 

effects. 

Panel 2 of Figure 3 shows that the random effects of SNPs or the BLUPs on BMI 

generally grow smaller with life course or age within each historical period in the FHS. Within 

the historical period after 1985, the size of the variance of the random effects is correlated 
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strictly with age. The older the age group is, the smaller the variance, and thus the smaller 

random effects are on BMI. Within the historical period before 1985, the same pattern emerges 

with the exception that the variance in 51-60 is larger than that in >60. 

Panel 3 of Figure 3 demonstrates that among those aged 21-50, the random effects on 

BMI are much less among those engaged in heavy physical activity than those not engaged in 

heavy physical activity. Such an effect is absent among those aged >51. 

While Figure 2 describes differences in the effect size of human genome in term of 

heritability between pairs of sub-samples, Table 1 presents the test results of whether the 

differences are statistically different. In Table 1, the sample size or the number of individuals 

used in each sub-sample analysis is described. Panel (1) of Table 1 presenting test results from 

Pitman’s test shows that the random effects of the SNPs (BLUPs) in the period after 1985 are 

significantly larger than those before 1985 within each age group.  Panel (2) of Table 1 shows 

that the random effects of the SNPs (BLUPs) are generally larger for a younger age group than 

an older age group within a historical period.  The exception is the age group of >60 before 1985, 

the random effects of which group are statistically smaller than those in the age group of 51-60 

before 1985. Panel (3) of Table 1 shows that in the age group of 21-50, the random effects on 

BMI among those engaged in heavy physical activity are significantly and dramatically smaller 

than those unengaged in heavy exercise. Although in the age group of >50, the two sets of the 

random effects between the physically inactive and the physically active are statistically 

significantly different, the differences in effect size are extremely small (also see Panel 3 of 

Figure 3). The P values in Table 1 are small and even taking into account multiple testing, these 

tests are still significant. 

DISCUSSION and CONCLUSIONS 

Guided by an evolutionary theory of obesity, this study investigates how the human 

genome as a whole interacts with environment to influence BMI, using data from the 
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Framingham Heart Study. The FHS collected repeated measures of weight and height over the 

past six decades from a sample of U.S. residents. The FHS recently obtained genome-wide 

genotype data. 

This analysis found empirical support for three hypotheses concerning genome-wide 

influence based on the random effects of the mixed model. First, we demonstrate a genome-

period interaction on BMI. The genomic influence on BMI is substantially and significantly 

larger in the current obesity epidemic after the mid 1980s than in the few decades before the 

mid 1980s within each age group of 21-40, 40-50, 51-60 and >60.  

Second, this investigation shows a genomic influence on BMI that weakens as one ages 

across the life course or as reproduction becomes less important  over the life course. This result 

by and large holds within each of the two historical periods under consideration. Third, within 

the age group of 21-50, the genomic influence on BMI among physically active individuals is 

statistically significantly and noticeably smaller than the influence on those who are not 

physically active. 

Among the numerous pieces of empirical evidence from our analysis, two do not support 

our hypotheses. Before 1985, the genomic influence on BMI in the age group of >60 is larger 

than that in the age group of 51-60 (not smaller as predicted by our hypothesis). In the age 

group of >50, the genomic influence on BMI is not related to physical activity. Both exceptions 

are about older individuals. 

Body mass among older individuals develop differently from younger individuals and 

both males and females start losing lean body mass from about age 50.  (Kyle et al. 2003). He 

and Meng (2008) reported that individuals 70 and older in the United States are prone to 

weight loss rather than weight gain and that males 70 and older who are engaged in physical 

activity actually experience less weight loss. The relationship between genomic influence and 

BMI in the older populations may be different from those for the younger age groups. BMI is an 
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approximation for excessive adiposity. A difference in BMI may not always indicate a 

proportional difference in body fat, especially among the elderly population. Older individuals 

could maintain a constant BMI while simultaneously losing lean body mass and gaining a 

greater portion of adiposity. One limitation of the current study is that in order to amass 

reasonably-sized samples, we have to group those older than 60 in the genome-age analysis and 

group those older than 50 in the genome-activity analysis. Future studies with sufficiently large 

samples should investigate the age groups of 50s, 60s and >70 separately.  

The findings of this analysis are genome-wide. The focus on the overall genomic 

influence in the mixed-model framework rather than individual genetic loci can be a feasible 

alternative to the fixed-effect GWAS studies. Investigating whether and how much, for example, 

physical activity reduces the effects aggregated over the entire panel of GWAS data on obesity 

will likely yield additional insights to those obtained from investigating whether and how much 

physical activity reduces the effect of a single or a few genetic variants. 

The GxE interaction effect from the physical activity analysis or the period analysis can 

be quite large. GWAS main-effect studies show that on average, the FTO gene allele makes a 

difference of 1.2 kg in body weight (e.g., Frayling et al. 2007). Activity-FTO interaction studies 

suggest that physical activity attenuates the effect of FTO by 30%, which amounts to 

approximately 0.40 kg. This 0.40 kg is the gene-activity interaction effect based on a single 

gene. Our estimated gene-activity interactive effects represent a collection of numerous genes 

throughout the human genome. The finding suggests that a large proportion of genome-wide 

susceptibility for obesity could be attenuated by physical activity. The genome-by-physical-

activity-interaction effect is likely many times larger than 0.4 kg. 

The large period effects found in our analysis may help isolate the exact culprits of the 

current obesity epidemic. These period effects suggest that changes over the past three decades 

in the United States have induced the human genome to have a larger impact on BMI. Food and 
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exercise are two most likely candidates. In most human history until very recently, food was 

scarce and the level of physical activity high (e.g., Bellisari 2008; Swinburn et al. 2011). Health 

disparity is considered a source of the current obesity epidemic (Braveman 2009). Does the 

timing of food abundance, sedentary lifestyle, and/or health disparity correspond to the recent 

increase in genomic influence? A small number of other factors have been considered. An 

intriguing line of research points to environmental endocrine-disrupting chemicals as a possible 

source for the development of obesity (Casals-Casas, Feige and Desvergne 2008; Newbold et al. 

2007; Wells 2006). A low-grade systematic inflammation has been considered a factor for 

obesity even though individuals with excessive adiposity do not typically have overt infection 

(Visser et al. 1999, 2001; Wisse 2004). Our findings suggest looking for endocrine-disrupting 

chemicals and/or increased low-grade inflammation that appeared in the environment about 

the same time the obesity epidemic began; these may have altered the genomic susceptibility for 

obesity. 

The estimation of heritability using genome-wide genotype data places heritability 

estimates firmly on the basis of molecular genetics rather than only genetic relatedness among 

family members. It also makes possible the use of significance tests like the Pitman test. 

However, recent work shows that heritability estimates based on genome-wide genotype data 

are generally smaller than those estimated by twin data (Plomin et al. 2013; Wray et al. 2013). 

This suggests that the gene-environment interaction effects could be significantly larger than 

those estimated in this analysis.  Our results indicate that the influence of the human genome as 

a whole may not be a fixed property of a phenotype. Such an influence may depend on 

environments or other factors external to the human genome. Finally, our approach of assessing 

how the effects of the human genome as a whole are moderated by environmental factors for a 

phenotype may be applied to a wide range of health outcomes beyond human obesity.  
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Table 1. Pitman’s test results showing that the random effects of the SNPs (BLUPs) are 

significantly different between the two historical periods (before and after 1985) within each age 

group (1); mostly significantly different between age groups within a historical period (2); and 

substantially and significantly different between the physically inactive and the physically active 

within the age group of 21-50 (3). Our three hypotheses are mostly supported. See the estimated 

effect sizes in Figure 3.  

 
(1) For analysis of genome-period interaction within an age group 

 

(2) For analysis of genome-age group interaction within a historical period 

Age group Period Period F r t p-value 

21-40 after 1985 (N=799)  vs before 1985 (N=1553) 3.09 0.131 321.8 <.00001 

41-50 after 1985 (N=1205) vs before 1985 (N=1760) 4.46 0.224 451.3 <.00001 

51-60 after 1985 (N=1504) vs before 1985 (N=1475) 11.23 0.210 837.5 <.00001 
>60 after 1985 (N=1866) vs before 1985  (N=1071) 3.73 0.403 414.1 <.00001 

Period Age group                     Age group F r t p-value 
Before 1985 
 
 
 

21-40 (N=1553) vs  41-50 (N=1760) 1.50 0.516 128.9 <.00001 
 51-60 (N=1475) 14.82 0.261 997.2 <.00001 
 >61 (N=1071) 5.40 0.238 523.2 <.00001 
41-50 (N=1760) vs  51-60 (N=1475) 9.85 0.572 921.9 <.00001 
 >61 (N=1071) 3.59 0.366 394.0 <.00001 
51-60 (N=1475) vs   >61 (N=1071) 0.36 0.560 -340.3 <.00001 

After 1985 
 
 
 

21-40 (N=799) vs 41-50 (N=1205) 1.04 0.202 11.271 <.00001 
 51-60 (N=1504) 4.08 0.157 414.0 <.00001 
 >61 (N=1866) 4.48 0.064 442.0 <.00001 
41-50 vs (N=1205) 51-60 (N=1504) 3.91 0.455 443.6 <.00001 
 >61 (N=1866) 4.30 0.212 436.7 <.00001 
51-60 (N=1504) vs >61 (N=1866) 1.09 0.413 27.7 <.00001 

 

(3) For analysis of  genome-activity interaction within an age group 

  Age group   F r t p-value 

    21-50 
physically inactive (N= 
1056) vs 

physically active 
(N=1041) 

11.30 0.052 822.9 <.00001 

    > 51 
physically inactive 
(N=1160) vs 

physically active 
(N=1061) 

0.88 0.036 -33.7 <.00001 

 

Note: Pitman’s t test is used to test the null hypothesis that the variances of two subgroups are 

equal against the alternative hypothesis that variances of two subgroups are different. 

Df=287,523.  
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Figure 1. The average BMI of study subjects by age and historical period in the FHS.  The 

number of measures for the three periods is 9,686, 17,577, and 18,456, respectively. 
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Figure 2. Estimated heritability or the proportion of the variance in BMI explained by genome-

wide genotype data by age and historical period in the FHS. 
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Figure 3.  The two normal curves in each sub-figure represent two sets of estimated random 
effects, each random effect corresponding to one of a large number of SNPs. The GCTA analysis 
assumes that these random effects follow a normal distribution. The flatter the curve is, the 
large the random effects. A flatter curve indicates that more random effects are much larger 
than zero. Random effects of SNPs (Best Linear unbiased Predictors [PLUPs]) on BMI are 
substantially- larger after 1985 than before 1985 within each age group in the FHS (Panel 1);  
generally grow smaller with age within each historical period in the FHS (Panel 2); and 

substantially larger among those not engaged in heavy physical activity than those engaged in 

heavy physical activity in the age group of 21-50 (Panel 3). See the test results in Table 1. 

Panel 1 
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